Supporting Information

Comprehensive Insights into the Catalytic Mechanism of Middle East Respiratory Syndrome 3C-Like Protease and Severe Acute Respiratory Syndrome 3C-Like Protease

Hao Wang ${ }^{1,2}$, Shuai He ${ }^{1,2}$, Weilong Deng ${ }^{1,2}$, Ying Zhang ${ }^{3}$, Guobang Li ${ }^{1,2}$, Jixue Sun ${ }^{1}$, Wei Zhao ${ }^{1,2}$, Yu Guo ${ }^{1,2}$, Zheng Yin ${ }^{1,2,4}$, Dongmei Li $^{1^{*}}$, and Luqing Shang ${ }^{1,2^{*}}$

1. State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China
2. Drug Discovery Center for Infectious Disease, Nankai University, 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People's Republic of China
3. Laboratory of Structural Biological \& Ministry of Education and Laboratory of Protein Science, School of Medicine and Life Sciences, Tsinghua University, Beijing 100084, People's Republic of China
4. Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
[^0]
Contents

Supporting figures 3
Supporting tables 16
Supporting chemical schemes 23
Chemical synthesis 24
NMR Figures 34
Ab initio model scheme 38
Supporting figures in MD simulation 39
References 51

Supporting figures

Figure S1. Size exclusion chromatography of MERS-CoV 3CL ${ }^{\text {Pro }}$ and SARS-CoV $3 \mathrm{CL}^{\text {Pro }}$. MERS-CoV 3CL ${ }^{\text {Pro }}$ is purified by SEC with retention volume of 11.5 mL by the superdex- 75 gel Filtration columns, while SARS-CoV 3CL ${ }^{\text {Pro }}$ is purified by SEC
with retention volume of 13.7 mL by the superdex-200 gel Filtration columns. The sample obtained following purification are analyzed by SDS-PAGE and stained with Coomassie brilliant blue R-250.

SARS-CoV 3CL ${ }^{\text {Pro }}$
Figure S2. Topological research on MERS-CoV 3CL ${ }^{\text {Pro }}$ (left) and SARS-CoV 3CL ${ }^{\text {Pro }}$ (right). The figure is displayed via processed by Pro-origami website (http://munk.cis.unimelb.edu.au/pro-origami/porun.shtml). ${ }^{1-4}$ The α-helix is shown as barrel and the β-sheet is exhibited as arrow. Meanwhile, α-helix and β-sheet are connected with loop, which is shown as string.

Protease	MERS-CoV 3CL Pro			
Title	Total	Domain I	Domain II	Domain III
HCoV-HKU1 3CL ${ }^{\text {Pro }}$	0.667	0.433	0.438	0.463
BCoV-HKU4 3CL	0.741	0.516	0.352	0.435
HCoV-229E 3CL	Pro	0.590	0.316	0.498
HCoV-NL63 3CL ${ }^{\text {Pro }}$	0.556	0.333	0.443	0.555
				0.542

Protease	SARS-CoV 3CL ${ }^{\text {Pro }}$			
Title	Total	Domain I	Domain II	Domain III
HCoV-HKU1 3CL ${ }^{\text {Pro }}$	0.836	0.452	0.458	0.898
BCoV-HKU4 3CL				
HCo	0.848	0.444	0.364	0.841
HCoV-229E 3CL ${ }^{\text {Pro }}$	0.774	0.342	0.403	0.988
	0.998	0.442	0.409	1.068

Figure S3. The alignment of four coronaviruses 3C like protease with MERS-CoV
$3 \mathrm{CL}^{\mathrm{Pro}}$ and SARS-CoV 3CL ${ }^{\text {Pro }}$, respectively.

Figure S4. Bioinformatics analysis on the native substrate active sites of MERS-CoV $3 \mathrm{CL}^{\text {Pro }}$ (left) and SARS-CoV 3CL ${ }^{\text {Pro }}$ (right). Reported protease favoring residues of substrate are emphasized by color background.

Figure S5. Substrate cleavage capability of MERS-CoV 3CL ${ }^{\text {Pro }}$ (left) and SARS-CoV $3 \mathrm{CL}^{\text {Pro }}$ (right) in dose dependent and time dependent manner.

Figure S6. MD simulation calculation on the barycenter distance between 169th site residue side-chain terminal and 175th site residue side-chain terminal. (A) The time evolution of the distance in WT and mutation E169L. (B) The time evolution of the distance in WT and mutation H175L. (C) The time evolution of the distance in WT and mutation E169L H175L. (D) The distribution of the distance of (A). (E) The distribution of the distance of (B). (F) The distribution of the distance of (C).

Figure S7. MD simulation calculation on the wild type MERS-CoV 3CL ${ }^{\text {Pro }}$ (in red) and mutation Y164F (in blue). (A) The time evolution of distance between H166 and substrate glutamine in WT (red) and mutation Y164F (blue). (B) The time evolution of dihedral of H166 (CD2-CG-CB-H) in WT (red) and mutation Y164F (blue).

Figure S8. MD simulation calculation on the WT MERS-CoV 3CL ${ }^{\text {Pro }}$ (red) and mutation F143A (violet). (A) The time evolution of distance between H166 and substrate glutamine in WT (red) and mutation F143A (violet). (B) The time evolution of distance between H166 and Y164 in WT (red) and mutation F143A (violet). (C) The time evolution of dihedral of H166 (CD2-CG-CB-H) in WT (red) and mutation F143A (violet).

Figure S9. MD simulation calculation on the WT MERS-CoV $3 \mathrm{CL}^{\text {Pro }}$ (red) and mutation F143L (cyan). (A) The time evolution of distance between H166 and substrate glutamine in WT (red) and mutation F143L (cyan). (B) The time evolution of distance between H166 and Y164 in WT (red) and mutation F143L (cyan). (C) The time evolution of dihedral of H166 (CD2-CG-CB-H) in WT (red) and mutation F143L (cyan).

Figure S10. Activity evaluation of related representative mutations in SARS-CoV $3 \mathrm{CL}^{\text {Pro }}$. The data presented are mean values from experiments in triplicate and the error
bars indicate standard deviations.

Figure S11. Superimposition of SARS-CoV 3CL ${ }^{\text {Pro }}$ (green) with HCoV-229E 3CL ${ }^{\text {Pro }}$ (purple) (A) and HCoV-NL63 3CL ${ }^{\text {Pro }}$ (gray) (B). Owing to holding similar surrounding of the S144 in SARS-CoV 3CL ${ }^{\text {Pro }}$ with A143 in HCoV-229E 3CL ${ }^{\text {Pro }}$ and HCoV-NL63 $3 \mathrm{CL}^{\text {Pro }}$, SARS-CoV 3CL ${ }^{\text {Pro }}$ was utilized to verify the significant roles of S144.

Figure S12. MD simulation calculation on the wild type MERS-CoV 3CL ${ }^{\text {Pro }}$ (red), mutation G146A (blue). (A) The time evolution of distance between 146 site residue and substrate glutamine. (B) The time evolution of angle between 146 site residue and substrate glutamine (N-H-O). (C) The distribution of the distance of (A). (D) The
distribution of the angle of (B).

Figure S13. The average structure of the WT and mutants extracted from last 10 ns trajectory following MD simulation.

Figure S14. PMF calculation for the SG atom of C148-substrate glutamine carbonyl group distance vs the RMSD of total system in WT MERS-CoV 3CL ${ }^{\text {Pro }}$ (left), G149A mutant (center), and G149P mutant (right).

Figure S15. The average structure of attacking state (A) and resting-state (B) of MERS$\mathrm{CoV} 3 \mathrm{CL}^{\text {Pro }}$ to manifest the detail features of the two-state.

Figure S16. Superimposition of two typical conformation (attacking state and resting state) of MERS-CoV 3CL ${ }^{\text {Pro }}$ in MD simulation.

Figure S17. MD simulation calculation on the wild type MERS-CoV 3CL ${ }^{\text {Pro }}$. (A) The time evolution of φ dihedral of C148. (B) The time evolution of ψ dihedral of C148.

Figure S18. MD simulation calculation on the WT MERS-CoV 3CL ${ }^{\text {Pro }}$ (red), mutation G149P (purple). (A) The time evolution of distance between C148 and H166, which indicated C148 formed compact connection to H166 in mutation G149P. (B) The time evolution of angle between C148 and H166 (S-H-O), which indicated stable the hydrogen interaction between C148 and H166. (C) The distribution of the distance in (A). (D) The distribution of the angle in (B).

Figure S19. Molecular catalytic mechanism of EV71 3C ${ }^{\text {Pro }}$.

MERS	
MERS	238
SARS	235
HCoV-HKU1	237
BCoV-HKU4	238
HCoV-229E	234
HCoV-NL63	235
Consensus	
acce	

Figure S20. Sequence alignment of six common coronavirus 3CL ${ }^{\text {Pro }}$ (MERS-CoV $3 \mathrm{CL}^{\text {Pro }}$, SARS-CoV 3CL ${ }^{\text {Pro }}$, HCoV-HKU1 3CL ${ }^{\text {Pro }}$, BCoV-HKU4 3CL ${ }^{\text {Pro }}$, HCoV-229E $3 \mathrm{CL}^{\text {Pro }}$, HCoV-NL63 3CL ${ }^{\text {Pro }}$). High conserved residues were shown in red background, α-helices in helix, β-sheets in arrow and turn in T symbol.

Position	Turn				Turn			195
	38	39	40	41	189	190	191	
MERS-CoV 3CLPro	C	P	R	H	M	D	K	Q
SARS-CoV 3CLPro	C	P	R	H	V	D	R	Q
HCoV-HKU1 3CLPro	C	P	R	H	R	D	A	Q
BCoV-HKU1 3CLPro	C	P	R	H	E	D	K	Q
HCoV-NL63 3CL Pro	C	P	R	H	E	D	Q	Q
HCoV-229E 3CL ${ }^{\text {Pro }}$	C	P	R		E	D	Q	Q

Figure S21. Conserved analysis on the sequence of six common coronavirus $3 \mathrm{CL}^{\text {Pro }}$. The significant residues of MERS-CoV $3 \mathrm{CL}^{\text {Pro }}$ and $\mathrm{SARS}-\mathrm{CoV} 3 \mathrm{CL}^{\text {Pro }}$ are highlighted.

Figure S22. Enzymatic activity analysis on related representative mutations in SARS$\mathrm{CoV} 3 \mathrm{CL}^{\text {Pro }}$. The data presented are mean values from experiments in triplicate and the error bars indicate standard deviations.

Figure S23. MD simulation calculation on the WT MERS-CoV 3CL ${ }^{\text {Pro }}$ (red), mutation

S178A (blue) and mutation T88A (violet). (A) The time evolution of RMSD of Q167.
(B) The time evolution of RMSD of Q167.

Figure S24. The time evolution of RMSD of Q167 in multipoints mutant T88C/S178T (cyan).

Figure S25. MD simulation calculation on the wild type MERS-CoV 3CL ${ }^{\text {Pro }}$ (red), mutation M168L (blue). (A) The time evolution of the distance between D190 and protonated histidine. (B) The relative distribution of the distance in (A).

	$\mathrm{K}_{\mathrm{m}}(\mu \mathrm{M})$	$\mathrm{k}_{\text {cat }}\left(\mathrm{min}^{-1}\right)$	$\mathrm{k}_{\text {cat }} / \mathrm{K}_{\mathrm{m}}\left(\mathrm{mM}^{-1} \mathrm{~min}^{-1}\right)$
SARS-CoV 3CLPro	6.518 ± 1.048	0.275 ± 0.016	42.25
M165L	7.186 ± 1.038	0.498 ± 0.025	69.30

Figure S26. Kinetic parameters of the WT and mutation M165L of SARS-CoV 3CL ${ }^{\text {Pro }}$.

Figure S27. MD simulation calculation on the WT MERS-CoV 3CL ${ }^{\text {Pro }}$ binding to the compound 12b. (A) The time evolution of the distance between Q195 and N atom of the pyridine ring. (B) The time evolution of the angle originated from N (main chain N atom in Q 195)- H (main amide bond H atom in Q 195)- N (N atom in the pyridine ring of the compound 12b).

Supporting tables

Table S1. The designed primers for construction of plasmid.

		Sequence
MERS-CoV$3 L^{\text {Pro }}$	Forward	5'-CGGGATCCAGCGGTTTGGTGAAAATGTC-3'
	Reverse	5'-CCGCTCGAGCTGCATAACCACACCCATAAT - ${ }^{\prime}$
SARS-CoV$3 C^{\text {Pro }}$	Forward	5'-CGGGATCCAGTGGTTTCAGGAAAATGGC-3'
	Reverse	5'- CCGCTCGAGTTGGAAGGTAACACCAGAGC-3'

Table S2. The designed primers for proteion mutagenesis.

Species	Mutation		Sequence ($5^{\prime}-3^{\prime}$)
MERSCoV	C148A	Forward	TTTCTGTGTGGTTCTGCTGGTAGTGTTG
		Reverse	GCAGAACCACACAGAAAGGAACCCTTA
	C148S	Forward	TCCTTTCTGTGTGGTTCTTCTGGTAGTGTTG
		Reverse	GAAGAACCACACAGAAAGGAACCCTTAATTG
	C145A	Forward	ATTAAGGGTTCCTTTCTGGCTGGTTCTTGTGG
		Reverse	GCCAGAAAGGAACCCTTAATTGTGTAGTTAGGGCG
	C145S	Forward	ATTAAGGGTTCCTTTCTGTCTGGTTCTTGTG
		Reverse	GACAGAAAGGAACCCTTAATTGTGTAGTTAGG
	H41A	Forward	ACAGTCTGGTGCCCACGAGCCGTAATGTGCC
		Reverse	GCTCGTGGGCACCAGACTGTGTTGTCAAGCC
	H41L	Forward	GTCTGGTGCCCACGACTTGTAATGTGCCC
		Reverse	AAGTCGTGGGCACCAGACTGTGTTGTCAAGC
	H166A	Forward	CAATTTCTGTTACATGGCTCAAATGGAAC
		Reverse	GCCATGTAACAGAAATTGATCACACTACC
	H166L	Forward	ATCAATTTCTGTTACATGCTTCAAATGGAAC
		Reverse	AGCATGTAACAGAAATTGATCACACTACCC
	H166Q	Forward	AATTTCTGTTACATGCAGCAAATGGAAC
		Reverse	CTGCATGTAACAGAAATTGATCACACTACCC
	H166N	Forward	ATCAATTTCTGTTACATGAATCAAATGGAAC
		Reverse	TCATGTAACAGAAATTGATCACACTACCCTC
	Y164A	Forward	AGTGTGATCAATTTCTGTGCCATGCATCAAATG
		Reverse	GCACAGAAATTGATCACACTACCCTCCTTG
	Y164F	Forward	GTGTGATCAATTTCTGTTTCATGCATCAAATGG
		Reverse	AAACAGAAATTGATCACACTACCCTCCTTG
	Y164R	Forward	GTGTGATCAATTTCTGTCGCATGCATCAAATGG

	E169Q	Forward	GTTACATGCATCAAATGCAACTTGCTAATGG
		Reverse	GCATTTGATGCATGTAACAGAAATTGATCACAC
	H175A	Forward	AACTTGCTAATGGTACAGCTACCGGTTCAG
		Reverse	GCTGTACCATTAGCAAGTTCCATTTGATGC
	H175L	Forward	AACTTGCTAATGGTACACTTACCGGTTCAG
		Reverse	AGTGTACCATTAGCAAGTTCCATTTGATGC
	H175Q	Forward	AACTTGCTAATGGTACACAGACCGGTTCAG
		Reverse	CTGTGTACCATTAGCAAGTTCCATTTGATGC
	H175E	Forward	CTTGCTAATGGTACAGAGACCGGTTCAG
		Reverse	CTCTGTACCATTAGCAAGTTCCATTTGATGCATG
	H175N	Forward	GAACTTGCTAATGGTACAAATACCGGTTCAGC
		Reverse	TTGTACCATTAGCAAGTTCCATTTGATGCATGT
	T174V	Forward	GGAACTTGCTAATGGTGTACATACCGGTTCAG
		Reverse	ACACCATTAGCAAGTTCCATTTGATGCATGT
	G146A	Forward	AGGGTTCCTTTCTGTGTGCTTCTTGTGGTAG
		Reverse	GCACACAGAAAGGAACCCTTAATTGTGTAG
	G146P	Forward	AGGGTTCCTTTCTGTGTCCTTCTTGTGGTAG
		Reverse	GGACACAGAAAGGAACCCTTAATTGTGTAG
	S147A	Forward	GTTCCTTTCTGTGTGGTGCTTGTGGTAGTG
		Reverse	GCACCACACAGAAAGGAACCCTTAATTGTG
	G149A	Forward	CTGTGTGGTTCTTGTGCTAGTGTTGGTTA
		Reverse	GCACAAGAACCACACAGAAAGGAACCC
	G149P	Forward	CTGTGTGGTTCTTGTCCTAGTGTTGGTTA
		Reverse	GGACAAGAACCACACAGAAAGGAACCC
	S150A	Forward	TGTGGTTCTTGTGGTGCTGTTGGTTAC
		Reverse	GCACCACAAGAACCACACAGAAAGGAACC
	N28A	Forward	GCGGTAGCATGACTCTTGCTGGTCTTTGG
		Reverse	GCAAGAGTCATGCTACCGCAGGTAACCTGAAC
	N28L	Forward	CGGTAGCATGACTCTTCTTGGTCTTTGG

	M85L	Forward	CGTGTTGTTGGTCATGCCCTGCAAGGCACTC
		Reverse	GGGCATGACCAACAACACGCAAGTTTGCTG
	Y54A	Forward	TTGTCTGATCCTAATGCTGATGCCTTG
		Reverse	GCATTAGGATCAGACAACTGGTCAGCC
	Y54L	Forward	ATGCTTAATCCTAACCTTGAAGATCTG
		Reverse	AGGTTAGGATTAAGCATGTCTTCTGCTG
	Y54F	Forward	TGTCTGATCCTAATTTTGATGCCTTGTTG
		Reverse	AAATTAGGATCAGACAACTGGTCAGCCGG
	Y54W	Forward	TGTCTGATCCTAATTGGGATGCCTTG
		Reverse	CCAATTAGGATCAGACAACTGGTCAGC
	Y54R	Forward	TTGTCTGATCCTAATCGTGATGCCTTG
		Reverse	CGATTAGGATCAGACAACTGGTCAGCC
	C38A	Forward	TGACAACACAGTCTGGGCCCCACGACAC
		Reverse	GCCCAGACTGTGTTGTCAAGCCAAAGACC
	C38S	Forward	TGACAACACAGTCTGGTCCCCACGACAC
		Reverse	GACCAGACTGTGTTGTCAAGCCAAAGACC
	P39A	Forward	GACAACACAGTCTGGTGCGCACGACACGTAATG
		Reverse	CGCACCAGACTGTGTTGTCAAGCCAAAGACC
	P39G	Forward	AACACAGTCTGGTGCGGACGACACGTAAT
		Reverse	CCGCACCAGACTGTGTTGTCAAGCCAAAG
	Q195A	Forward	GATAAACAAGTGCACGCAGTTCAGTTAACAGAC
		Reverse	GCGTGCACTTGTTTATCCATAAAGGCA
	Q195L	Forward	GATAAACAAGTGCACCTCGTTCAGTTAACAG
		Reverse	GAGGTGCACTTGTTTATCCATAAAGGCA
	Q195H	Forward	ATAAACAAGTGCACCACGTTCAGTTAACAG
		Reverse	GTGGTGCACTTGTTTATCCATAAAGGCA
	Q195K	Forward	GGATAAACAAGTGCACAAAGTTCAGTTA
		Reverse	TGTGCACTTGTTTATCCATAAAGGCACCA
	Q167H	Forward	TTCTGTTACATGCATCACATGGAACTTG

	Y161F	Forward	TGCGTGTCTTTCTGCTTTATGCATCATATG
		Reverse	AAGCAGAAAGACACGCAATCATAATCA
	F140A	Forward	ATACCATTAAAGGTTCTGCCCTTAATGGATC
		Reverse	GCAGAACCTTTAATGGTATGATTAGGTCTC
	F140L	Forward	ATACCATTAAAGGTTCTTTGCTTAATGGATC
		Reverse	CAAAGAACCTTTAATGGTATGATTAGGTCTC
	E166A	Forward	TATATGCATCATATGGCCCTTCCAACAGGAGT
		Reverse	GGCCATATGATGCATATAGCAGAAAGACAC
	E166L	Forward	TGCTATATGCATCATATGCTGCTTCCAACAGG
		Reverse	AGCATATGATGCATATAGCAGAAAGACACGC
	H172A	Forward	CTTCCAACAGGAGTAGCCGCTGGTACTG
		Reverse	GCTACTCCTGTTGGAAGCTCCATATGAT
	H172L	Forward	TTCCAACAGGAGTACTCGCTGGTACTGACC
		Reverse	AGTACTCCTGTTGGAAGCTCCATATGAT
	H172Q	Forward	GCTTCCAACAGGAGTACAGGCTGGTACTGAC
		Reverse	CTGTACTCCTGTTGGAAGCTCCATATGAT
	G143A	Forward	TCTTTCCTTAATGCCTCATGTGGTAGTGTTGG
		Reverse	GGCATTAAGGAAAGAACCTTTAATGGTATG
	S144A	Forward	GGTTCTTTCCTTAATGGAGCATGTGGTAGTG
		Reverse	CTCCATTAAGGAAAGAACCTTTAATGGTATG
	G146A	Forward	CTTAATGGATCATGTGCTAGTGTTGGTTTT
		Reverse	GCACATGATCCATTAAGGAAAGAACCTTTAA
	S147A	Forward	ATGGATCATGTGGTGCTGTTGGTTTTAACATT
		Reverse	GCACCACATGATCCATTAAGGAAAGAACC
	N28L	Forward	GGAACTACAACTCTTCTTGGATTGTGGTTGGAT
		Reverse	AGAAGAGTTGTAGTTCCACAGGTTACTTG
	N28D	Forward	GGAACTACAACTCTTGACGGATTGTGGTTGG
		Reverse	GTCAAGAGTTGTAGTTCCACAGGTTACTTGTAC
	N28H	Forward	GTGGAACTACAACTCTTCATGGATTGTG

		Reverse	GAAGAGTTGTAGTTCCACAGGTTACTTGTAC
	D187L	Forward	TATGGTCCATTTGTTCTGAGACAAACTGC
		Reverse	CAGAACAAATGGACCATAGAATTTACCTTC
	R40L	Forward	ACACAGTATACTGTCCACTTCATGTCATTTG
		Reverse	AAGTGGACAGTATACTGTGTCATCCAACCAC
	Y54F	Forward	ATGCTTAATCCTAACTTTGAAGATCTG
		Reverse	AAGTTAGGATTAAGCATGTCTTCTGCTG
	Y54L	Forward	ATGCTTAATCCTAACCTTGAAGATCTGCTCATTCGC
		Reverse	AGGTTAGGATTAAGCATGTCTTCTGCTGTGC
	C38A	Forward	GGATGACACAGTATACGCTCCAAGACATGTCATTTGC
		Reverse	GCGTATACTGTGTCATCCAACCACAATCCATT
	C38S	Forward	GGATGACACAGTATACTCTCCAAGACATGTCATTTGC
		Reverse	GAGTATACTGTGTCATCCAACCACAATCCATTAA
	P39A	Forward	GACACAGTATACTGTGCGAGACATGTCAT
		Reverse	CGCACAGTATACTGTGTCATCCAACCACA
	Q192L	Forward	GACAGACAAACTGCACTGGCTGCAGGTACA
		Reverse	AGTGCAGTTTGTCTGTCAACAAATGGAC
	Q192H	Forward	GACAGACAAACTGCACACGCTGCAGGTACAGAC
		Reverse	GTGTGCAGTTTGTCTGTCAACAAATGGAC
	H164A	Forward	TTCTGCTATATGCATGCCATGGAGCTTCCAAC
		Reverse	GGCATGCATATAGCAGAAAGACACGCAAT
	H164V	Forward	TTCTGCTATATGCATGTCATGGAGCTTCCAAC
		Reverse	GACATGCATATAGCAGAAAGACACGCAATC
	H164L	Forward	TTCTGCTATATGCATCTCATGGAGCTTCCAAC
		Reverse	GAGATGCATATAGCAGAAAGACACGCAATC
	M165L	Forward	TTCTGCTATATGCATCATCTGGAGCTTCCAAC
		Reverse	GATGATGCATATAGCAGAAAGACACGCAATC

Supporting chemical schemes

Scheme S1. Reagents and conditions: (a) (1) $\mathrm{SOCl}_{2}, \mathrm{MeOH}$, reflux, 2 h ; (2) (Boc) $)_{2} \mathrm{O}$, TEA, anhydrous THF; 99% for two steps. (b) (1) LiHMDS, argon atmosphere, anhydrous THF; $-78{ }^{\circ} \mathrm{C}$; (2) $\mathrm{BrCH}_{2} \mathrm{CN}$ or $\mathrm{BrCH}_{2} \mathrm{CH}_{2} \mathrm{CN}$, argon atmosphere, anhydrous THF, $3 \mathrm{~h},-78{ }^{\circ} \mathrm{C} .62 \%$ for two steps. (c) $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}, \mathrm{NaBH}_{4}, \mathrm{MeOH}, 0^{\circ} \mathrm{C}, 2$ days, 39.5\%. (d) (1) TFA, DCM, RT, 3 h ; (2) adjust pH value to 7, (S)-Boc-Leu-OH , EDCI, HOBt and TEA, DCM; 60.4\% for two steps; (e) (1) TFA, DCM, RT, 3h; (2) adjust pH value to 7 , cinnamic acid, EDCI, HOBt and TEA, DCM; 61% for two steps; (f) NaBH_{4}, $\mathrm{MeOH}, \mathrm{RT}, 2 \mathrm{~h}, 81 \%$; (g) Dess-Martin periodinane, DCM, RT, $1 \mathrm{~h}, 91 \%$.

Scheme S2. Reagents and conditions: (a) (1) TFA, DCM, RT, 3 h; (2) adjust pH value to 7, (S)-Boc-Val-OH , EDCI, HOBt and TEA, DCM; 54\% for two steps; (b) (1) TFA, DCM, RT, 3 h ; (2) adjust pH value to 7, benzoic acid or isonicotinic acid, EDCI, HOBt and TEA, DCM; 52% for two steps; (c) $\mathrm{NaBH}_{4}, \mathrm{MeOH}, \mathrm{RT}, 2 \mathrm{~h}, 71 \%$; (g) Dess-Martin periodinane, DCM, RT, 1 h, 83%.

Chemical synthesis

1. Reagents and instruments

All reagents were purchased from various commercial suppliers and used as received. NMR spectra data were recorded on a Bruker AVANCE-400 NMR spectrometer (400 MHz) (Bruker, Karlsruhe, Germany). Molecular mass was determined by using a Shimadzu LCMS-2020 ESI mass spectrometry (Shimadzu, Kyoto, Japan). All final compounds exhibited purities of $>95 \%$ as analyzed by HPLC (Dionex UltiMate 3000, Germany).
2. General procedure for the synthesis of compounds.

2.1 Procedure for the synthesis of compounds 1-8

2.1.1 Procedure for the preparation of dimethyl (tert-butoxycarbonyl)-L-glutamate $\mathbf{2}$.

To a suspension of L-glutamic acid ($30 \mathrm{~g}, 203.9 \mathrm{mmol}$) in anhydrous MeOH (400 mL) was added $\mathrm{SOCl}_{2}(11.83 \mathrm{~mL}, 203.9 \mathrm{mmol})$ in drop-wise at $0^{\circ} \mathrm{C}$. After 30 min of string, the reaction was heated to reflux for 3 h , and then cooled to the room temperature. After
evaporating the solvent, the residue was suspended in anhydrous THF (200 mL) and added others reagent (Ditertbutyl dicarbonate ($66.75 \mathrm{~g}, 305.85 \mathrm{mmol}$) and triethylamine $(30.95 \mathrm{~g}, 305.85 \mathrm{mmol}))$ at ice-bath. Following the reaction mixture was stirred overnight at room temperature, the solvent of the mixture was evaporated and the residue was dissolved in DCM (400 mL). Following washed with $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{~mL} \times 2)$, saturated citric acid solution ($200 \mathrm{~mL} \times 2$), saturated NaHCO_{3} solution ($200 \mathrm{~mL} \times 2$) and brine ($200 \mathrm{~mL} \times 2$), the organic phase was concentrated, and purified by column chromatography (EtOAc: Petroleum ether, 1: $5 \mathrm{v} / \mathrm{v}$) to give the pure product as a colorless oil $2\left(55.57 \mathrm{~g}, 201.86 \mathrm{mmol}, 99.0 \%\right.$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 5.44$ (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{dd}, J=12.6,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 2.51-2.34$ (m, 2H), $2.24-2.13(\mathrm{~m}, 1 \mathrm{H}), 1.97(\mathrm{td}, J=14.7,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{CNMR}$ $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 173.02,172.58,155.32,79.64,52.73,52.18,51.56,29.92,28.11$, 27.42. ESI-MS (m/z): 298.1(M+Na) ${ }^{+}$.

2.1.2. Procedure for the preparation of compounds $\mathbf{3 a - b}$.

2.1.2.1. Procedure for the preparation of dimethyl (2S,4S)-2-((tert-butoxycarbonyl)amino)-4-(2-cyanoethyl)pentanedioate 3a.

To a solution of $2(20.0 \mathrm{~g}, 72.65 \mathrm{mmol})$ dissolved in anhydrous THF (500 mL), the solution of lithium hexamethyldisilazide/THF ($159.83 \mathrm{~mL}, 1 \mathrm{~mol} / \mathrm{L}, 159.83 \mathrm{mmol}$) was added in drop-wise under argon atmosphere at $-78^{\circ} \mathrm{C}$. Following a further 2 h of stirring at $-78^{\circ} \mathrm{C}, 3$-Bromopropionitrile $(10.71 \mathrm{~g}, 79.91 \mathrm{mmol})$ was diluted with anhydrous THF and added in drop-wise to the reaction mixture with the solution over a period of 2 h at $-78^{\circ} \mathrm{C}$ under argon atmosphere. Following an additional 2 h at $-78^{\circ} \mathrm{C}$ under the argon atmosphere, 20 mL pre-cooled methanol and 10 mL pre-cooled acetic acid were added to quench the reaction. After a further 10 min of stirring at $-78^{\circ} \mathrm{C}$, the reaction was allowed to stir at room temperature overnight. Following filtered to removing the insoluble salt, the filtrate was evaporated and the obtained residue was further purified by column chromatography (EtOAc: Petroleum ether, $1: 5 \mathrm{v} / \mathrm{v}$) to give the pure product as yellow oil $\mathbf{3 a}(14.74 \mathrm{~g}, 44.89 \mathrm{mmol}, 62.0 \%)$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 5.11(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.48-4.31(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 2.70-2.58(\mathrm{~m}, 1 \mathrm{H})$,
$2.48-2.35(\mathrm{~m}, 2 \mathrm{H}), 2.13-1.92(\mathrm{~m}, 4 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta:$ $174.39,172.34,155.38,118.71,80.28,52.54,52.16,51.56,40.79,34.37,28.24,27.30$, 15.12.
2.1.2.2.Procedure for the preparation of dimethyl (2S,4R)-2-((tert-butoxycarbonyl)amino)-4-(cyanomethyl)pentanedioate 3b.

The similar procedure with the procedure to generate compound 3a was executed to synthesize compound 3b via the replacement of 3-bromopropionitrile into bromoacetonitrile in the process. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 5.34(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.27$ (dd, $J=14.2,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.70-3.58(\mathrm{~m}, 6 \mathrm{H}), 2.83-2.72(\mathrm{~m}, 1 \mathrm{H}), 2.70-$ 2.57 (m, 2H), $2.11-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.33(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 172.49$, $172.01,155.55,117.24,80.19,52.55,52.52,50.98,38.16,33.43,28.11,18.83$. ESI-MS $(\mathrm{m} / \mathrm{z}): 315.2(\mathrm{M}+\mathrm{H})^{+}$. Yield 65\%.

2.1.3. Procedure for the preparation of compounds $\mathbf{4 a - b}$.

2.1.3.1 Procedure for the preparation of methyl (S)-2-((tert-butoxycarbonyl) amino)-3-((S)-2-oxopiperidin-3-yl)propanoate $\mathbf{4 a}$

To a solution of 3a ($10 \mathrm{~g}, 30.45 \mathrm{mmol}$) dissolved into anhydrous MeOH (400 mL), $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(4.35 \mathrm{~g}, 18.27 \mathrm{mmol})$ was added at $-10^{\circ} \mathrm{C}$. Then, $\mathrm{NaBH}_{4}(6.91 \mathrm{~g}, 182.7$ mmol) was added portion-wise at $0^{\circ} \mathrm{C}$. Following maintained to stir at $0{ }^{\circ} \mathrm{C}$ for 48 h , the reaction mixture was added saturated ammonium chloride solution (50 mL) to quench the reaction and the mixture was filtered to remove insoluble substances. After evaporated the solvent, the residue was extracted with $\mathrm{DCM}(100 \mathrm{~mL} \times 3)$ and further purified by column chromatography (EtOAc: petroleum ether, 2.5:1 v / v) to give the pure yellow oil compound $\mathbf{4 a}(3.61 \mathrm{~g}, 12.18 \mathrm{mmol}, 39.45 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 7.24(\mathrm{~s}, 1 \mathrm{H}), 5.94(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H})$, $3.37-3.16(\mathrm{~m}, 2 \mathrm{H}), 2.44-2.22(\mathrm{~m}, 2 \mathrm{H}), 2.18-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.96-1.79(\mathrm{~m}, 2 \mathrm{H})$, $1.78-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.67,173.23,155.91,79.51,52.12,51.68,42.05,37.85,34.01,28.21,26.42,21.43$. ESI-MS (m/z): $301.3(\mathrm{M}+\mathrm{H})^{+}$.
2.1.3.2 Procedure for the preparation of methyl (S)-2-((tert-butoxycarbonyl)amino)-3-((S)-2-oxopyrrolidin-3-yl)propanoate $\mathbf{4 b}$

The similar procedure with the procedure to generate compound $\mathbf{4 a}$ was executed to synthesize compound $\mathbf{4 b} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.56(\mathrm{~s}, 1 \mathrm{H}), 5.99(\mathrm{~d}, J=8.1$ Hz, 1H), $4.37-4.24(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.42-3.25(\mathrm{~m}, 2 \mathrm{H}), 2.56-2.38(\mathrm{~m}, 2 \mathrm{H})$, $2.22-2.07(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 180.04, 173.01, 155.79, 79.72, 52.32, 52.25, 40.46, 38.28, 33.91, 28.24, 27.96. ESI-MS (m/z): $287.2(\mathrm{M}+\mathrm{H})^{+}$

2.1.4. Procedure for the preparation of compounds $\mathbf{5 a - b}$.

2.1.4.1.Procedure for the preparation of Methyl (S)-2-((S)-2-((tert-butoxycarbonyl)amino)-4-methylpentanamido)-3-((S)-2-oxopiperidin-3-yl)propanoate 5 .

To a solution of $\mathbf{4 a}(1.0 \mathrm{~g}, 3.33 \mathrm{mmol})$ dissolved in anhydrous DCM (50 mL), $\mathrm{CF}_{3} \mathrm{COOH}(2.5 \mathrm{~mL}, 33.3 \mathrm{mmol})$ was added slowly at ice-bath. Subsequently, the reaction mixture was allowed to stir at room temperature for 3 h and concentrated to remove the redundant trifluoroacetic acid. Then, the triethylamine was added to the solution of the residue dissolved in $\mathrm{DCM}(60 \mathrm{~mL})$ to adjust the pH value of the solution to 7.0. Subsequently, the Boc -Leu-OH ($770 \mathrm{mg}, 3.33 \mathrm{mmol}$), EDCI ($765.9 \mathrm{mg}, 4.00$ mmol) and HOBt ($540.0 \mathrm{mg}, 4.00 \mathrm{mmol}$) were sequentially added. Following TEA $(1.85 \mathrm{~mL}, 13.32 \mathrm{mmol})$ was added in drop-wise, the reaction mixture was stirred at ambient temperature overnight. Followed by washing with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL} \times 2)$, saturated citric acid solution ($50 \mathrm{~mL} \times 2$), saturated NaHCO_{3} solution ($50 \mathrm{~mL} \times 2$) and saturated brine ($50 \mathrm{~mL} \times 2$), the organic phase was purified by column chromatography (DCM: $\mathrm{MeOH}, 100: 1$ to $60: 1 \mathrm{v} / \mathrm{v}$) to afford the pure product as a light yellow foam 5a (831.2 $\mathrm{mg}, 2.01 \mathrm{mmol}, 60.4 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.90(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.85$ $(\mathrm{s}, 1 \mathrm{H}), 5.21(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{dd}, J=14.2,8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.32-3.22(\mathrm{~m}, 2 \mathrm{H}), 2.47-2.26(\mathrm{~m}, 2 \mathrm{H}), 2.11-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.90$ $-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.67-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.57-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.43(\mathrm{~s}$, 9 H), 0.95 (dd, $J=6.3,3.9 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 174.54,173.38$,
$172.50,155.57,79.60,52.82,52.24,50.20,42.25,42.11,37.77,33.19,28.31,26.33$, 24.61, 22.87, 22.17, 21.59. ESI-MS (m/z):414.3 (M+H) ${ }^{+}$.
2.1.4.2.Procedure for the preparation of Methyl (S)-2-((S)-2-((tert-butoxycarbonyl)amino)-4-methylpentanamido)-3-((S)-2-oxopyrrolidin-3yl)propanoate 5b.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.94(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~s}, 1 \mathrm{H}), 5.41(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 1 \mathrm{H}), 4.60-4.42(\mathrm{~m}, 1 \mathrm{H}), 4.36-4.21(\mathrm{~m}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.46-3.23(\mathrm{~m}, 2 \mathrm{H})$, $2.58-2.31(\mathrm{~m}, 2 \mathrm{H}), 2.30-2.14(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.69(\mathrm{~m}, 1 \mathrm{H})$, $1.68-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.54-1.48(\mathrm{~m}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}), 1.06-0.82(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta: 179.91,173.40,172.25,155.61,79.54,52.82,52.24,50.89$, 42.06, 40.44, 38.26, 33.05, 28.23, 27.90, 24.55, 22.81, 22.07. ESI-MS (m/z): 400.6 $(\mathrm{M}+\mathrm{H})^{+}$.

2.1.5. Procedure for the preparation of compounds $\mathbf{6 a - b}$.

2.1.5.1 Procedure for the preparation of Methyl (S)-2-((S)-2-cinnamamido-4-methylpentanamido)-3-((S)-2-oxopiperidin-3-yl)propanoate $\mathbf{6 a}$

The detailed equivalent and procedure of condensation reaction was referred to the procedure for the preparation of compound 5a. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 8.46(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.30(\mathrm{~m}, 3 \mathrm{H})$, $7.19(\mathrm{~s}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{td}, J=8.8,5.1$ $\mathrm{Hz}, 1 \mathrm{H}), 4.53-4.44(\mathrm{~m}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.34-3.25(\mathrm{~m}, 2 \mathrm{H}), 2.60-2.48(\mathrm{~m}, 1 \mathrm{H})$, $2.38-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.05-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.71(\mathrm{~m}, 2 \mathrm{H})$, $1.71-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.53-1.39(\mathrm{~m}, 1 \mathrm{H}), 0.97(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 174.18,173.47,172.48,165.70,141.13,134.87,129.62,128.76,127.84$, $120.79,52.25,51.37,50.49,42.66,42.15,37.74,32.94,26.30,24.71,22.90,22.26$, 21.63. ESI-MS (m/z): $466.3(\mathrm{M}+\mathrm{Na})^{+}$.
2.1.5.2. Procedure for the preparation of Methyl (S)-2-((S)-2-cinnamamido-4-methylpentanamido)-3-((S)-2-oxopiperidin-3-yl)propanoate $\mathbf{6 b}$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 8.43$ (d, $\left.J=6.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.58(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.46$ (dd, $J=6.4,2.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.33$ (dd, $J=8.9,5.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.19(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.53$
(d, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{td}, J=8.9,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.46-4.37(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H})$, $3.43-3.24(\mathrm{~m}, 2 \mathrm{H}), 2.45-2.25(\mathrm{~m}, 3 \mathrm{H}), 1.89-1.70(\mathrm{~m}, 4 \mathrm{H}), 1.70-1.58(\mathrm{~m}, 1 \mathrm{H})$, $0.98(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 179.47,173.56,172.15$, $165.84,141.26,134.81,129.69,128.78,127.85,120.71,52.31,51.36,51.34,42.61$, 40.55, 38.42, 32.74, 27.94, 24.72, 22.90, 22.20 . ESI-MS (m/z):452.4 (M+H) ${ }^{+}$.

2.1.6. Procedure for the preparation of compounds 7a-b.

To a solution of 6a-b $(0.90 \mathrm{mmol})$ dissolved into anhydrous $\mathrm{MeOH}(30.0 \mathrm{~mL}), \mathrm{NaBH}_{4}$ $(0.51 \mathrm{~g}, 13.53 \mathrm{mmol})$ was added at $0{ }^{\circ} \mathrm{C}$. Then, the reaction mixture was stirred at ambient temperature for 2 h . Saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (20 mL) was added to the mixture for quench the reaction. Following evaporating the solvent, EA ($60 \mathrm{~mL} \times 2$) was added to extract the aqueous components. The organic phase was washed with $\mathrm{H}_{2} \mathrm{O}(30$ $\mathrm{mL} \times 2$), saturated brine ($30 \mathrm{~mL} \times 2$), and concentrated. Finally, the residue was purified by column chromatography (DCM : $\mathrm{MeOH}, 25: 1 \mathrm{v} / \mathrm{v}$) to afford the pure product as a white solid 7a-b (yield 79\% -81\%).
2.1.6.1.(S)-2-cinnamamido-N-((S)-1-hydroxy-3-((S)-2-oxopiperidin-3-yl)propan-2-yl)-4-methylpentanamide 7a
${ }^{1} \mathrm{H}$ NMR (400MHz, MeOD) $\delta: 8.01$ (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}$), $7.61-7.49$ (m, 3H), $7.44-$ $7.32(\mathrm{~m}, 3 \mathrm{H}), 6.70(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.10-3.95(\mathrm{~m}, 1 \mathrm{H})$, $3.56-3.44$ (m, 2H), $3.27-3.16(\mathrm{~m}, 2 \mathrm{H}), 2.44-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.18-1.96(\mathrm{~m}, 2 \mathrm{H})$, $1.86-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.58(\mathrm{~m}, 5 \mathrm{H}), 1.52-1.43(\mathrm{~m}, 1 \mathrm{H}), 0.97(\mathrm{dd}, J=11.7,6.4$ $\mathrm{Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{MeOD}$) $\delta: 176.05,173.83,167.12,140.72,134.88$, $129.51,128.58,127.49,120.20,64.23,52.40,48.45,41.60,40.75,37.25,32.43,25.68$, 24.64, 22.07, 20.67, 20.65. ESI-MS (m/z): $438.3(\mathrm{M}+\mathrm{Na})^{+}$.
2.1.6.2.(S)-2-cinnamamido-N-((S)-1-hydroxy-3-((S)-2-oxopyrrolidin-3-yl)propan-2-yl)-4-methylpentanamide 7b
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.95(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.35$ $(\mathrm{s}, 2 \mathrm{H}), 7.30-7.18(\mathrm{~m}, 4 \mathrm{H}), 6.88(\mathrm{~s}, 1 \mathrm{H}), 6.47(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.75-4.57(\mathrm{~m}$, $1 \mathrm{H}), 4.23-4.11(\mathrm{~m}, 1 \mathrm{H}), 3.96(\mathrm{dd}, J=13.3,12.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.25-3.04(\mathrm{~m}, 2 \mathrm{H}), 3.05-$ $2.88(\mathrm{~m}, 1 \mathrm{H}), 2.43-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.28-2.14(\mathrm{~m}, 1 \mathrm{H}), 2.08-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.78-$ $1.53(\mathrm{~m}, 4 \mathrm{H}), 1.53-1.41(\mathrm{~m}, 1 \mathrm{H}), 0.87(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 181.03$,
$173.62,166.17,141.22,134.74,129.72,128.80,127.83,120.67,65.47,52.26,50.41$, $42.16,40.64,38.31,32.22,28.32,24.92,23.06,22.07$. ESI-MS (m/z): $424.8(\mathrm{M}+\mathrm{Na})^{+}$.

2.1.7. Procedure for the preparation of compounds 8a-b.

To a solution of $7 \mathbf{a}-\mathbf{b}(0.48 \mathrm{mmol})$ in anhydrous DCM $(30.0 \mathrm{~mL})$, Dess-Martin reagent ($306.2 \mathrm{mg}, 0.72 \mathrm{mmol}$) was added at ice-bath. Then, the reaction mixture was allowed to stir at ambient temperature for 2 h . A solution of NaHCO_{3} and solid $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ were added to quench the reaction. After 40 min of string, the reaction mixture was extracted by DCM ($30.0 \mathrm{~mL} \times 2$). The organic phase was washed with brine $(30 \mathrm{~mL} \times 2)$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated, and the residue was purified by column chromatography (DCM : $\mathrm{MeOH}, 50: 1$ to $35: 1 \mathrm{v} / \mathrm{v}$) to afford the pure product as a white solid 8a-b (yield $86 \%-91 \%$). Owing the existence of MeOH , the aldehyde prefer to form diastereoisomers hemiacetals (Figure S28). For obtaining the purity aldehyde as far as possible, abundant CCl_{4} and hexane were added into the eluent to form azeotropes. Then, the eluent was concentrated at $44^{\circ} \mathrm{C}$ and give the residue which mainly contain aldehyde. Following the abundant hexane was added into the solution of residue dissolved into chloroform, the precipitation was filtered and give the purity aldehyde.

Figure S28. The forming process to generate hemiacetals from aldehyde.
2.1.7.1. (S)-2-cinnamamido-4-methyl-N-((S)-1-oxo-3-((S)-2-oxopiperidin-3-yl)propan-2-yl)pentanamide 8a
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 9.50(\mathrm{~s}, 1 \mathrm{H}), 8.64(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=15.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~s}, 3 \mathrm{H}), 7.06(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.51(\mathrm{~d}, J=$ $15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.04-4.86(\mathrm{~m}, 1 \mathrm{H}), 4.44-4.28(\mathrm{~m}, 1 \mathrm{H}), 3.37-3.15(\mathrm{~m}, 2 \mathrm{H}), 2.44-$ $2.19(\mathrm{~m}, 2 \mathrm{H}), 2.05-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.60(\mathrm{~m}, 4 \mathrm{H}), 1.52-$ $1.38(\mathrm{~m}, 1 \mathrm{H}), 0.98(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 199.96,174.70$, $173.88,165.85,141.29,134.77,129.71,128.79,127.84,120.57,57.01,51.64,42.48$, 42.21, 37.17, 30.59, 27.01, 24.93, 22.94, 22.18, 21.43. ESI-MS (m/z): $414.2(\mathrm{M}+\mathrm{H})^{+}$.
2.1.7.2. (S)-2-cinnamamido-4-methyl-N-((S)-1-oxo-3-((S)-2-oxopyrrolidin-3-yl)propan-2-yl)pentanamide 8b
${ }^{1} \mathrm{H}$ NMR (400MHz, CDCl_{3}) $\delta: 9.43(\mathrm{~s}, 1 \mathrm{H}), 8.60(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=15.6$ Hz, 1H), 7.38 (dd, $J=6.2,2.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.32 - 7.21 (m, 3H), 7.03 ($\mathrm{s}, 1 \mathrm{H}), 6.97$ (d, $J=$ $8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.95-4.82(\mathrm{~m}, 1 \mathrm{H}), 4.28-4.17(\mathrm{~m}, 1 \mathrm{H}), 3.35$ - $3.14(\mathrm{~m}, 2 \mathrm{H}), 2.49-2.32(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.17(\mathrm{~m}, 2 \mathrm{H}), 2.12-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.81-$ $1.71(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.54(\mathrm{~m}, 1 \mathrm{H}), 0.91(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta: 199.73,179.85,174.02,165.94,141.46,134.70,129.79$, $128.82,127.85,120.46,57.65,51.55,42.57,40.63,38.14,29.70,28.30,24.92,22.94$, 22.12. ESI-MS (m/z): $400.5(\mathrm{M}+\mathrm{H})^{+}$.
2.1.8. Procedure for the preparation of compounds methyl (6S,9S,12S)-9-isobutyl-6-isopropyl-2,2-dimethyl-4,7,10-trioxo-12-(((S)-2-oxopiperidin-3-yl)methyl)-3-oxa-5,8,11-triazatridecan-13-oate 9 .

The detailed equivalent and procedure of condensation reaction was referred to the procedure for the preparation of compound 5a. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.94(\mathrm{~d}$, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H}), 5.15(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.66$ $(\mathrm{td}, J=8.9,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.61-4.50(\mathrm{~m}, 1 \mathrm{H}), 3.88(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H})$, $3.35-3.19(\mathrm{~m}, 2 \mathrm{H}), 2.47-2.34(\mathrm{~m}, 2 \mathrm{H}), 2.33-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.13-1.99(\mathrm{~m}, 2 \mathrm{H})$, $1.92-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.61(\mathrm{~m}, 3 \mathrm{H}), 1.58-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 0.93(\mathrm{td}, J$ $=6.9,3.2 \mathrm{~Hz}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 174.57,172.63,172.29,171.54$, 155.96, 79.88, 60.18, 52.24, 51.64, 50.09, 42.18, 37.74, 33.50, 30.80, 28.31, 28.26, 26.31, 24.61, 22.89, 22.00, 21.44, 19.20, 18.03 . ESI-MS (m/z): $513.8(\mathrm{M}+\mathrm{H})^{+}$.

2.1.9. Procedure for the preparation of compounds $\mathbf{1 0 a} \mathbf{- 1 0 b}$

The detailed equivalent and procedure of condensation reaction was referred to the procedure for the preparation of compound $\mathbf{5 a}$.
2.1.9.1. Methyl (S)-2-((S)-2-((S)-2-benzamido-3-methylbutanamido)-4-methylpentanamido)-3-((S)-2-oxopiperidin-3-yl)propanoate 10a
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 8.07(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.72$ (d, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=8.8$
$\mathrm{Hz}, 1 \mathrm{H}), 7.04(\mathrm{~s}, 1 \mathrm{H}), 4.71-4.58(\mathrm{~m}, 2 \mathrm{H}), 4.54(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.34$ - $3.20(\mathrm{~m}, 2 \mathrm{H}), 2.49-2.37(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.25-2.13(\mathrm{~m}, 1 \mathrm{H}), 2.11-$ $1.99(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.59(\mathrm{~m}, 3 \mathrm{H}), 1.58-1.42(\mathrm{~m}, 2 \mathrm{H}), 0.99$ (dd, $J=6.6,1.4 \mathrm{~Hz}, 6 \mathrm{H}), 0.86(\mathrm{dd}, J=11.2,6.1 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : $174.46,172.66,172.35,171.16,167.49,134.11,131.67,128.53,127.20,59.05,52.26$, $51.90,49.91,42.28,41.92,37.73,33.58,31.46,26.20,24.70,22.76,22.08,21.48,19.28$, 18.56. ESI-MS (m/z): $517.5(\mathrm{M}+\mathrm{H})^{+}$.
2.1.9.2. Methyl (S)-2-((S)-2-((S)-2-(isonicotinamido)-3-methylbutanamido)-4-methylpentanamido)-3-((S)-2-oxopiperidin-3-yl)propanoate 10b
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 8.66(\mathrm{dd}, J=4.6,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.02(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.88(\mathrm{dd}, J=4.4,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.08$ (s, 1H), $4.41-4.26(\mathrm{~m}, 2 \mathrm{H}), 4.05-3.98(\mathrm{~m}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.46-3.36(\mathrm{~m}, 2 \mathrm{H})$, $2.45-2.31(\mathrm{~m}, 1 \mathrm{H}), 2.19-1.98(\mathrm{~m}, 3 \mathrm{H}), 1.97-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.56(\mathrm{~m}, 5 \mathrm{H})$, $1.51-1.37(\mathrm{~m}, 1 \mathrm{H}), 0.97(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 6 \mathrm{H}), 0.91(\mathrm{dd}, J=16.1,6.1 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 175.47,173.39,172.14,171.99,165.42,148.14,142.66,121.03$, $58.20,54.55,53.81,53.77,42.72,41.55,36.61,31.94,30.44,24.14,23.84,21.65$, 20.35, 19.31, 18.91. ESI-MS (m/z):540.8 (M+Na) ${ }^{+}$.

2.1.10. Procedure for the preparation of compounds 11a-11b.

The detailed equivalent and procedure of reduction reaction was referred to the procedure for the preparation of $7 \mathbf{7 a}$.
2.1.10.1. $\quad N-((S)-1-(((S)-1-((S)-1-h y d r o x y-3-((S)-2-o x o p i p e r i d i n-3-y l) p r o p a n-2-$ yl)amino)-4-methyl-1-oxopentan-2-yl)amino)-3-methyl-1-oxobutan-2-yl)benzamide

11a.

${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{MeOD}\right) \delta: 7.89-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.45-4.34(\mathrm{~m}, 2 \mathrm{H}), 4.07-3.96(\mathrm{~m}, 1 \mathrm{H}), 3.49(\mathrm{ddd}, J=24.6,11.0,5.6$ Hz, 2H), $3.28-3.16(\mathrm{~m}, 2 \mathrm{H}), 2.41-2.29(\mathrm{~m}, 1 \mathrm{H}), 2.24-1.99(\mathrm{~m}, 3 \mathrm{H}), 1.85-1.76(\mathrm{~m}$, $1 \mathrm{H}), 1.75-1.53(\mathrm{~m}, 5 \mathrm{H}), 1.51-1.40(\mathrm{~m}, 1 \mathrm{H}), 1.02(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H}), 0.93(\mathrm{dd}, J=$ 18.2, $6.5 \mathrm{~Hz}, 6 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{MeOD}\right) \delta: 175.94,173.44,172.37,168.93$, $133.98,131.46,128.19,127.12,64.28,59.57,52.30,48.28,41.62,40.55,37.21,32.65$,
30.67, 25.72, 24.47, 21.97, 20.79, 20.75, 18.56, 17.94. ESI-MS (m/z):511.4 (M+Na) ${ }^{+}$. 2.1.10.2 $N-((S)-1-(((S)-1-(((S)-1-h y d r o x y-3-((S)-2-o x o p i p e r i d i n-3-y l) p r o p a n-2-$ yl)amino)-4-methyl-1-oxopentan-2-yl)amino)-3-methyl-1-oxobutan-2yl) isonicotinamide 11b.
${ }^{1} \mathrm{H}$ NMR (400MHz, MeOD) $\delta: 8.69$ (dd, $\left.J=4.6,1.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.81$ (dd, $J=4.6,1.6 \mathrm{~Hz}$, 2 H), 4.39 (dd, $J=8.7,5.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.11-3.96(\mathrm{~m}, 1 \mathrm{H}), 3.49$ (ddd, $J=24.6,10.9,5.7$ $\mathrm{Hz}, 2 \mathrm{H}), 3.28-3.16(\mathrm{~m}, 2 \mathrm{H}), 2.41-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.24-1.99(\mathrm{~m}, 3 \mathrm{H}), 1.87-1.76(\mathrm{~m}$, $1 \mathrm{H}), 1.76-1.54(\mathrm{~m}, 5 \mathrm{H}), 1.53-1.39(\mathrm{~m}, 1 \mathrm{H}), 1.02(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H}), 0.93(\mathrm{dd}, J=$ 18.1, $6.5 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{MeOD}$) $\delta: 175.91,173.31,171.95,166.62$, $149.54,142.23,121.77,64.28,59.80,52.27,49.23,48.27,41.62,40.55,37.21,32.64$, 30.57, 25.73, 24.48, 21.97, 20.80, 20.78, 18.51, 17.98. ESI-MS (m/z):512.5 (M+Na) ${ }^{+}$.

2.1.11. Procedure for the preparation of compounds 12a-12b.

The detailed equivalent and procedure of reduction reaction was referred to the procedure for the preparation of $\mathbf{8 a}$.
2.1.11.1 N-((S)-3-methyl-1-(((S)-4-methyl-1-oxo-1-(((S)-1-oxo-3-((S)-2-oxopiperidin-3-yl)propan-2-yl)amino)pentan-2-yl)amino)-1-oxobutan-2-yl)benzamide 12a.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 9.50(\mathrm{~s}, 1 \mathrm{H}), 8.34(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 3 \mathrm{H}), 7.49(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.99$ $(\mathrm{s}, 1 \mathrm{H}), 4.80-4.56(\mathrm{~m}, 2 \mathrm{H}), 4.54-4.38(\mathrm{~m}, 1 \mathrm{H}), 3.39-3.11(\mathrm{~m}, 2 \mathrm{H}), 2.43-2.28(\mathrm{~m}$, $1 \mathrm{H}), 2.27-2.11(\mathrm{~m}, 2 \mathrm{H}), 2.04-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.56(\mathrm{~m}$, $4 \mathrm{H}), 1.51-1.35(\mathrm{~m}, 1 \mathrm{H}), 0.98(\mathrm{dd}, J=6.1,4.1 \mathrm{~Hz}, 6 \mathrm{H}), 0.87(\mathrm{dd}, J=10.0,5.8 \mathrm{~Hz}$, 6 H). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 199.68,174.81,173.18,171.48,167.52,134.10$, $131.66,128.52,127.23,58.91,56.82,52.02,42.22,41.54,37.06,31.49,30.81,26.91$, 24.84, 22.73, 22.11, 21.33, 19.30, 18.53. ESI-MS (m/z): $509.7(\mathrm{M}+\mathrm{Na})^{+}$.
2.1.11.1. N-((S)-3-methyl-1-(((S)-4-methyl-1-oxo-1-(((S)-1-oxo-3-((S)-2-oxopiperidin-3-yl)propan-2-yl)amino)pentan-2-yl)amino)-1-oxobutan-2-yl) isonicotinamide 12b.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 9.49(\mathrm{~s}, 1 \mathrm{H}), 8.73(\mathrm{~s}, 2 \mathrm{H}), 8.38(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.68$ (d, $J=4.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.57(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 4.73-4.54(\mathrm{~m}, 2 \mathrm{H}), 4.51-$ $4.36(\mathrm{~m}, 1 \mathrm{H}), 3.34-3.20(\mathrm{~m}, 2 \mathrm{H}), 2.41-2.27(\mathrm{~m}, 1 \mathrm{H}), 2.24-2.11(\mathrm{~m}, 2 \mathrm{H}), 2.05-$
$1.94(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.63(\mathrm{~m}, 3 \mathrm{H}), 1.61-1.46(\mathrm{~m}, 2 \mathrm{H}), 0.97(\mathrm{t}, J$ $=5.2 \mathrm{~Hz}, 6 \mathrm{H}), 0.89(\mathrm{dd}, J=10.2,5.5 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 199.49$, 174.86, 173.03, 171.08, 165.66, 150.52, 141.17, 121.18, 59.08, 57.08, 52.04, 42.30, $41.64,37.31,31.52,30.87,27.12,24.85,22.74,22.15,21.28,19.25,18.54$. ESI-MS $(\mathrm{m} / \mathrm{z}): 510.8(\mathrm{M}+\mathrm{Na})^{+}$.

NMR Figures

Figure S29. The NMR figures of compound 8a.

Figure S30. The NMR figures of compound $\mathbf{8 b}$.

Figure S31. The NMR figures of compound 12a.

Figure S32. The NMR figures of compound 12b.

Ab initio model scheme

Scheme S3. The model for the reaction system. During the geometry optimization, the boundary atoms are fixed at the position as they were in the protein environment.

Supporting figures in MD simulation

Figure S33. The time evolution of RMSD of WT MERS-CoV $3 \mathrm{CL}^{\text {Pro }}$ in MD simulation.

Figure S34.The time evolution of RMSD of mutant E169L in MD simulation.

Figure S35. The time evolution of RMSD of mutant H175L in MD simulation.

Figure S36. The time evolution of RMSD of mutant E169L/H175L in MD simulation.

Figure S37. The time evolution of RMSD of mutant Y164F in MD simulation.

Figure S38. The time evolution of RMSD of mutant F143L in MD simulation.

Figure S39. The time evolution of RMSD of mutant F143A in MD simulation.

Figure S40. The time evolution of RMSD of mutant G146A in MD simulation.

Figure S41. The time evolution of RMSD of mutant G146P in MD simulation.

Figure S42. The time evolution of RMSD of mutant S147A in MD simulation.

Figure S43. The time evolution of RMSD of mutant G149A in MD simulation.

Figure S44. The time evolution of RMSD of mutant G149P in MD simulation.

Figure S45. The time evolution of RMSD of mutant S150A in MD simulation.

Figure S46. The time evolution of RMSD of mutant N28L in MD simulation:

Figure S47. The time evolution of RMSD of wild types which was extracted water in MD simulation.

Figure S48.The time evolution of RMSD of mutant Q167A in MD simulation.

Figure S49.The time evolution of RMSD of mutant Q167V in MD simulation.

Figure S50.The time evolution of RMSD of mutant Q167L in MD simulation.

Figure S51.The time evolution of RMSD of mutant M168L in MD simulation.

Figure S52.The time evolution of RMSD of mutant T88A in MD simulation.

Figure S53.The time evolution of RMSD of mutant S178A in MD simulation.

Figure S54. The time evolution of RMSD of mutant T88C/S178T in MD simulation.

Figure S55. The time evolution of RMSD of MERS-CoV 3CL ${ }^{\text {Pro }}$ which binds to $\mathbf{1 2 a}$ in MD simulation.

Figure S56. The time evolution of RMSD of MERS-CoV 3CL ${ }^{\text {Pro }}$ which binds to $\mathbf{1 2 b}$ in MD simulation.

Figure S57.The time evolution of RMSD of wild type which was preconditioned before QM in MD simulation (first step of cleavage process).

References

1. Kabsch, W.; Sander, C., Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 1983, 22:2577-2637.
2. Frishman, D.; Argos, P., Knowledge-Based Protein Secondary Structure Assignment. Proteins: Struct., Funct., Genet. 1995, 23:566-579.
3. Zhou, H.; Xue, B.; Zhou, Y., DDOMAIN: Dividing structures into domains using a normalized domain-domain interaction profile. Protein Sci. 2007,16:947-955.
4. Pearl, F.; Todd, A.; Sillitoe, I.; Dibley, M.; Redfern, O.; Lewis, T.; Bennett, C.; Marsden, R.; Grant, A.; Lee, D.; Akpor, A.; Maibaum, M.; Harrison, A.; Dallman, T.; Reeves, G.; Diboun, I.; Addou, S.; Lise, S.; Johnston, C.; Sillero, A.; Thornton, J.; Orengo, C.; The CATH Domain Structure Database and related resources Gene3D and DHS provide comprehensive domain family information for genome analysis. Nucleic Acids Res. 2005, 33: D247-D251.

[^0]: * E-mail: dongmeili@nankai.edu.cn, shanglq@nankai.edu.cn

