Deactivation of Secondary Amine Catalysts via Aldol Reaction Amine Catalysis Under Solvent-Free Conditions

Tobias Schnitzer and Helma Wennemers*

ETH Zürich, Laboratory of Organic Chemistry
Department of Chemistry and Applied Biosciences
Vladimir-Prelog-Weg 3, CH-8093 Zürich (Switzerland)
E-mail: Helma.Wennemers@org.chem.ethz.ch

Supporting Information

Contents

1. General Aspects and Materials ... S2
2. In-situ MS Analysis of the Conjugate Addition Reaction Catalyzed by $\mathbf{1}$.................................. S3
3. Analytical Data of the Conjugate Addition Reaction Products $\mathbf{2 a} \mathbf{- 2 \mathbf { j }}$.. S7
4. ${ }^{1}$ H-NMR Spectra of γ-nitroaldehydes $\mathbf{2 a}-\mathbf{2 j}$.. S14
5. References... S19

1. General Aspects and Materials

Reagents and materials were of the highest commercially available grade and used without further purification. Reactions were monitored by thin layer chromatography using Merck silica gel 60 F254 aluminium sheets. Visualization of the compounds was achieved by UVVis or KMnO_{4}. Flash chromatography and plug filtrations were performed using silica gel 60 (particle size $0.040-0.063 \mathrm{~mm}, 200-400$ mesh) manufactured by Fluka. Solvents for extraction and chromatography were of technical quality and distilled before use. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker DRX 400, a Bruker AV III 400 ($400 \mathrm{MHz} / 100 \mathrm{MHz}$) or a Bruker AV III $600(600 \mathrm{MHz} / 150 \mathrm{MHz}$). All spectra were recorded at $25^{\circ} \mathrm{C}$, unless stated otherwise. Chemical shifts (δ) are reported in parts per million (ppm) relative to the signal of tetramethylsilane (TMS) using the residual solvent signals. SFC analyses were performed on an analytical SFC with a diode array detector ACQUITY-UPLCPDA from Waters using chiral stationary phase columns (Trefoil, AS, AD, IA, Whelk, IC, OD, OJ) ($150 \mathrm{~mm} \times 30 \mathrm{~mm}$) from Daicel or Waters under the reported conditions. HPLC analyses were performed on an analytical Ultimate 3000 HPLC system from Dionex with a diode array detector and chiral stationary phase columns (Daicel AD-H, Daicel AS-H, AY-H, OD-H or Daicel OJ-H). High-resolution electron ionization (HR-EI) mass spectra were measured on a Waters Micromass AutoSpec Ultima spectrometer. High-resolution MALDI spectra were acquired on a Bruker solariX 94 (ESI/MALDI-FT-ICR) and a Bruker UltraFlex II (MALDI-TOF) spectrometer. In-situ FT-IR spectroscopy was carried out on a ReactIR R4000 (SiComb probe) with a spectral range of $4000-650 \mathrm{~cm}^{-1}$. All measurements were performed at room temperature and spectra were recorded every minute. The peptidic catalysts $\mathbf{1}$ and $\mathbf{1 a}$ were prepared according to literature procedures. ${ }^{1,2}$

2. In-situ MS Analysis of the Conjugate Addition Reaction Catalyzed by $\mathbf{1}$

The TFA salt of $1(1 \mathrm{~mol} \%, 0.01 \mathrm{mmol}, 4.5 \mathrm{mg})$ and (E)-nitrostyrene (1.0 equiv., 1.0 mmol , 149.2 mg) were dissolved in $\mathrm{CHCl}_{3} / \mathrm{PrOH} 9: 1(2 \mathrm{~mL})$. N-methyl morpholine ($1 \mathrm{~mol} \%$, $0.01 \mathrm{mmol}, 1.1 \mu \mathrm{~L}$) and butanal (1.5 equiv., $1.0 \mathrm{mmol}, 135.6 \mu \mathrm{~L}$) were added and the reaction mixture was stirred for 1 h . The reaction mixture was diluted with MeOH and analyzed by mass spectrometry (ESI+).

Mass spectrum:

Peaks with the mass corresponding to the following structures were identified:
γ-nitroaldehyde 2a $\left([\mathrm{M}+\mathrm{Na}]^{+}=\mathbf{2 4 4 . 0 9 4 7} \mathbf{~ m} / \mathrm{z}\right)$:

Intens.

Peptide $1\left([\mathrm{M}+\mathrm{Na}]^{+}=\mathbf{3 6 3 . 1 6 4 2} \mathbf{~ m} / \mathrm{z}\right)$:

Peptide iminium (left) ([M] $]^{+}$) and/or enamine intermediate $\left([M+H]^{+}\right)(395.2290 \mathrm{~m} / \mathrm{z}):$

Peptide 1 and β-hydroxyaldehyde condensate $4\left([M]^{+} /[\mathrm{M}+\mathrm{H}]^{+}=467.2858 \mathrm{~m} / \mathrm{z}\right)$:

Note: The MS analysis was performed after diluting the sample that contained $1 \mathrm{~mol} \%$ of the peptidic catalyst by $100-1000$ fold with MeOH , conditions that were necessary for the MS analysis that do, however, also favor hydrolysis of enamines. The signal intensity of enamines 1-En and $\mathbf{4}$ is therefore low.

Peptide condensate with product 2a $\left([M]^{+}=\mathbf{5 4 4 . 2 7 6 1} \mathbf{~ m} / \mathrm{z}\right)$:

Note: Related compounds (e.g., enamine, cyclobutane, nitronate, dihydrooxazine-N-oxide) have the same mass and could therefore not be distinguished.

3. Analytical Data of the Conjugate Addition Reaction Products 2a-2j

(2S,3R)-2-Ethyl-4-nitro-3-phenylbutanal 2a

diastereomeric ratio: 61:1

enantiomeric excess: 97%

Crystal Structure of 2a:

(Ellipsoid contour: 50\% probability)

Identification code	w360817_1_1
Empirical formula	$\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{3}$
Formula weight	221.25
Temperature/K	100.0(1)
Crystal system	orthorhombic
Space group	$\mathrm{P} 2{ }_{12} 2_{1}$
a/Å	5.47770(10)
b/Å	8.3194(2)
c/Å	25.6879(5)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	90
$\gamma{ }^{\circ}$	90
Volume/ \AA^{3}	1170.63(4)
Z	4
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$	1.255
μ / mm^{-1}	0.743
F(000)	472.0
Crystal size/ $/ \mathrm{mm}^{3}$	$0.146 \times 0.089 \times 0.08$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54184)$
2Θ range for data collection $/{ }^{\circ} 6.882$ to 133.058	
Index ranges	$-6 \leq \mathrm{h} \leq 5,-8 \leq \mathrm{k} \leq 9,-30 \leq 1 \leq 28$
Reflections collected	6939
Independent reflections	1953 [$\left.\mathrm{R}_{\text {int }}=0.0396, \mathrm{R}_{\text {sigma }}=0.0334\right]$
Data/restraints/parameters	1953/0/146
Goodness-of-fit on F^{2}	1.077
Final R indexes [$\mathrm{I}>=2 \sigma$ (I]	$\mathrm{R}_{1}=0.0335, \mathrm{wR}_{2}=0.0834$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0352, \mathrm{wR}_{2}=0.0844$
Largest diff. peak/hole / e $\AA^{-3} 0.12 /-0.19$	
Flack parameter	0.08(17)

A suitable crystal was selected and measured on a XtaLAB Synergy, Dualflex, Pilatus 300K diffractometer. The crystal was kept at $100.0(1) \mathrm{K}$ during data collection. Using Olex2, ${ }^{4}$ the structure was solved with the ShelXT ${ }^{5}$ structure solution program using Intrinsic Phasing and refined with the ShelXL ${ }^{6}$ refinement package using Least Squares minimization.

The crystal structure is deposited in the Cambridge Crystallographic Data Centre (CCDC Code: 1967754).

(2S,3R)-2-Methyl-4-nitro-3-phenylbutanal 2b

Yield $=96 \%, 21: 1$ d.r., $98 \% \mathrm{ee}$. The analytical data are in agreement with previously published data. ${ }^{1}$

The reference HPLC chromatogram of the racemic sample was reported in ref. 6.
diastereomeric ratio: 21:1

enantiomeric excess: 98%

(S)-2-((R)-2-Nitro-1-phenylethyl)hexanal 2c

Yield $=>95 \%, 60: 1$ d.r., $98 \% e e$. The analytical data are in agreement with previously published data. ${ }^{1}$

The reference HPLC chromatogram of the racemic sample was reported in ref. 1 .
diastereomeric ratio: 60:1

enantiomeric excess: 98\%

(S)-2-((R)-2-Nitro-1-phenylethyl)pentanal 2d

diastereomeric ratio: 33:1

(2S,3R)-2-Isopropyl-4-nitro-3-phenylbutanal 2e

The reference HPLC chromatogram of the racemic sample was reported in ref. 7 .
diastereomeric ratio: 56:1

enantiomeric excess: 99%

No.	Ret.Time min	Peak Name	Height mAU	Area mAU ${ }^{*}$ min	Rel.Area $\%$	Amount	Type
1	17.18	n.a.	0.521	0.161	0.37	n.a.	BMB *
2	20.58	n.a.		73.890	42.928	99.63	n.a.
BMB *							
Total:				74.410	43.090	100.00	0.000

(2S,3R)-2-Benzyl-4-nitro-3-phenylbutanal $2 f$

Yield $=>95 \%$, $37: 1$ d.r., $98 \% e e$. The analytical data are in agreement with previously published data. ${ }^{1}$

The reference HPLC chromatogram of the racemic sample was reported in ref. 1.
diastereomeric ratio: 37:1 enantiomeric excess: 98%

(2S,3S)-2-Ethyl-3-(furan-2-yl)-4-nitrobutanal 2g

Yield $=91 \%, 27: 1$ d.r., 98% ee (3 equivalents of butanal were used). The analytical data are in agreement with previously published data. ${ }^{10}$

The reference HPLC chromatogram of the racemic sample was reported in ref. 8 .
diastereomeric ratio: 27:1

enantiomeric excess: 98\%

(2S,3R)-2-Ethyl-3-(4-methoxyphenyl)-4-nitrobutanal 2 h

Yield $=94 \%$, 41:1 d.r., 96% ee (3 equivalents of butanal were used, 3 days reaction time). The analytical data are in agreement with previously published data. ${ }^{1}$

The reference HPLC chromatogram of the racemic sample was reported in ref. 9 .
diastereomeric ratio: 41:1

enantiomeric excess: 96%

(2S,3R)-2-Ethyl-3-(4-fluorophenyl)-4-nitrobutanal 2i

Yield $=96 \%, 4: 1$ d.r., 95% ee ($0.2 \mathrm{~mol} \% \mathbf{1 a}$ and NMM and 3 equivalents butanal was used). The analytical data are in agreement with previously published data. ${ }^{9}$

The reference HPLC chromatogram of the racemic sample was reported in ref. 10.
diastereomeric ratio: 41:1

enantiomeric excess: 95%

(2S,3R)-3-(4-Chlorophenyl)-2-ethyl-4-nitrobutanal 2j

Yield $=96 \%, 46: 1$ d.r., 94% ee ($0.2 \mathrm{~mol} \%$ 1a and NMM and 3 equivalents butanal was used). The analytical data are in agreement with previously published data. ${ }^{9}$

The reference HPLC chromatogram of the racemic sample was reported in ref. 10 .
diastereomeric ratio: 46:1

enantiomeric excess: 94%

4. ${ }^{\mathbf{1}} \mathbf{H}$-NMR Spectra of γ-nitroaldehydes $\mathbf{2 a} \mathbf{a} \mathbf{2} \mathbf{j}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 a}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 2b

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{2 c}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 2d

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 e}$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{2 f}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 g}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 h}$
致
${ }_{4}^{4}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{2 i}$

${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{2 j}$

5. References

1. Wiesner, M.; Neuburger, M.; Wennemers, H. Tripeptides of the Type H-D-Pro-Pro-Xaa- NH_{2} as Catalysts for Asymmetric 1,4-Addition Reactions: Structural Requirements for High Catalytic Efficiency. Chem. Eur. J. 2009, 15, 10103.
2. Schnitzer, T.; Wennemers, H. Influence of the Trans/Cis Conformer Ratio on the Stereoselectivity of Peptidic Catalysts. J. Am. Chem. Soc. 2017, 139, 15356.
3. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339.
4. Sheldrick, G. M. SHELXT - Integrated space-group and crystal-structure determination. Acta Cryst. A, 2015, 71, 3.
5. Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Cryst. C, 2015, 71, 3.
6. Lombardo, M.; Chiarucci, M.; Quintavalla, A.; Trombini, C. Highly Efficient IonTagged Catalyst for the Enantioselective Michael Addition of Aldehydes to Nitroalkenes. Adv. Synth. Catal. 2005, 351, 2801.
7. Duschmale, J.; Kohrt, S.; Wennemers, H. Peptide catalysis in aqueous emulsions. Chem. Commun. 2014, 50, 8109.Wang, Y.; Li, D.; Lin, J.; Wei, K. Organocatalytic asymmetric Michael addition of aldehydes and ketones to nitroalkenes catalyzed by adamantoyl l-prolinamide. RSC Adv. 2015, 5, 5863.
8. Wiesner, M.; Revell, J. D.; Wennemers, H. Tripeptides as efficient asymmetric catalysts for 1,4-addition reactions of aldehydes to nitroolefins - a rational approach. Angew. Chem. Int. Ed. 2008, 47, 1871.
9. Cortes-Clerget, M.; Gager, O.; Monteil, M.; Pirat, J.-L.; Migianu-Griffoni, E.; Deschamp, J.; Lecouvey, M. Novel Easily Recyclable Bifunctional Phosphonic Acid Carrying Tripeptides for the Stereoselective Michael Addition of Aldehydes with Nitroalkenes. Adv. Synth. Catal. 2016, 358, 34.
