Supporting Information

HgCuPS_{4} : An Exceptional Infrared Nonlinear Optical Material with Defect Diamond-like Structure

 Zhu*,
'State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
${ }^{7}$ College of Chemistry, Fuzhou University, Fuzhou 350002, China
${ }^{\text {s }}$ Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
" School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002, China
\#M. Y. Li and Z. Ma contributed equally to this work.
*E-mail: linhua@fjirsm.ac.cn and qlzhu@fjirsm.ac.cn.

CONTENTS

1. Property Characterization

1.1 Second Harmonic Generation (SHG) Measurements
1.2 Laser Induced Damage Threshold (LIDT) Measurements

2. Computational Details

3. Figures and Tables

Figure S1. The EDX results of HgCuPS_{4}.

Supporting Information

Figure S2. The thermogravimetric analysis (TGA) for HgCuPS_{4} was performed on a
NETZSCH STA 449C simultaneous analyzer under a constant flow of N_{2} atmosphere at a heating rate of $10 \mathrm{~K} / \mathrm{min}$.

Figure S3. The first Brillouin zone with high symmetry points (red). The labeled k-points are $\mathrm{G}(000), \mathrm{Z}(000.5), \mathrm{T}(-0.500 .5), \mathrm{Y}(-0.500), \mathrm{S}(-0.50 .50), \mathrm{X}(00.5$ $0), \mathrm{U}(00.50 .5)$ and $R(-0.50 .50 .5)$.

Figure S4. Energy dependences of the real part ε_{1} (a) and imaginary part ε_{2} (b) of HgCuPS_{4}.

Figure S5. The calculated refractive index (n) of HgCuPS_{4}.
Figure S6. The calculated absorption coefficient (α) of HgCuPS_{4}.

Figure S7. The calculated reflectivity (R) of HgCuPS_{4}.
Figure S8. The dipole moments of the $\left[\mathrm{HgS}_{4}\right],\left[\mathrm{CuS}_{4}\right]$ and $\left[\mathrm{PS}_{4}\right]$ units in HgCuPS 4 shown by different arrowheads.

Table S1. Atomic coordinates and equivalent isotropic displacement parameters of HgCuPS_{4}.

Table S2. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ of HgCuPS_{4}.
Table S3. Property comparison between the AGS, $\mathrm{Zn}_{3} \mathrm{P}_{2} \mathrm{~S}_{8}$ and $\mathrm{M}^{\mathrm{I}}-\mathrm{M}^{\mathrm{II}}-\mathrm{P}-\mathrm{S}_{4}$ system.
Table S4. Calculative local dipole moment (μ) of different units for HgCuPS_{4} in Debye.

4. References

Supporting Information

1. Property Characterization

1.1 Second Harmonic Generation (SHG) Measurements

The powder SHG measurements were carried out with the Kurtz-Perry method using a 2050 nm Q-switch laser. ${ }^{1} \mathrm{AgGaS}_{2}$ (AGS) was used as a benchmark material, which is offered from Anhui Institute of Optics and Fine Mechanics Chinese Academy of Sciences. HgCuPS_{4} and AGS were ground and sieved into distinct particle size ranges (30-46, 46-74, 74-106, 106-150, 150-210 $\mu \mathrm{m}$). The SHG signals of the frequency-doubled output emitted from the sieved samples were detected using a photomultiplier tube and recorded on the oscilloscope.

1.2 Laser Induced Damage Threshold (LIDT) Measurements

The LIDT of HgCuPS_{4} in the range of $150-210 \mu \mathrm{~m}$ was measured through single pulse measurement method ${ }^{2}$ and crushed AGS single crystal as the reference. Both samples were packed into identical plastic holders (thickness: 1 mm and diameter: 8 $\mathrm{mm})$. After exposed to the high-power 1064 nm laser radiation with pulse width τ_{p} of 10 ns , the apparent change of sample was monitored by an optical microscope. The power of laser beam and the damage spot radius were respectively measured by a Nova II sensor with a PE50-DIF-C energy sensor and a Vernier caliper.

2. Computational Details

The imaginary part of the dielectric function due to direct inter-band transitions is given by the expression:

$$
\left.\varepsilon_{2}(\mathrm{~h} \omega)=\frac{2 e^{2} \pi}{\Omega \varepsilon_{0}} \sum_{k, v, c}\left|\left\langle\psi_{k}^{c}\right| u \cdot r\right| \psi_{k}^{v}\right\rangle\left.\right|^{2} \delta\left(E_{k}^{c}-E_{k}^{v}-E\right)
$$

where Ω, ω, u, v and c are the unit-cell volume, photon frequencies, the vector

Supporting Information

defining the polarization of the incident electric field, valence and conduction bands, respectively. The real part of the dielectric function is obtained from ε_{2} by a Kramers-Kronig transformation:

$$
\varepsilon_{1}(\omega)=1+\left(\frac{2}{\pi}\right) \int_{0}^{+\infty} d \omega^{\prime} \frac{\omega^{\prime 2} \varepsilon_{2}(\omega)}{\omega^{\prime 2}-\omega^{2}}
$$

The refractive index $n(\omega)$ can be obtained based on ε_{1} and ε_{2}.
The so-called length-gauge formalism is adopted to calculate the static $\chi^{(2)}$ coefficients $\left(d_{\mathrm{ij}}\right)^{3,4}$ and a scissor operator has been added to correct the conduction band energy. In the static case, the imaginary part of the static second-order optical susceptibility can be expressed as:

$$
\begin{gathered}
\chi^{a b c}(-2 \omega, \omega, \omega)=\frac{e^{3}}{\mathrm{~h}^{2} \Omega} \sum_{n m l, k} \frac{r_{n m}^{a}\left\{r_{m l}^{b} r_{\ln }^{c}\right\}}{\omega_{n m} \omega_{m l} \omega_{\mathrm{ln}}}\left[\omega_{n} f_{m l}+\omega_{m} f_{\mathrm{ln}}+\omega_{l} f_{n m}\right]+ \\
\frac{i}{4} \frac{e^{3}}{\mathrm{~h}^{2} \Omega} \sum_{n m, k} \frac{f_{n m}}{\omega_{m n}^{2}}\left[r_{n m}^{a}\left(r_{m n ; c}^{b}+r_{m n ; b}^{c}\right)+r_{n m}^{b}\left(r_{m n ; c}^{a}+r_{m n ; a}^{c}\right)+r_{n m}^{c}\left(r_{m n ; b}^{a}+r_{m n ; a}^{b}\right)\right]
\end{gathered}
$$

where r is the position operator, $\hbar \omega_{\mathrm{nm}}=\hbar \omega_{\mathrm{n}}-\hbar \omega_{\mathrm{m}}$ is the energy difference for the bands m and $n, f_{\mathrm{mn}}=f_{\mathrm{m}}-f_{\mathrm{n}}$ is the difference of the Fermi distribution functions, subscripts a, b, and c are Cartesian indices, and $r^{\mathrm{b}}{ }_{m n} ; \mathrm{a}$ is the so-called generalized derivative of the coordinate operator in k space,

$$
r_{n m ; a}^{b}=\frac{r_{n m}^{a} \Delta_{m n}^{b}+r_{n m}^{b} \Delta_{m n}^{a}}{\omega_{n m}}+\frac{i}{\omega_{n m}} \times \sum_{l}\left(\omega_{l m} r_{n l}^{a} r_{l m}^{b}-\omega_{n l} r_{n l}^{b} r_{l m}^{a}\right)
$$

where $\Delta^{\mathrm{a}}{ }_{\mathrm{nm}}=\left(p^{\mathrm{a}}{ }_{\mathrm{nn}}-p_{\mathrm{mm}}^{\mathrm{a}}\right) / \mathrm{m}$ is the difference between the electronic velocities at the bands n and m .

Supporting Information

3. Figures and Tables

Figure S1. The EDX results of HgCuPS_{4}.

Figure S2. The thermogravimetric analysis (TGA) for HgCuPS_{4} was performed on a NETZSCH STA 449C simultaneous analyzer under a constant flow of N_{2} atmosphere at a heating rate of $10 \mathrm{~K} / \mathrm{min}$.

Supporting Information

Figure S3. The first Brillouin zone with high symmetry points (red). The labeled k-points are $\mathrm{G}(000), \mathrm{Z}(000.5), \mathrm{T}(-0.500 .5), \mathrm{Y}(-0.500), \mathrm{S}(-0.50 .50), \mathrm{X}(00.5$ $0), \mathrm{U}(00.50 .5)$ and $\mathrm{R}(-0.50 .50 .5)$.

Figure S4. Energy dependences of the real part ε_{1} (a) and imaginary part ε_{2} (b) of HgCuPS_{4}.

Figure S5. The calculated refractive index (n) of HgCuPS_{4}.

Figure S6. The calculated absorption coefficient (α) of HgCuPS_{4}.

Supporting Information

Figure S7. The calculated reflectivity (R) of HgCuPS_{4}.

Figure S8. The dipole moments of the $\left[\mathrm{HgS}_{4}\right],\left[\mathrm{CuS}_{4}\right]$ and $\left[\mathrm{PS}_{4}\right]$ units in HgCuPS 4 shown by different arrowheads.

Supporting Information

Table S1. Atomic coordinates and equivalent isotropic displacement parameters of HgCuPS_{4}.

Atom	Wyckoff	x	y	z	$U_{(\mathrm{eq})}{ }^{*}$	Occu.
Hg 1	$4 a$	$0.07253(3)$	$0.23035(6)$	$0.5257(2)$	$0.0224(2)$	$0.935(2)$
Hg 2	$4 a$	$0.1603(5)$	$0.0023(2)$	$0.022(4)$	$0.031(2)$	$0.065(2)$
Cu	$4 a$	$0.1609(9)$	$0.4964(2)$	$0.0280(6)$	$0.0190(3)$	1.0
P	$4 a$	$0.4086(2)$	$0.2417(3)$	$0.0352(7)$	$0.0076(4)$	1.0
S 1	$4 a$	$0.0655(2)$	$0.2375(4)$	$0.1167(5)$	$0.0131(5)$	1.0
S 2	$4 a$	$0.3282(2)$	$0.0180(4)$	$0.1509(4)$	$0.0122(5)$	1.0
S 3	$4 a$	$0.3309(2)$	$0.4579(4)$	$0.1768(5)$	$0.0144(5)$	1.0
S 4	$4 a$	$0.1086(2)$	$0.7593(3)$	$0.2000(4)$	$0.0145(5)$	1.0
	$* U_{\text {(eq) }}$ is defined as one-third of the trace of the orthogonalized U_{ij} tensor.					

Supporting Information

Table S2. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ of HgCuPS_{4}.

$\mathrm{Hg} 1-\mathrm{S} 1$	$2.497(3)$	$\angle \mathrm{S} 1-\mathrm{Hg} 1-\mathrm{S} 3$	$113.49(9)$
$\mathrm{Hg} 1-\mathrm{S} 3$	$2.524(3)$	$\angle \mathrm{S} 1-\mathrm{Hg} 1-\mathrm{S} 4$	$112.78(8)$
$\mathrm{Hg} 1-\mathrm{S} 4$	$2.530(4)$	$\angle \mathrm{S} 3-\mathrm{Hg} 1-\mathrm{S} 4$	$108.07(9)$
$\mathrm{Hg} 1-\mathrm{S} 2$	$2.578(3)$	$\angle \mathrm{S} 1-\mathrm{Hg} 1-\mathrm{S} 2$	$107.21(9)$
$\mathrm{Hg} 2-\mathrm{S} 3$	$2.140(2)$	$\angle \mathrm{S} 3-\mathrm{Hg} 1-\mathrm{S} 2$	$107.91(9)$
$\mathrm{Hg} 2-\mathrm{S} 1$	$2.183(9)$	$\angle \mathrm{S} 4-\mathrm{Hg} 1-\mathrm{S} 2$	$107.07(9)$
$\mathrm{Hg} 2-\mathrm{S} 4$	$2.191(2)$	$\angle \mathrm{S} 3-\mathrm{Hg} 2-\mathrm{S} 1$	$114.2(8)$
$\mathrm{Hg} 2-\mathrm{S} 2$	$2.270(2)$	$\angle \mathrm{S} 3-\mathrm{Hg} 2-\mathrm{S} 4$	$112.2(5)$
$\mathrm{Cu}-\mathrm{S} 4$	$2.299(3)$	$\angle \mathrm{S} 1-\mathrm{Hg} 2-\mathrm{S} 4$	$110.6(7)$
$\mathrm{Cu}-\mathrm{S} 2$	$2.310(5)$	$\angle \mathrm{S} 3-\mathrm{Hg} 2-\mathrm{S} 2$	$107.4(6)$
$\mathrm{Cu}-\mathrm{S} 1$	$2.319(3)$	$\angle \mathrm{S} 1-\mathrm{Hg} 2-\mathrm{S} 2$	$112.6(6)$
$\mathrm{Cu}-\mathrm{S} 3$	$2.354(3)$	$\angle \mathrm{S} 4-\mathrm{Hg} 2-\mathrm{S} 2$	$98.7(7)$
$\mathrm{P}-\mathrm{S} 1$	$2.056(3)$	$\angle \mathrm{S} 4-\mathrm{Cu}-\mathrm{S} 2$	$114.4(2)$
$\mathrm{P}-\mathrm{S} 4$	$2.060(5)$	$\angle \mathrm{S} 4-\mathrm{Cu}-\mathrm{S} 1$	$115.8(2)$
$\mathrm{P}-\mathrm{S} 3$	$2.061(3)$	$\angle \mathrm{S} 2-\mathrm{Cu}-\mathrm{S} 1$	$108.7(2)$
$\mathrm{P}-\mathrm{S} 2$	$2.061(3)$	$\angle \mathrm{S} 4-\mathrm{Cu}-\mathrm{S} 3$	$100.9(2)$
		$\angle \mathrm{S} 2-\mathrm{Cu}-\mathrm{S} 3$	$109.7(2)$
		$\angle \mathrm{S} 1-\mathrm{Cu}-\mathrm{S} 3$	$106.7(2)$
		$\angle \mathrm{S} 1-\mathrm{P}-\mathrm{S} 4$	$109.7(2)$
	$\angle \mathrm{S} 1-\mathrm{P}-\mathrm{S} 3$	$107.7(2)$	
		$\angle \mathrm{S} 4-\mathrm{P}-\mathrm{S} 3$	$108.46(17)$
		$\angle \mathrm{P} 3-\mathrm{S} 2-\mathrm{P} 2-\mathrm{S} 2$	$117.09(19)$
		$109.74(17)$	
		$103.68(17)$	

Supporting Information

Table S3. Property comparison between the $\mathrm{AGS}, \mathrm{Zn}_{3} \mathrm{P}_{2} \mathrm{~S}_{8}$ and $\mathrm{M}^{\mathrm{I}}-\mathrm{M}^{\mathrm{II}}-\mathrm{P}-\mathrm{S}_{4}$ system.

Compounds	AgGaS_{2} (AGS)	$\mathrm{Zn}_{3} \mathrm{P}_{2} \mathrm{~S}_{8}$	LiZnPS_{4}	CuZnPS_{4}	AgZnPS_{4}	$\mathbf{C u H g P S}_{4}$ (this work)
Unit cell	Tetragonal	Tetragonal	Tetragonal	Orthorhombic	Tetragonal	Orthorhombic
Space group	$I \overline{4} 2 m$	$P \overline{4} n 2$	$I \overline{4}$	Pna2 ${ }_{1}$	$1 \overline{4} 2 m$	Pnal ${ }_{1}$
	(No.121)	(No.118)	(No.82)	(No.33)	(No.121)	(No.33)
DL type	Normal	Defect	Defect	Defect	Defect	Defect
VEC*	4	4.92	4.752	4.752	4.752	4.752
$\mathrm{Eg}_{\mathrm{g}}(\mathrm{eV})$	2.56	3.07	3.38	3.0	2.76	2.03
$d_{\mathrm{ij}}(\times \mathrm{AGS})$	1	2.6	0.8	3.0	1.8	6.5
LIDT (\times AGS $)$	1	N/A	N/A	6.0	N/A	4.2
PM/NPM**	PM	PM	PM	PM	PM	$\mathbf{P M}$
$\Delta \mathrm{n}$ (calculated)	0.039	0.04	0.073	0.07	0.051	0.11

${ }^{*}$ VEC $=$ valence electron concentration, defined as $\left(\mathrm{ME}_{\mathrm{A}}+\mathrm{NE}_{\mathrm{B}}+\ldots\right) /(\mathrm{M}+\mathrm{N}+\ldots)$, where E_{A} and E_{B} are the valence electron numbers of compositional elements A and B in $\left[\mathrm{AB}_{4}\right]$ tetrahedral units, respectively; while M and N represent the atomic numbers of A and B .
${ }^{* *} \mathrm{PM}=$ phase-matching; $\mathrm{NPM}=$ non-phase-matching.

Supporting Information

Table S4. Calculative local dipole moment (μ) of different units for HgCuPS_{4} in Debye.

unit	μ_{x}	μ_{y}	μ_{z}	$\mu_{\text {total }}$
$\left[\mathrm{HgS}_{4}\right]$	0	0	-3.0708	3.0708
$\left[\mathrm{CuS}_{4}\right]$	0	0	-4.0436	4.0436
$\left[\mathrm{PS}_{4}\right]$	0	0	-0.5492	0.5492

4. References

1. Kurtz, S. K.; Perry, T. T. A Powder Technique for the Evaluation of Nonlinear Optical Materials. J. Appl. Phys. 1968, 39, 3798-3813.
2. Zhang, M. J.; Jiang, X. M.; Zhou, L. J.; Guo, G. C. Two phases of $\mathrm{Ga}_{2} \mathrm{~S}_{3}$: promising infrared second-order nonlinear optical materials with very high laser induced damage thresholds. J. Mater. Chem. C 2013, 1, 4754-4760.
3. Aversa, C.; Sipe, J. E. Nonlinear optical susceptibilities of semiconductors: Results with a length-gauge analysis. Phys. Rev. B, 1995, 52, 14636-14645.
4. Rashkeev, S. N.; Lambrecht, W. R. L.; Segall, B. Efficient ab initio method for the calculation of frequency-dependent second-order optical response in semiconductors. Phys. Rev. B 1998, 57, 3905.
