HgCuPS₄: An Exceptional Infrared Nonlinear Optical Material with Defect Diamond-like Structure

Meng-Yue Li,^{†,‡,#} Zuju Ma,^{I,#} Bingxuan Li,[§] Xin-Tao Wu,[†] Hua Lin,^{*, †}and Qi-Long Zhu^{*,†}

[†]State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China

[‡]College of Chemistry, Fuzhou University, Fuzhou 350002, China

[§]Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute

of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China

^{*II*} School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002, China

*M. Y. Li and Z. Ma contributed equally to this work.*E-mail: linhua@fjirsm.ac.cn and glzhu@fjirsm.ac.cn.

CONTENTS

1. Property Characterization

- 1.1 Second Harmonic Generation (SHG) Measurements
- 1.2 Laser Induced Damage Threshold (LIDT) Measurements

2. Computational Details

3. Figures and Tables

Figure S1. The EDX results of HgCuPS₄.

Figure S2. The thermogravimetric analysis (TGA) for HgCuPS₄ was performed on a NETZSCH STA 449C simultaneous analyzer under a constant flow of N_2 atmosphere at a heating rate of 10 K/min.

Figure S3. The first Brillouin zone with high symmetry points (red). The labeled *k*-points are G (0 0 0), Z (0 0 0.5), T (-0.5 0 0.5), Y (-0.5 0 0), S (-0.5 0.5 0), X (0 0.5 0), U (0 0.5 0.5) and R (-0.5 0.5 0.5).

Figure S4. Energy dependences of the real part ε_1 (a) and imaginary part ε_2 (b) of HgCuPS₄.

Figure S5. The calculated refractive index (n) of HgCuPS₄.

Figure S6. The calculated absorption coefficient (α) of HgCuPS₄.

Figure S7. The calculated reflectivity (*R*) of HgCuPS₄.

Figure S8. The dipole moments of the $[HgS_4]$, $[CuS_4]$ and $[PS_4]$ units in $HgCuPS_4$ shown by different arrowheads.

 Table S1. Atomic coordinates and equivalent isotropic displacement parameters of

 HgCuPS₄.

Table S2. Selected bond lengths (Å) and angles (°) of HgCuPS₄.

Table S3. Property comparison between the AGS, $Zn_3P_2S_8$ and M^I - M^{II} -P- S_4 system.

Table S4. Calculative local dipole moment (μ) of different units for HgCuPS₄ in Debye.

4. References

1. Property Characterization

1.1 Second Harmonic Generation (SHG) Measurements

The powder SHG measurements were carried out with the Kurtz-Perry method using a 2050 nm Q-switch laser.¹ AgGaS₂ (AGS) was used as a benchmark material, which is offered from Anhui Institute of Optics and Fine Mechanics Chinese Academy of Sciences. HgCuPS₄ and AGS were ground and sieved into distinct particle size ranges $(30-46, 46-74, 74-106, 106-150, 150-210 \mu m)$. The SHG signals of the frequency-doubled output emitted from the sieved samples were detected using a photomultiplier tube and recorded on the oscilloscope.

1.2 Laser Induced Damage Threshold (LIDT) Measurements

The LIDT of HgCuPS₄ in the range of 150–210 μ m was measured through single pulse measurement method² and crushed AGS single crystal as the reference. Both samples were packed into identical plastic holders (thickness: 1 mm and diameter: 8 mm). After exposed to the high-power 1064 nm laser radiation with pulse width τ_p of 10 ns, the apparent change of sample was monitored by an optical microscope. The power of laser beam and the damage spot radius were respectively measured by a Nova II sensor with a PE50-DIF-C energy sensor and a Vernier caliper.

2. Computational Details

The imaginary part of the dielectric function due to direct inter-band transitions is given by the expression:

$$\varepsilon_{2}(\mathsf{h}\omega) = \frac{2e^{2}\pi}{\Omega\varepsilon_{0}} \sum_{k,v,c} \left| \left\langle \psi_{k}^{c} \left| u \cdot r \right| \psi_{k}^{v} \right\rangle \right|^{2} \delta(E_{k}^{c} - E_{k}^{v} - E)$$

where Ω , ω , u, v and c are the unit-cell volume, photon frequencies, the vector

defining the polarization of the incident electric field, valence and conduction bands, respectively. The real part of the dielectric function is obtained from ε_2 by a Kramers-Kronig transformation:

$$\varepsilon_{1}(\omega) = 1 + (\frac{2}{\pi}) \int_{0}^{+\infty} d\omega' \frac{{\omega'}^{2} \varepsilon_{2}(\omega)}{{\omega'}^{2} - {\omega}^{2}}$$

The refractive index $n(\omega)$ can be obtained based on ε_1 and ε_2 .

The so-called length-gauge formalism is adopted to calculate the static $\chi^{(2)}$ coefficients $(d_{ij})^{3, 4}$ and a scissor operator has been added to correct the conduction band energy. In the static case, the imaginary part of the static second-order optical susceptibility can be expressed as:

$$\chi^{abc}(-2\omega,\omega,\omega) = \frac{e^3}{h^2\Omega} \sum_{nml,k} \frac{r_{nm}^a \{r_{ml}^b r_{ln}^c\}}{\omega_{nm} \omega_{ml} \omega_{ln}} [\omega_n f_{ml} + \omega_m f_{ln} + \omega_l f_{nm}] + \frac{i}{4} \frac{e^3}{h^2\Omega} \sum_{nm,k} \frac{f_{nm}}{\omega_{mn}^2} [r_{nm}^a (r_{mn;c}^b + r_{mn;b}^c) + r_{nm}^b (r_{mn;c}^a + r_{mn;a}^c) + r_{nm}^c (r_{mn;b}^a + r_{mn;a}^b)]$$

where *r* is the position operator, $\hbar\omega_{nm} = \hbar\omega_n - \hbar\omega_m$ is the energy difference for the bands *m* and *n*, $f_{mn} = f_m - f_n$ is the difference of the Fermi distribution functions, subscripts *a*, *b*, and *c* are Cartesian indices, and r^{b}_{mn} ; a is the so-called generalized derivative of the coordinate operator in *k* space,

$$r_{nm;a}^{b} = \frac{r_{nm}^{a}\Delta_{mn}^{b} + r_{nm}^{b}\Delta_{mn}^{a}}{\omega_{nm}} + \frac{i}{\omega_{nm}} \times \sum_{l} (\omega_{lm}r_{nl}^{a}r_{lm}^{b} - \omega_{nl}r_{nl}^{b}r_{lm}^{a})$$

where $\Delta^{a}_{nm} = (p^{a}_{nn} - p^{a}_{mm}) / m$ is the difference between the electronic velocities at the bands n and m.

3. Figures and Tables

			Atomic %	Hg	Cu	Р	s]
	1		EDX (ave.)	1.0(4)	1.0(2)	0.9(3)	4.1(5)	
G			_					
J				6 •	•	•		
0	2	4	6 8	10	12	14	16	1

Figure S1. The EDX results of HgCuPS₄.

Figure S2. The thermogravimetric analysis (TGA) for HgCuPS₄ was performed on a NETZSCH STA 449C simultaneous analyzer under a constant flow of N_2 atmosphere at a heating rate of 10 K/min.

Figure S3. The first Brillouin zone with high symmetry points (red). The labeled *k*-points are G (0 0 0), Z (0 0 0.5), T (-0.5 0 0.5), Y (-0.5 0 0), S (-0.5 0.5 0), X (0 0.5 0), U (0 0.5 0.5) and R (-0.5 0.5 0.5).

Figure S4. Energy dependences of the real part ϵ_1 (a) and imaginary part ϵ_2 (b) of HgCuPS₄.

Figure S5. The calculated refractive index (n) of HgCuPS₄.

Figure S6. The calculated absorption coefficient (α) of HgCuPS₄.

Figure S7. The calculated reflectivity (R) of HgCuPS₄.

Figure S8. The dipole moments of the $[HgS_4]$, $[CuS_4]$ and $[PS_4]$ units in $HgCuPS_4$ shown by different arrowheads.

HgCuP	S ₄ .						
Atom	Wyckoff	x	у	Ζ	$U_{(eq)}^{*}$	Осси.	
Hg1	4 <i>a</i>	0.07253(3)	0.23035(6)	0.5257(2)	0.0224(2)	0.935(2)	
Hg2	4 <i>a</i>	0.1603(5)	0.0023(2)	0.022(4)	0.031(2)	0.065(2)	
Cu	4 <i>a</i>	0.1609(9)	0.4964(2)	0.0280(6)	0.0190(3)	1.0	
Р	4 <i>a</i>	0.4086(2)	0.2417(3)	0.0352(7)	0.0076(4)	1.0	
S 1	4 <i>a</i>	0.0655(2)	0.2375(4)	0.1167(5)	0.0131(5)	1.0	
S2	4 <i>a</i>	0.3282(2)	0.0180(4)	0.1509(4)	0.0122(5)	1.0	
S3	4 <i>a</i>	0.3309 (2)	0.4579(4)	0.1768(5)	0.0144(5)	1.0	
S4	4 <i>a</i>	0.1086(2)	0.7593(3)	0.2000(4)	0.0145(5)	1.0	
$U_{(eq)}$ is defined as one-third of the trace of the orthogonalized U_{ij} tensor.							

 Table S1. Atomic coordinates and equivalent isotropic displacement parameters of

 HgCuPS₄.

Hg1-S1	2.497(3)	∠S1–Hg1–S3	113.49(9)
Hg1-S3	2.524(3)	∠S1–Hg1–S4	112.78(8)
Hg1-S4	2.530(4)	∠S3–Hg1–S4	108.07(9)
Hg1-S2	2.578(3)	∠S1–Hg1–S2	107.21(9)
Hg2-S3	2.140(2)	∠S3–Hg1–S2	107.91(9)
Hg2-S1	2.183(9)	∠S4–Hg1–S2	107.07(9)
Hg2-S4	2.191(2)	∠S3–Hg2–S1	114.2(8)
Hg2-S2	2.270(2)	∠S3–Hg2–S4	112.2(5)
Cu-S4	2.299(3)	∠S1–Hg2–S4	110.6(7)
Cu-S2	2.310(5)	∠S3–Hg2–S2	107.4(6)
Cu-S1	2.319(3)	∠S1–Hg2–S2	112.6(6)
Cu-S3	2.354(3)	∠S4–Hg2–S2	98.7(7)
P-S1	2.056(3)	∠S4–Cu–S2	114.4(2)
P-S4	2.060(5)	∠S4–Cu–S1	115.8(2)
P-S3	2.061(3)	∠S2–Cu–S1	108.7(2)
P-S2	2.061(3)	∠S4–Cu–S3	100.9(2)
		∠S2–Cu–S3	109.7(2)
		∠S1–Cu–S3	106.7(2)
		∠S1–P–S4	109.7(2)
		∠S1–P–S3	107.7(2)
		∠S4–P–S3	108.46(17)
		∠S1–P–S2	117.09(19)
		∠S4–P–S2	109.74(17)
		∠S3–P–S2	103.68(17)

Table S2. Selected bond lengths (Å) and angles (°) of HgCuPS₄.

Compounds	AgGaS ₂	$7n_2P_2S_2$	LiZnPS ₄	CuZnPS ₄	AgZnPS ₄	CuHgPS ₄
Compounds	(AGS)	ZII3F 2 3 8				(this work)
Unit cell	Tetragonal	Tetragonal	Tetragonal	Orthorhombic	Tetragonal	Orthorhombic
G	I 4 2m	$P\overline{4}n2$	I 4	$Pna2_1$	I 4 2m	Pna2 ₁
Space group	(No.121)	(No.118)	(No.82)	(No.33)	(No.121)	(No.33)
DL type	Normal	Defect	Defect	Defect	Defect	Defect
VEC*	4	4.92	4.752	4.752	4.752	4.752
$E_{g}(eV)$	2.56	3.07	3.38	3.0	2.76	2.03
d_{ij} (× AGS)	1	2.6	0.8	3.0	1.8	6.5
LIDT (× AGS)	1	N/A	N/A	6.0	N/A	4.2
PM/NPM**	PM	PM	PM	РМ	PM	PM
Δn (calculated)	0.039	0.04	0.073	0.07	0.051	0.11

Table S3. Property comparison between the AGS, $Zn_3P_2S_8$ and M^{I} - M^{II} -P-S₄ system.

*VEC = valence electron concentration, defined as $(ME_A+NE_B+...)/(M+N+...)$, where E_A and E_B are the valence electron numbers of compositional elements A and B in [AB₄] tetrahedral units, respectively; while M and N represent the atomic numbers of A and B.

**PM = phase-matching; NPM = non-phase-matching.

Table S4. Calculative local dipole moment (μ) of different units for HgCuPS₄ in Debye.

unit	μ_{x}	μ_{y}	μ_z	μ_{total}
[HgS ₄]	0	0	-3.0708	3.0708
[CuS ₄]	0	0	-4.0436	4.0436
[PS ₄]	0	0	-0.5492	0.5492

4. References

1. Kurtz, S. K.; Perry, T. T. A Powder Technique for the Evaluation of Nonlinear Optical Materials. *J. Appl. Phys.* **1968**, *39*, 3798–3813.

2. Zhang, M. J.; Jiang, X. M.; Zhou, L. J.; Guo, G. C. Two phases of Ga₂S₃: promising infrared second–order nonlinear optical materials with very high laser induced damage thresholds. *J. Mater. Chem. C* **2013**, *1*, 4754–4760.

3. Aversa, C.; Sipe, J. E. Nonlinear optical susceptibilities of semiconductors: Results with a length–gauge analysis. *Phys. Rev. B*, **1995**, *52*, 14636–14645.

4. Rashkeev, S. N.; Lambrecht, W. R. L.; Segall, B. Efficient ab initio method for the calculation of frequency-dependent second-order optical response in semiconductors. *Phys. Rev. B* 1998, *57*, 3905.