Crumpled Graphene Decorated with Manganese Ferrite Nanoparticles for Hydrogen Peroxide Sensing and Electrochemical Supercapacitors

Larissa H. Nonaka[†]; Thiago S.D. Almeida[†]; Caroline B. Aquino[‡]; Sergio H. Domingues[‡]; Rodrigo V. Salvatierra[§]; Victor H.R. Souza[†]*

†Faculty of Exact Science and Technology, Universidade Federal da Grande Dourados, Dourados, MS, Brazil
‡MackGraphe – Graphene and Nanomaterial Research Center, Mackenzie Presbyterian University, 01302-907 São Paulo, Brazil.

\$Department of Chemistry, The NanoCarbon Center, and Department of Materials Science and NanoEngineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States

Corresponding author: victorsouza@ufgd.edu.br

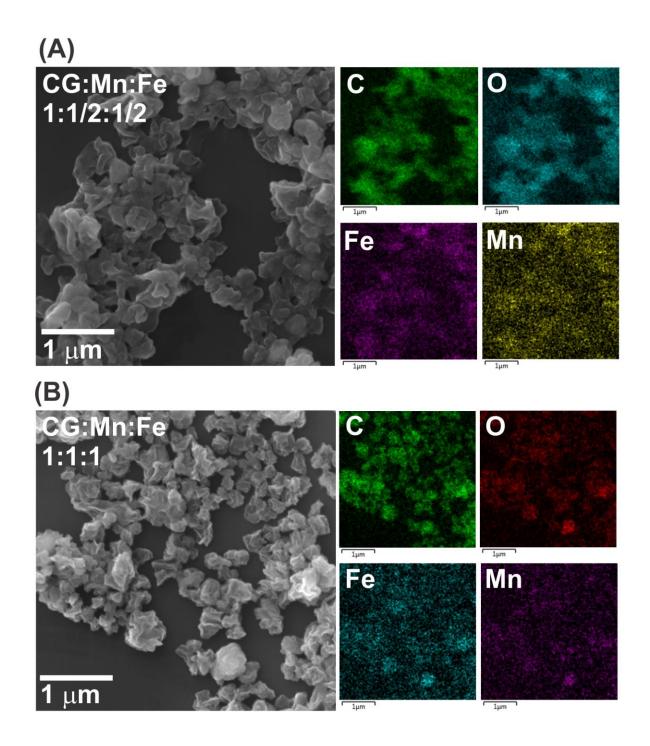


Figure S1 - SEM and EDS mapping images of the samples CG:Mn:Fe (A) 1:1/2:1/2, and (B) 1:1:1.

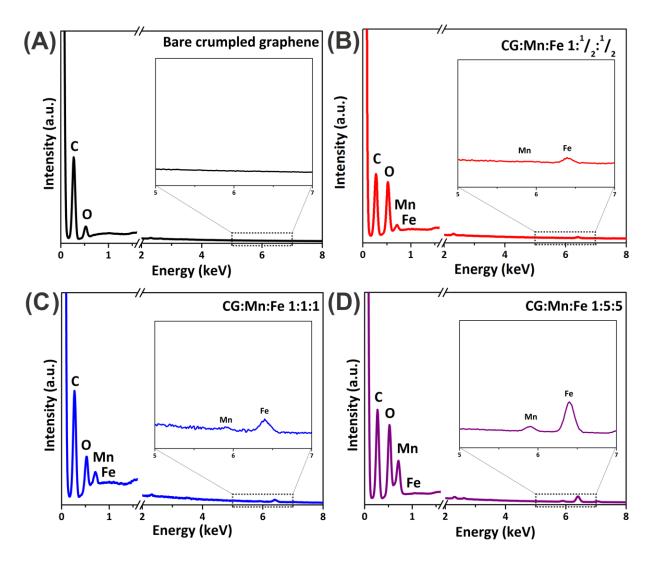


Figure S2 – EDS spectra and inset region from 5 to 7 keV for bare CG (A) and composites 1:¹/₂:¹/₂ (B), 1:1:1 (C), and 1:5:5 (D). The region corresponding to the peak of silicon was removed from all spectra.

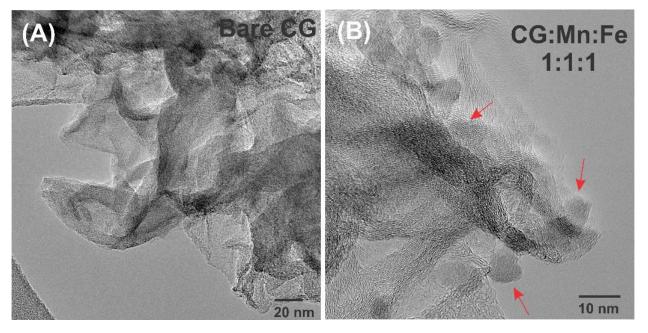


Figure S3 – HRTEM images for (A) bare CG, and (B) CG:Mn:Fe 1:1:1.

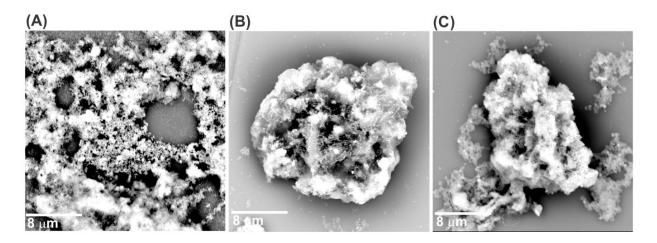


Figure S4 - SEM images of (A) bare MnFe₂O₄, (B) flat rGO:MnFe₂O₄ 1:1:1, and (C) flat rGO:MnFe₂O₄ 1:5:5.

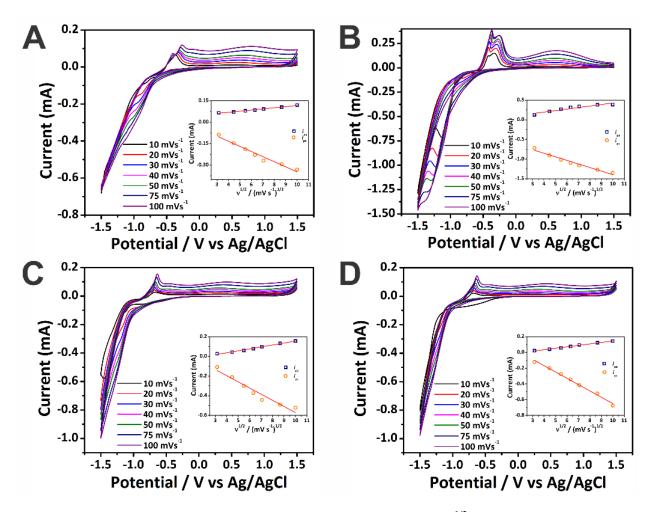


Figure S5 – CV curves at different scan rates, including the *i* vs. v^{1/2} curves at the inset for (A) bare CG; (B) CG:Mn:Fe 1:¹/₂:¹/₂, (C) 1:1:1, and (D) 1:5:5.

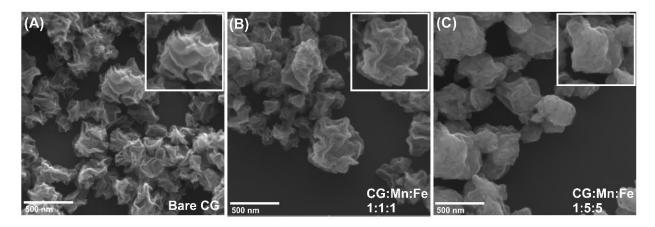


Figure S6 – SEM images of (A) bare CG, and composites (B) 1:1:1, (C) 1:5:5, showing the evolution of the morphology increasing the manganese ferrite nanoparticles decorating CG surface.

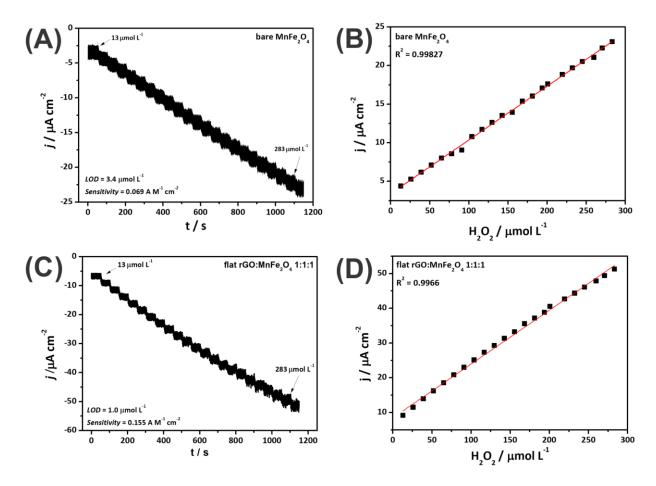


Figure S7 – (A) Chronoamperometric response of bare MnFe₂O₄ for H₂O₂ determination in a range from 13 to 283 μmol L⁻¹, and (B) Analytical curve from the previous measure showing current density as a function of H₂O₂ concentration. (C) Chronoamperometric response of flat rGO:MnFe₂O₄ 1:1:1 for H₂O₂ determination in a range from 13 to 283 μmol L⁻¹, and (D) Analytical curve from the previous measure showing current density as a function of H₂O₂ concentration.

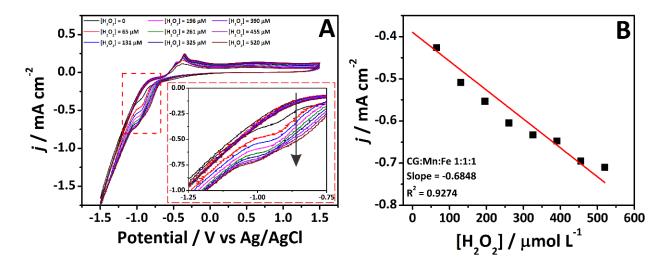


Figure S8 – H₂O₂ determination by CV measurements, including the evolution of cathodic peak with H₂O₂ concentration in the inset (A), and analytical curve using current density in function of H₂O₂ concentration (B).

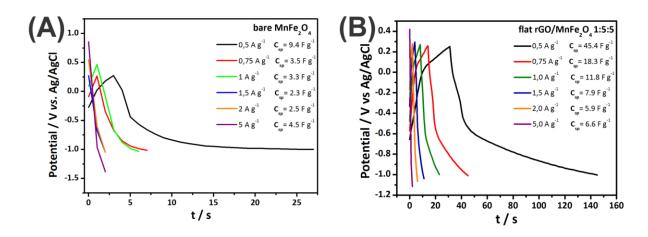
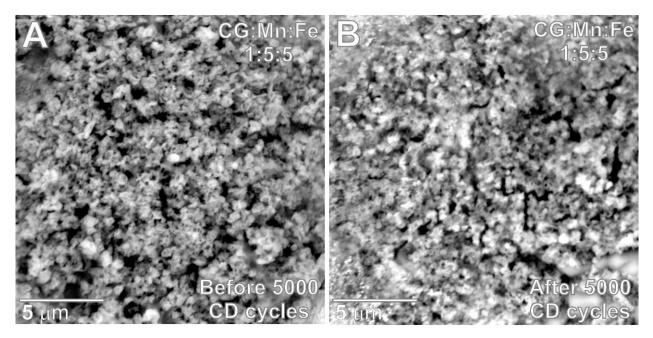



Figure S9 - Charge/discharge curves (3rd cycle) at different current densities for (A) bare MnFe₂O₄, and (B) flat rGO:MnFe₂O₄ 1:5:5.

S10 – SEM images of CG:Mn:Fe 1:5:5 before (A) and after (B) 5000 charge/discharge cycles.

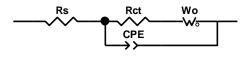


Figure S11 – Randles equivalent circuit used in this work.

Table S1 - Analytical parameters of the different materials produced in this work for H2O2 deter-
mination.

Sample	Limit of detection (μ mol L ⁻¹)	Sensitivity (A M ⁻¹ cm ⁻²)
Bare CG	3.51	0.04523
1: ¹ /2: ¹ /2	2.74	0.05802
1:1:1	1.63	0.09745
1:5:5	2.50	0.06343

Material	CE% at current density (mA cm ⁻²) + aqueous electrolyte	Completed cycles	Reference
MnFe2O4 /graphene	$\sim 300\% (0.3 \text{ A g}^{-1}) - 3 \text{ -electrode}$ $\sim 130\% (0.3 \text{ A g}^{-1}) - 3 \text{ -electrode}$ $\sim 50\% (0.5 \text{ A g}^{-1}) - 2 \text{ -electrode}$ Electrolyte: PVA/H ₂ SO ₄	1000 to 5000 cycles (at 5 A g ⁻¹)	[9]
MnFe2O4/ polyaniline /graphene *polyaniline is electro- chemically active	$\sim 105 \% (0.2 \text{ A g}^{-1}) - 3$ -electrode Electrolyte: 1 M KOH	5000 cycles (2 A g ⁻¹)	[5]
Cu-doped MnFe ₂ O ₄ / graphene	N/A	1000 cycles (CV)	[8]
MnFe ₂ O ₄ NPs	~ 52% (0.2 A g ⁻¹) – 2-electrode ~ 81% (0.4 A g ⁻¹) – 2-electrode Electrolyte: 3.5 M KOH	10000 cycles (3 A g ⁻¹)	[6]
MnFe2O4 NPs	~ 50% (0.2 A g ⁻¹) (2 M Na ₂ SO ₄) ~ 93% (0.2 A g ⁻¹) (2 M KOH) ~ 99% (0.2 A g ⁻¹) (2 M LiOH) ~ 99% (0.2 A g ⁻¹) (2 M NaOH) All 2-electrode	N/A	[40]
Crumpled graphene with MnFe ₂ O ₄ NPs	$\sim 275\% (0.5 \text{ A g}^{-1}) - 3$ -electrode $\sim 125\% (0.7 \text{ A g}^{-1}) - 3$ -electrode Electrolyte: 0.05M KCl	5000 cycles (2 A g ⁻¹)	This work

TABLE S2 - Comparison of Coulombic efficiency* (%) and cycle life of MnFe₂O₄-based capacitors.

*CE was calculated as ratio of discharge to charge capacity in the galvanostatic measurement.