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Figure S1 shows the XPS spectra of the composites accounted for the structural defects. The 

peaks of La 3d, Co 2p, Co 3s, Co 3p, Ag 3p, Ag 3d, Ca 2s, Ca 2p, O 1s, and O KLL were observed 

in the full survey spectra, indicating that Ag+ and La3+ were successfully introduced into the crystal 

lattice [S1], corresponding well to the EDX mappings. Two doublets Ag 3d peaks were fitted and 

distinguished, as shown in Figure S1 (b). Ag 3d peaks were detected with the banding energy of 

368.0 eV and 365.7 eV to identify the incorporation of metallic Ag and lattice Ag+. The specific 

ratios of sliver were calculated and shown in Table S1.

Figure S2 shows the XPS fitting results about O element. The peaks at 531.3 eV was associated 

with Co-O bonds and Ca-O bonds, implying the lattice oxygen on its intrinsic sites. It presented as 

well the peaks located at 533.1 eV and 534.0 eV for oxygen vacancy and chemical absorbed oxygen 

on the surface, respectively [S2].

Figure S3 show two spin-orbital doublets of Co 2p and the spin-state transition scenario, which 

could be distinguished by the XPS fitting results. The spin entropy of Co3+ and Co4+ was suggested 

to account for the formation of the three mentioned oxygen [S3]. Due to compensate mechanism of 

charge carrier, there was considerable interest in the reduction of lattice Ag+ accompanying with 

increasing of La3+ dopant levels. The Co 2p peaks presents the two distinct peaks and located at 

799.4 eV and 781.0 eV, respectively, which matched well to the Co3+ and Co4+. Figure S3 (b) shows 

that the Co4+ transferred to Co3+ could be originated from spin-state transition scenario of Co ions.

Figure S4 shows temperature dependence of thermal diffusivity coefficient and specific heat for 

the composites. It can be seen that the λ values decreased gradually with the increasing of measured 

temperature. And the Cp of the composites reached 0.66 J/(g·K) at 1073 K for the x=0.09 sample.

Figure S5 shows the Raman vibration of composites at room temperature. The vibration of 
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heavier Ca or Co atoms occurred in the low wavenumber, while the vibration of light O atom 

occurred in the high wavenumber. It could be seen that the characteristic peak of P1 represented the 

vibration peak of Ca atom and P2~P7 represented the vibration peak of O atom [S4, S5]. The peak at 

466.3 cm−1 was identified as the A1g mode, the peak at 615.4 cm−1 was the E1g mode. The A1g mode 

was associated with a Co-O stretching vibration, while the E1g mode was associated with a planar 

O-O vibration mode.
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List of Table in Supporting Information

Table S1 Concentration of different elements for the XPS fitting results.
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Table S1 Concentration of different elements for the XPS fitting results.

Sliver/% Cobalt/% Oxygen/%
x

Ag+ metallic Ag Co3+ Co4+ Oabs VO Olat

0.03 92.5 7.5 39.7 60.3 25.8 16.2 58.0

0.06 90.1 9.9 40.8 59.2 30.2 19.3 50.5

0.09 88.0 12.0 43.7 56.3 30.6 15.4 54.0

0.12 86.1 13.9 44.6 55.4 35.3 18.2 46.5
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List of Figures in Supporting Information

Figure S1 XPS survey spectra for composites. (a) full XPS survey spectra, (b) high-resolution of Ag 3d

Figure S2 High-resolution XPS spectra for O 1s.

Figure S3 (a) High-resolution XPS spectra for Co 2p, (b) spin-state transition scenario.

Figure S4 Temperature dependence of thermal diffusivity coefficient and specific heat for the composites. (a) 

thermal diffusivity coefficient, (b) specific heat

Figure S5 (a) Raman spectra for composites (b) Raman wave numbers P1, P2, P3, P5, and P7.
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Figure S1 XPS survey spectra for composites. (a) full XPS survey spectra, (b) high-resolution of Ag 3d
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Figure S2 High-resolution XPS spectra for O 1s.
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Figure S3 (a) High-resolution XPS spectra for Co 2p, (b) spin-state transition scenario.



10

300 400 500 600 700 800 900 1000 1100

0.006

0.008

0.010

0.012

0.014

λ/
m

m
2 /s

T/K

x=0.03
x=0.06
x=0.09
x=0.12

(a)

300 400 500 600 700 800 900 1000 1100
0.45

0.50

0.55

0.60

0.65

0.70 x=0.03
x=0.06
x=0.09
x=0.12

(b)

T/K

C
p/

J/
(g

·K
)

Figure S4 Temperature dependence of thermal diffusivity coefficient and specific heat for the composites. (a) 

thermal diffusivity coefficient, (b) specific heat
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Figure S5 (a) Raman spectra for composites (b) Raman wave numbers P1, P2, P3, P5, and P7


