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Figure S1. The morphological evolution of N-doped CNTs/Si@C. 

Figure S2. (a) TEM image and (b-d) corresponding elemental mappings of Si@ZnO. 

Figure S3. (a) SEM and (b) TEM images of Si@ZIF-67. 

Figure S4. (a) SEM and (b) TEM images of Si@ZIF-67@PDA.  

Figure S5. Nitrogen adsorption-desorption isotherm and pore size distribution (inset) 

of (a) Si@ZIF-67 and (b) Si@ZIF-67@PDA.  

Figure S6. XRD patterns of Si@ZIF-67 and Si@ZIF-67@PDA. 

Figure S7. (a-c) High-resolution XPS spectra of Si 2p, C 1s and Co 2p of N-doped 

CNTs/Si@C. 

Figure S8. Capacitive contributions to charge storage of N-doped CNTs/Si@C at a 

scan rate of (a) 0.3 mV s -1, (b) 0.5 mV s -1, (c) 0.8 mV s -1, and (d) 1 mV s -1. 

Figure S9. Voltage profiles of the N-doped CNTs/Si@C electrode for different cycles 

at a current densities of 500 mA g-1. 

Figure S10. Voltage profiles of the N-doped CNTs/Si@C electrode for different 

cycles at a current densities of 1000 mA g-1. 

Figure S11. Voltage profiles of the N-doped CNTs/Si@C electrode for different 

cycles at a current densities of 2000 mA g-1. 

Figure S12. Voltage profiles of N-doped CNTs/Si@C electrode under various current 

densities. 

Figure S13. Rate capability of N-doped CNTs/Si@C electrode.  

Figure S14. (a) The cycling performance of NCA half cell at 1 C rate (1 C=170 mA 

g-1) and (b) corresponding charge-discharge profiles. 
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Figure S1. The morphological evolution of N-doped CNTs/Si@C. 
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Figure S2. (a) TEM image and (b-d) corresponding elemental mappings of Si@ZnO. 
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Figure S3. (a) SEM and (b) TEM images of Si@ZIF-67. 
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Figure S4. (a) SEM and (b) TEM images of Si@ZIF-67@PDA. 
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Figure S5. Nitrogen adsorption-desorption isotherm and pore size distribution (inset) 

of (a) Si@ZIF-67 and (b) Si@ZIF-67@PDA. 

  

S.No Sample Name Surface Area (m2 

g-1) 

Pore Size (nm) 

1.  Si@ZIF-67 898  1 -3 

2.  Si@ZIF-67@PDA 821 3 - 10 

3.  N-doped CNTs/Si@C 234 20 - 30 
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Figure S6. XRD patterns of Si@ZIF-67 and Si@ZIF-67@PDA.  

In Figure S6, all diffraction peaks of Si@ZIF-67 match well with both Si phase 

(JPCDS No. 27-1402) and ZIF-67 phase. There is no obvious change in the XRD 

pattern of Si@ZIF-67@PDA sample, indicating that the introduction of PDA does not 

change the crystal structure of the components in Si@ZIF-67 materials. 
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Figure S7. (a-c) High-resolution XPS spectra of Si 2p, C 1s and Co 2p of N-doped 

CNTs/Si@C. 

The Si2p peaks observed around at 103.5 eV and 99.6 eV are assigned to the 

presence of SiOx on the Si surface and unoxidized Si atoms, while a weak peak at 

101.8 eV belongs to Si-C are observed.1 100.3 eV is attributable to SiOx.
2 

The high-resolution C1s spectrum consists of four peaks centered at 284.7, 286.8, 

288.7, and 289.2 eV, corresponding to C-C/C=C,C-OH, C=O/C-N, and -COOH, 

respectively.3  

In the high resolution spectrum of Co, the peaks at about 793 eV and 795 eV 

correspond to Co 2p1/2, and the peaks at about 778.2 eV 780eV, and 795 eV 

correspond to Co 2p3/2.
4  
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Figure S8. Capacitive contributions to charge storage of N-doped CNTs/Si@C at a 

scan rate of (a) 0.3 mV s -1, (b) 0.5 mV s -1, (c) 0.8 mV s -1, and (d) 1 mV s -1.
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Figure S9. Voltage profiles of the N-doped CNTs/Si@C electrode for different cycles 

at a current densities of 500 mA g-1. 
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Figure S10. Voltage profiles of the N-doped CNTs/Si@C electrode for different 

cycles at a current densities of 1000 mA g-1. 
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Figure S11. Voltage profiles of the N-doped CNTs/Si@C electrode for different 

cycles at a current densities of 2000 mA g-1.  
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Figure S12. Voltage profiles of N-doped CNTs/Si@C electrode under various current 

densities.
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Figure S13. Rate capability of N-doped CNTs/Si@C electrode. 

As shown in and Figure S13, the N-doped CNTs/Si@C electrode also shows 

an excellent rate capability showed a higher areal capacity of about 4.17 mAh cm-2, 

3.52 mAh cm-2, 3.21 mAh cm-2, 2.92 mAh cm-2, 2.48 mAh cm-2, and 1.88 mAh 

cm-2 at 0.1 A g-1, 0.2 A g-1, 0.3 A g-1, 0.5 A g-1, 1 A g-1, and 2 A g-1, respectively.
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Figure S14. (a) The cycling performance of NCA half cell at 1 C rate (1 C=170 mA 

g-1) and (b) corresponding charge-discharge profiles. 
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