Bioisosteric discovery of NPA101.3, a second generation pan-RET/VEGFR2 inhibitor, optimized for single-agent polypharmacology

Supporting Information

Marialuisa Moccia, Brendan Frett et al.

Supplementary Methods

RET DFG-out Homology Model Development. A VEGFR2 DFG-out crystal structure (PDB# 2OH4) and the amino acid sequence of RET (PDB# 2IVU) were obtained. Using SWISS-MODEL Automatic Modelling Mode (swissmodel.expasy.org), the RET sequence was employed to build a RET DFG-out homology model using the VEGFR2 DFG-out structure as a template. The resulting RET DFG-out homology model was used to complete molecular modeling studies. The RET DFG-out homology model is available in the Supplemental Information.

Molecular modelling. Using AutoDock Tools, all hydrogens were added as 'Polar Only' and a grid box for the ATP binding site was created (center x = -25.881, center y = 9.55, center z = -10.927 / size x = 16, size y = 44, size z = 18) in the RET DFG-out homology model. Compounds to be computationally modelled were assigned appropriate rotatable bonds using AutoDock Tools. AutoDock Vina was employed to computationally model the compounds. AutoDock Vina reports receptor affinity in terms of ΔG of the receptor/ligand complex. The modelling results were visualized and analysed with Discovery Studio 3.5.

Kinome scan. NPA101.3 (100 nM) was subjected to a kinome scan against a 96 kinases panel representing major kinome clusters. The screening (KINOMEscan) was outsourced to DiscoverX (Fremont, CA, United States)

Synthesis of ethyl 2-(4-((4-bromo-2-nitrophenyl)amino)phenyl)acetate (1a). Ethyl 4-aminophenyl acetate (3.67 g, 20.45 mmol) was added to a 20 mL microwave vial along with 4-bromo-1-fluoro-2-nitrobenzene (3.00 g, 13.64 mmol) and DMA (10 mL). The reaction was sealed and placed under microwave irradiation for 30 minutes at 160 °C. The crude reaction was added to water and extracted with EtOAc. The organic extract was washed with brine 1X, acidified water (pH ~4) 2X, and brine 2X. The organic layer was collected, dried with MgSO₄, and adsorbed on silica. The reaction was purified using flash chromatography with hexanes/EtOAc to afford **1a** as blood-red oil that eventually solidified (4.2 g, 81%). ¹H NMR (400 MHz, Chloroform-*d*) δ 9.41 (s, 1H), 8.34 (d, J = 2.4 Hz, 1H), 7.41 (ddd, J = 9.2, 2.4, 0.6 Hz, 1H), 7.34 (d, J = 8.3 Hz, 2H), 7.21 (d, J = 8.3 Hz, 2H), 7.10 (d, J = 9.2 Hz, 1H), 4.18 (q, J = 7.2 Hz, 2H), 3.63 (s, 2H), 1.28 (t, J = 7.2 Hz, 3H). ESIMS *m*/z [M+H]⁺ 379.

Synthesis of ethyl 2-(4-((2-amino-4-bromophenyl)amino)phenyl)acetate (1b). Compound **1a** (2.03 g, 5.35 mmol) was placed into a 250 mL round bottom flask. EtOH (80 mL) and zinc (2.450 g, 37.5 mmol) were added to the flask and the reaction was placed in an ice bath. Acetic acid (2.145 mL, 37.5 mmol) diluted with EtOH (40 mL) was added dropwise to the reaction over the course of 1 hour. After the addition, the reaction was stirred at 0 °C for 5 hours. The reaction was filtered and EtOH was evaporated. The reaction was slowly basified with aqueous NaHCO₃ and extracted with diethyl ether. The reaction was washed 3X with aqueous NaHCO₃ and the organic layer was collected, dried with MgSO₄, and evaporated to yield **1b** as a slight purple solid (1.834 g, 98%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.12 (d, *J* = 8.5 Hz, 2H), 6.95 (d, *J* = 8.3 Hz, 1H), 6.92 (d, *J* = 2.2 Hz, 1H), 6.83 (dd, *J* = 8.3, 2.2 Hz, 1H), 6.67 (d, *J* = 8.5 Hz, 2H), 5.07 (s, 1H), 4.14 (q, *J* = 7.1 Hz, 2H), 3.82 (s, 2H), 3.51 (s, 2H), 1.25 (t, *J* = 7.1 Hz, 3H). ESIMS *m*/*z* [M+H]⁺ 349.

Synthesis of ethyl 2-(4-(5-bromo-1H-benzo[d]imidazol-1-yl)phenyl)acetate (1). Compound 1b (2.01 g, 5.76 mmol) was added to a 150 mL round bottom flask followed by TMOF (50 mL) and a stir bar. After, pTSA (59.6 mg, 0.314 mmol) was added and the reaction was stirred at room temperature for about an hour or until complete conversion based on TLC. After complete consumption of the starting material, the reaction was extracted with EtOAc and washed with NaHCO₃ 3X and brine 3X. The organic layer was collected, dried with MgSO₄, and condensed to yield 1 as a brown solid (2.04 g, 99%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.08 (s, 1H), 8.02 (dd, J = 1.7, 0.6 Hz, 1H), 7.51 (d, J = 8.7 Hz, 2H), 7.47 – 7.42 (m, 3H), 7.39 (dd, J = 8.7, 0.6 Hz, 1H), 4.21 (q, J = 7.1 Hz, 2H), 3.72 (s, 2H), 1.30 (t, J = 7.1 Hz, 3H). ESIMS *m*/z [M+H]⁺ 359.

Synthesis of N-(5-(tert-butyl)isoxazol-3-yl)-2-(4-(5-(4-(methylsulfonyl)phenyl)-1Hbenzo[d]imidazol-1-yl)phenyl)acetamide (NPA-101.3). Compound 1 (150 mg, 0.418 mmol) was placed into a 20 mL microwave vial along with 4:1 DMF/Water (5 mL). (4-(methylsulfonyl)phenyl)boronic acid (109 mg, 0.543 mmol) was added to the vial along with Na₂CO₃ (175 mg, 1.670 mmol). The reaction vessel was degassed with N₂ for 10 minutes, followed by the addition of Pd(dppf)Cl₂ (1.169 mg, 0.004 mmol). The reaction vessel was sealed under N2 and microwaved at 130 °C for 20 minutes. After, upon solvent evaporation, the crude product was dissolved in DCM and washed with NaHCO₃ 3X and brine 3X. The organic layer was collected, dried with MgSO₄, and condensed to yield crude product (120 mg). The crude product was dissolved in 1:1 THF/Water (4 mL). LiOH (26.5 mg, 1.105 mmol) was added to the reaction and the reaction was heated under microwave irradiation for 10 minutes at 100 °C. The reaction was subsequently acidified to a pH of ~3-4 and extracted 5X with 4:1 chloroform/IPA. The organic layer was dried with MgSO4 and condensed to yield the acid (90.7 mg). The acid was added to a 5 mL vial. Anhydrous DMF (3 mL) was added to the vial, followed by EDC (52.5 mg, 0.338 mmol) and DMAP (8.10 mg, 0.0.066 mmol). 5-(tert-butyl)isoxazol-3-amine (40.4 mg, 0.288 mmol) was added and the reaction was sealed under N2 and was stirred at room temperature for 12 hours. The reaction was quenched with water, extracted with 4:1 chloroform/IPA, and washed with saturated NaHCO₃ 5X. The organic layer was collected, dried with $MgSO_4$, adsorbed onto silica, and purified by flash chromatography using a DCM/MeOH to generate NPA-101.3 (2) (39.7 mg, 18.0%). ¹H NMR (400 MHz, DMSO-d₆) δ 11.29 (s, 1H), 8.63 (s, 1H), 8.17 (s, 1H), 8.08 – 7.91 (m, 5H), 7.72 (s, 2H), 7.67 (d, J = 8.5 Hz, 2H),

7.56 (d, J = 8.5 Hz, 2H), 3.78 (s, 2H), 3.25 (s, 3H), 1.26 (s, 9H). ¹³C NMR (101 MHz, DMSO- d_6) δ 144.97, 128.15, 128.08, 124.04, 123.40, 119.09, 111.86, 93.54, 44.06, 32.95, 28.76, 128.25, 180.96, 169.61, 158.35, 146.00, 131.28, 145.07, 139.49, 135.56, 134.89, 133.84, 133.60. ESIMS m/z [M+H]⁺529. LC-MS Purity, >95%.

Patch-Clamp assay. The patch-clamp assay has been outsourced to Aptuit (Verona, Italy). Briefly, HEK293 cells expressing an inducible hERG were kept in cryogenic storage. After thawing, cells were maintained in culture using minimum essential medium supplemented with 10% foetal bovine serum, 1% non-essential amino acids, 1% sodium pyruvate, 2mM L-glutamine, 1% pen-strep, 15µg/ml blasticidin and 100 µg/ml hygromycin. hERG channel expression induction was obtained by adding 10 µg/ml tetracycline 48 h before the experiment. For the assay, cells were washed with extracellular solution, treated with vehicle followed by 0.1-1-10 µM concentration of NPA101.3, by positive control E-4031 or vehicle, and finally washed with extracellular solution. Current amplitude was measured and IC50 was calculated.

LCMS plasma analysis. NPA101.3 (10 mg/kg) was orally dosed to mice. Blood plasma samples were collected at 1h and 4h after administration and analyzed by liquid chromatography–mass spectrometry (LC-MS) (Thermo Surveyor LCMS System with Thermo Finnigan LCQ Deca) equipped with a Phenomenex Kinetex XB-C18 column (50 x 2.10 mm, 5 μ m). A 5-minute gradient elution method using water and methanol (0.1% of formic acid was added in both solvents) was applied. The ratio of methanol increased from 30% to 100% in 4 minutes and returned to 30% for column equilibration.

Toxicity. NPA101.3 (10 mg/kg) was orally dosed to 4 mice for 7 days; mice (n.4) treated with vehicle alone were used as controls. Plasma was subjected to biochemical analysis. Alkaline Phosphatase, Glucose, Alanine Transaminase, Total Proteins, Albumin, Globulins, Calcium, Blood Urea Nitrogen (BUN) and Phosphorus were measured by using automated biochemical analyzer Biotecnica Instrument BT1500 including proper calibration and QC. In particular, the following methods were used: IFCC for Alkaline Phosphatase and Alanine Transaminase, GOD-POD for Glucose, Buriet for Total Proteins, Bromocresol Green for Albumin, Arsenazo III for Calcium, UV for Urea/BUN and Phosphorus. Globulin was: Total proteins minus Albumin. The analysis was outsourced to Biogem Scarl, Ariano Irpino (AV), Italy.

Supplementary Tables

$\frac{Supplementary Table S1: \Delta G values of NPA101.3 in the RET DFG-out Homology}{Model with various (Valine 804) Gatekeeper Mutations}$

Protein	NPA101.3
RET Wild Type	-11.9 kcal/mol
RET V804M	-9.9 kcal/mol
RET V804L	-10.5 kcal/mol

Supplementary Table S2: NPA101.3 KinomeScan Panel screen. NPA101.3 was screened at a single concentration of 100 nM. Hits values lower than 10% of control were considered strongly positive.

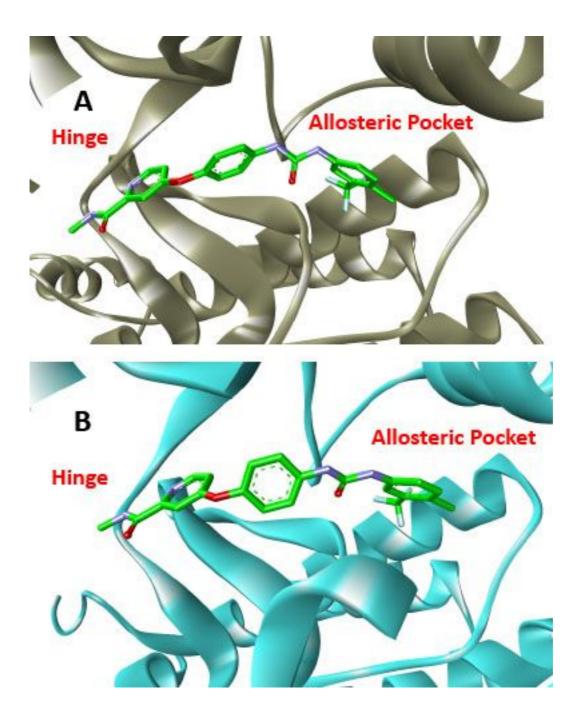
DiscoveRx Gene	Entrez Gene	Percent	Compound
Symbol	Symbol	Control	Concentration
5	5		(nM)
ACVR1	ACVR1	92	100
AKT1	AKT1	100	100
ALK	ALK	93	100
ASK1	MAP3K5	95	100
AURKA	AURKA	100	100
AURKB	AURKB	49	100
AXL	AXL	62	100
BMX	BMX	94	100
BRAF	BRAF	98	100
BRSK2	BRSK2	100	100
BTK	BTK	93	100
BUB1	BUB1	100	100
CAMK1	CAMK1	95	100
САМК2А	CAMK2A	98	100
CDK5	CDK5	97	100
CDK7	CDK7	28	100
CDK9	CDK9	100	100
CHEK2	CHEK2	79	100
CLK1	CLK1	82	100
CSF1R	CSF1R	0.05	100
CSNK1A1	CSNK1A1	69	100
СТК	MATK	56	100
DLK	MAP3K12	100	100
DMPK	DMPK	99	100
DRAK1	STK17A	75	100
DYRK1A	DYRK1A	95	100
EGFR	EGFR	96	100
EIF2AK1	EIF2AK1	99	100
EPHA1	EPHA1	39	100
ERK1	МАРК3	100	100
FAK	PTK2	86	100
FER	FER	96	100
FGFR3	FGFR3	100	100
FRK	FRK	1.1	100
FYN	FYN	27	100
GAK	GAK	42	100
GSK3B	GSK3B	100	100
НСК	НСК	6.5	100
HIPK2	HIPK2	98	100
IGF1R	IGF1R	100	100
IKK-beta	IKBKB	100	100
INSR	INSR	100	100

IRAK4	IRAK4	100	100
ITK	ITK	72	100
JAK1(JH2domain-	JAK1	93	100
pseudokinase)	<i>y</i>		
JAK2(JH1domain-	JAK2	100	100
catalytic)) <u> </u>	100	100
JNK2	МАРК9	78	100
LIMK2	LIMK2	94	100
LKB1	STK11	81	100
LRRK2	LRRK2	100	100
LTK	LTK	61	100
LYN	LYN	2.8	100
MAP4K3	MAP4K3	95	100
MEK1	MAP2K1	92	100
MELK	MELK	83	100
MET	MET	79	100
MKNK2	MKNK2	0.15	100
MLK2	MAP3K10	100	100
MLK3	MAP3K11	100	100
MTOR	MTOR	97	100
MUSK	MUSK	23	100
MYLK4	MYLK4	89	100
МҮОЗА	МҮОЗА	77	100
NDR1	STK38	86	100
NEK2	NEK2	100	100
PAK1	PAK1	100	100
PCTK1	CDK16	89	100
PDPK1	PDPK1	96	100
PIK3C2B	PIK3C2B	100	100
PIK3CA	PIK3CA	100	100
PIM1	PIM1	94	100
PIM2	PIM2	94	100
PKAC-beta	PRKACB	82	100
PLK1	PLK1	99	100
PLK4	PLK4	100	100
PRKD2	PRKD2	100	100
РҮК2	PTK2B	95	100
RIPK4	RIPK4	100	100
ROCK2	ROCK2	100	100
RPS6KA4(Kin.Dom.2-	RPS6KA4	100	100
C-terminal)			
S6K1	RPS6KB1	100	100
SLK	SLK	35	100
STK33	STK33	83	100
SYK	SYK	100	100
TAK1	MAP3K7	13	100
TIE2	ТЕК	30	100
TLK1	TLK1	100	100
TRKA	NTRK1	1.3	100
TRKC	NTRK3	0.25	100

TSSK1B	TSSK1B	96	100
TTK	TTK	66	100
TXK	ТХК	85	100
ULK1	ULK1	100	100
ULK2	ULK2	100	100
WNK1	WNK1	93	100
YANK2	STK32B	98	100

Supplementary Table S3: NPA101.3 inhibition of hERG.

NPA101.3 was tested in a patch-clamp assay to evaluate percentage of hERG inhibition at 0.1, 1 and 10 μ M with respect to vehicle. IC₅₀ dose is reported

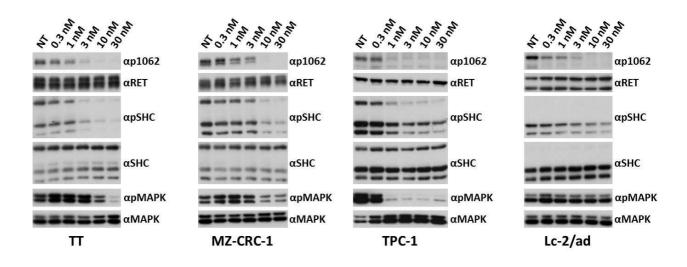

	% Mean Inhibition			IC ₅₀ (μM)
NPA101.3	0.1 µM	1 µM	10 µM	7.57
	0.41	14.55	55.94	1.57
E-4031	0.003 µM	0.03 µM	0.3 µM	0.027
	2.35	53.90	93.36	0.027

Supplementary Table	S4: NPA101.3 growth inhibitor	v effect on human cells.
---------------------	-------------------------------	--------------------------


Cell line	Origin*	Oncogene mutation	IC ₅₀ nM (95% CI)
TT	MTC	RET C634W	2.19 (1.79-2.68)
MZ-CRC-1	MTC	RET M918T	2.21(1.19-4.1)
TPC-1	PTC	CCDC6-RET	0.67 (0.03-132)
Nthy-ori-3-1	thyroid	SV40 LT	> 100
BCPAP	PTC	BRAF V600E	> 100
8505-C	ATC	BRAF V600E	> 100
Lc-2/ad	LADC	CCDC6-RET	3.6 (0.9-13.9)
CALU-1	LADC	KRAS G12C	> 100
A549	LADC	KRAS G12S	> 100
PC-9	LADC	HER1 delLREA(747-750)	> 100

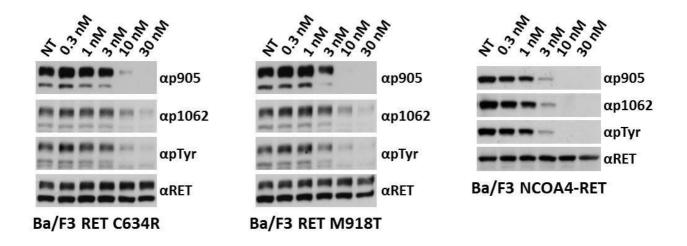
*MTC (medullary thyoroid carcinoma); PTC (papillary thyroid carcinoma); ATC (anaplastic thyroid carcinoma); LADC (lung adenocarcinoma)

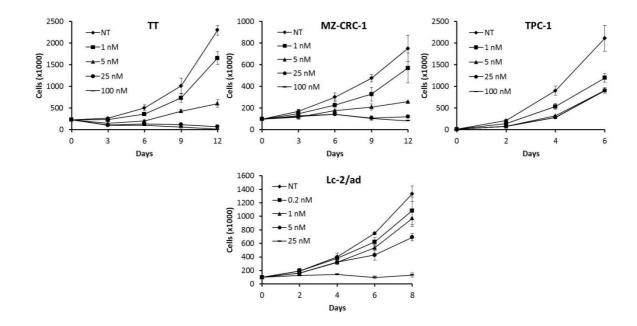
Supplementary Figures

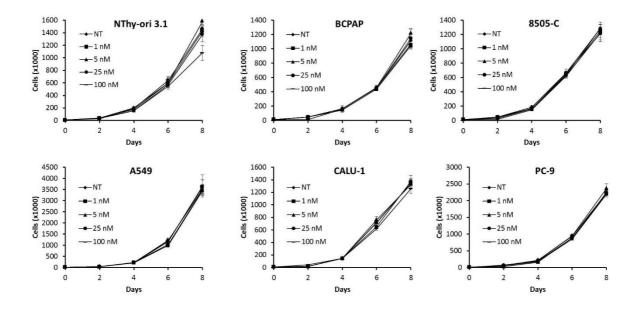

Supplementary Figure S1: Docking pose of sorafenib in the RET DFG-out model compared to X-Ray crystal structure of Sorafenib in VEGFR2 (PDB #3WZE) — Sorafenib binds to the RET DFG-out homology model (A) in a very similar pose to that of the VEGFR2 structure (B). The pose is also similar to NPA101.3 (Fig. 2), which further suggests NPA101.3 as a Type-II RET inhibitor.

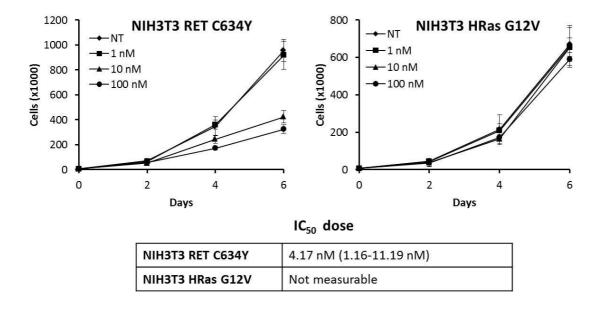

Supplementary Figure S2: NPA101.3 binding selectivity—NPA101.3 was screened against a panel of 96 kinases at a concentration of 100 nM. RET and VEGFR2 were not included in the screen because NPA101.3 inhibition of both was previously determined.

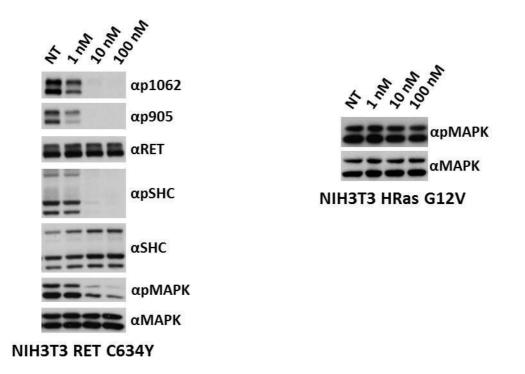
Kinase	NPA 101.3 IC ₅₀ (nM)
CSF1R	46
TRKA	32
RET	1

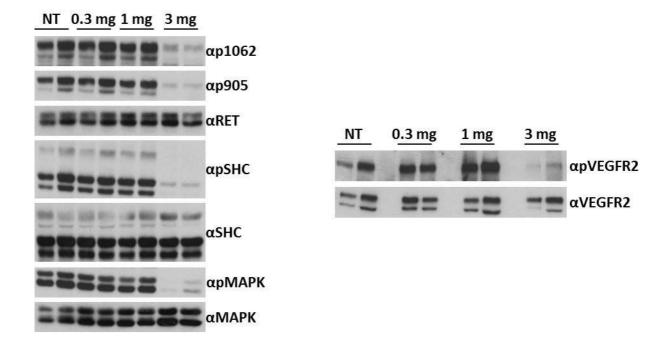

Supplementary Figure S3: RET, TRKA and CSF1R kinase inhibition by NPA101.3

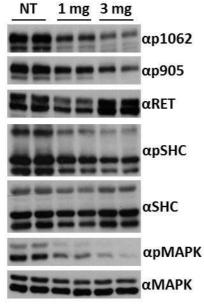

Supplementary Figure S4: NPA101.3-mediated inhibition of phosphorylation and signalling of oncogenic RET proteins endogenously expressed in human cancer cells — Serum-starved RET mutant human cancer cell lines were treated for 2 hours with the indicated concentrations of the drug. Total cell lysates (50 μ g) were subjected to immunoblotting with α p1062 RET, anti-phospho-MAPK (α pMAPK) and anti-phospho-SHC (α pSHC) antibodies. The blots were normalized using anti-RET (α RET), anti-MAPK (α MAPK) and anti-SHC (α SHC).


Supplementary Figure S5: Effects of NPA101.3 on RAS/MAPK signalling pathway in RET-negative human cancer cells — The indicated cell lines were serum-starved and treated for 2 hours with indicated concentrations of the drug. Total cell lysates (50 µg) were subjected to immunoblotting with indicated antibodies.

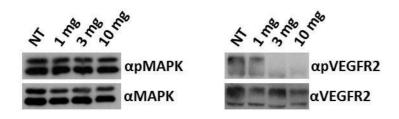

Supplementary Figure S6: NPA101.3-mediated inhibition of phosphorylation of oncogenic RET proteins expressed in Ba/F3 cells — The indicated Ba/F3 transfectants were serum starved and treated for 2 hours with the indicated concentrations of the drug. Total cell lysates (50 μ g) were subjected to immunoblotting with indicated antibodies.


Supplementary Figure S7: NPA101.3-mediated inhibition of proliferation of RET mutant thyroid and lung cancer cells — The indicated cell lines were incubated with vehicle (NT: not treated) or the indicated concentrations of the compound and counted at the indicated time points. Data are the mean ± SD of a single experiment performed in triplicate.


Supplementary Figure S8: Effects of NPA101.3 on proliferation of RET-negative cancer cells — The indicated cell lines were incubated with vehicle (NT: not treated) or the indicated concentrations of the compound and counted at the indicated time points. Data are the mean ± SD of a single experiment performed in triplicate.

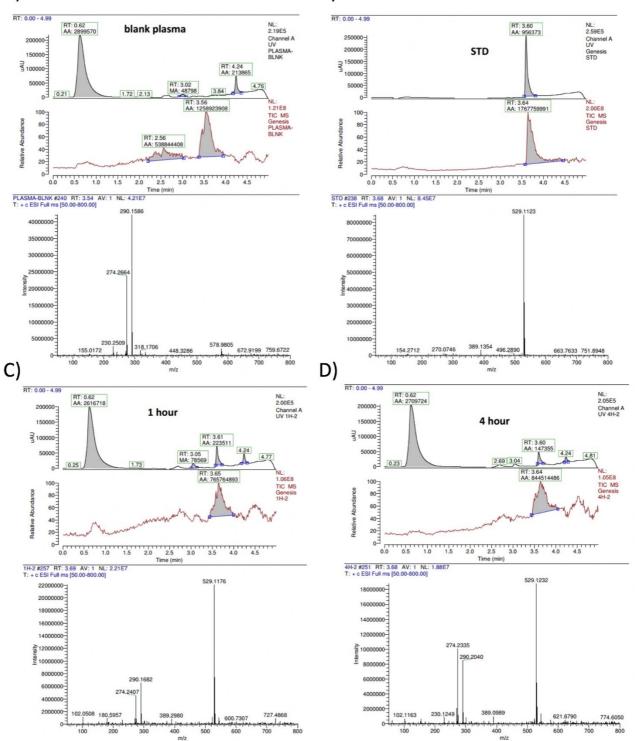

Supplementary Figure S9: NPA101.3-mediated inhibition of proliferation of RETtransformed NIH3T3 cells — Serum-starved NIH3T3 cells exogenously expressing the RET/C634Y or HRAS/G12V oncogenes were incubated with vehicle (NT: not treated) or the indicated concentrations of the compound and counted at the indicated time points. Data are the mean \pm SD of a single experiment performed in triplicate. Growth inhibition IC₅₀ doses of the compound are reported. 95% CI are indicated in brackets.

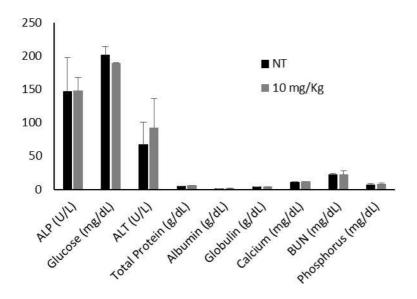
Supplementary Figure S10: NPA101.3-mediated inhibition of phosphorylation and signalling of oncogenic RET proteins expressed in NIH3T3 cells — Serum-starved RET/C634Y or HRAS/G12V-transformed NIH3T3 cells were treated for 2 hours with the indicated concentrations of the drug. Total cell lysates (50 µg) were subjected to immunoblotting with with indicated antibodies.



Supplementary Figure S11: *In vivo* target inhibition of NPA101.3 in nude mice implanted with cells transformed by RET/C634Y — NIH3T3 RET/C634Y cells (2 x 10^5) were inoculated subcutaneously into the right and left dorsal portions of nude mice. When tumours reached approximately ~200 mm³, mice (2 mice/dose) were treated by oral gavage with 3 doses (0, 24, 48 h) of the compound (0.3, 1 and 3 mg/Kg) or left untreated (NT); proteins were harvested 3 h after the last dose. Left) Total lysates (50 µg) from 2 representative NIH3T3 RET/C634Y tumours for each dose were immunoblotted with indicated antibodies. Right) Total lysates (1 mg) from 2 representative NIH3T3 RET/C634Y tumours for each dose were subjected to VEGFR2 immunoprecipitation followed by Western blotting with anti-phospho-VEGFR2 antibody (α pVEGFR2). The blots were normalized using anti-VEGFR2 (α VEGFR2).

NIH3T3 RET C634Y tumours


Supplementary Figure S12: Effects of NPA101.3 on cellular phosphorylation events in nude mice implanted with NIH3T3 cells transformed by RET/C634Y — Three hours after the last dose, 2 representative tumours for each dose from the experiment reported in Figure 6 were harvested from mice treated with indicated doses of NPA101.3 or left untreated (NT). Proteins were extracted and total protein lysates (50 µg) were immunoblotted with indicated antibodies.


NIH3T3 HRas G12V tumours

Supplementary Figure S13: Effects of NPA101.3 on cellular phosphorylation events in nude mice implanted with NIH3T3 cells transformed by HRAS/G12V —Three hours after the last dose, one representative tumour for each indicated dose from the experiment reported in Figure 6 was harvested and proteins were extracted. Left) total protein lysates (50 µg) were immunoblotted with indicated antibodies. Right) protein extracts (1 mg) were subjected to VEGFR2 immunoprecipitation followed by Western blotting with anti-phospho-VEGFR2 antibody (αpVEGFR2). The blots were normalized using αVEGFR2.

Supplementary Figure S14: *In vivo* metabolism study. NPA101.3 was orally dosed (10 mg/kg) to mice (one animal for each point). Blood plasma samples were collected at 1 h and 4 h after dosing; blood from one untreated mouse (blank) and NPA101.3 solution (STD: standard) were used as controls. NPA101.3 drug peak was detected at 3.61 min (m/z = 529) at either time point. No trace of the de-methyl metabolite at m/z = 515 was observed. The m/z 279 and 290 were not specific peaks identified also in the blank plasma sample.

Supplementary Figure S15: **Biochemical analysis.** Plasma concentration of Alkaline Phosphatase (ALP), Glucose (GLU), Alanine Transaminase (AST), Total Protein (T.Prot.), Albumin (ALB), Globulins (Glo), Calcium (Cal), Blood Urea Nitrogen (BUN) and Phosphorus (PHO) were measured upon treating animals with NPA101.3 (10 mg/kg/day) for 7 days or vehicle as indicated (4 animals for each group).