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Table S1. Oligonucleotides sequences used in this work

Name Sequences: 5'-3'

DNATI: SH-ATTCGCTACGAAT

DNA-Ag NCs ACCCGAACCTGGGCTACCACCCTTAATCCCCATCGTAGCG

Ag NC-MBs ACCCGAACCTGGGCTACCACCCTTAATCCCCTT

AGTTACATTCTCCCAGTTGATTAAAGGTGGTAGC-SH

Target AATCAACTGGGAGAATGTAACT
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Figure S1. UV absorption spectrum of AusAgs NCs dissolved in dichloromethane
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Figure S2. Fluorescence Spectrum of AusAgs NCs dissolved in dichloromethane
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Figure S3. The decay curves of AusAgs NCs on a quartz substrate
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Figure S4. Excitation and emission spectra of DNA-Ag NCs
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Figure S5. TEM images of DNA-Ag NCs
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Figure S6. Fluorescence signal of the proposed sensing platform under different experimental conditions. Error bars

indicate one standard deviation which propagated errors from three independent experiments
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3D-FDTD Calculation Details for Ag SHINs Enhancement Mechanism. To simplify the model,
a2 x 2 Ag SHINs array was used to model the silica shell. Geometric parameters were derived from
experimental measurements, thus, the nanogap between Ag SHINs was assumed to be 8 nm.
Perfectly matched layer boundary conditions were adopted for all the calculations, and the
calculation times were set as 1,000 fs to ensure convergence. Frequency-dependent optical constants
for bulk Ag were taken from the literature.! The silica shell and spacer layer were modeled as
dielectrics with an index of refraction of n = 1.4. The normal illumination mode was used where the
electric field amplitude of the p-polarized plane waves was 1.0 V/m.
The calculation parameters and processes of the three-dimensional finite-difference time-domain
(3D-FDTD) were:

A point electric dipole source was used to model the excited molecule that behaves as an
oscillating electric dipole. The enhancement decay rate can be inferred from the following

relationship:

y _ P

Yo Po’

Where vy and P are the decay rate and radiation power in the presence of the SHINs layer
configuration, respectively. Subscript 0 denotes that the molecule is in free space. In our calculations,
two monitor boxes were set to collect data on the total and radiated power of the electric dipole in
the system, and thus finally calculate the radiative (y./yr0) and nonradiative (yn/yn0) decay
enhancement.

Fluorescence enhancement arises mainly from comprehensive contributions of excitation and
emission processes. A localized plasmonic field can generate large excitation enhancement
(IM*=|EL/Eo|?, where EL and E are local and incident electric field, respectively) and radiative decay
rates. The emission enhancement embodies the change in the quantum yield of molecules in the
nanogap exposed to the SHINs layer configuration. To simulate the incoherent emission process of
molecules, only one-point electric dipole was used in each simulation step, while the location of the
dipole was varied on a discrete 70x70 grid. The quantum yield (QY) can be defined as:

_ YT/YT,O
Qy=—Ylto
Yr/Yro+Vnr/Yaro

Therefore, we can define the fluorescence (EF) as:
EF = |M|?%Q .
Further calculation details for this method can be found in these papers.?*
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