# SUPPORTING INFORMATION

| 1 |  |
|---|--|
| т |  |

## Singlet Oxygen Photogeneration in Coastal Seawater: Prospect of Large-Scale 2 Modelling in Seawater Surface and its Environmental Significance. 3 Michael O. Sunday<sup>a,b</sup>, Kazuhiko Takeda<sup>a</sup>, Hiroshi Sakugawa<sup>a\*</sup> 4 <sup>a</sup>Graduate School of Biosphere Science, Hiroshima University, 1-7-1, Kagamiyama, Higashi-5 Hiroshima, 739-8521 Japan. 6 7 <sup>b</sup>Department of Chemistry, Federal University of Technology, Akure, P.M.B 704, Ondo State, *Nigeria. E-mail: omsunday@futa.edu.ng* 8 9 \**Corresponding* Author 10 Hiroshi Sakugawa Graduate School of Biosphere Science, Hiroshima University, 1-7-1, Kagamiyama, Higashi-11 Hiroshima, 739-8521 Japan. Tel: +81-82424-6504; E-mail: hsakuga@hiroshima-u.ac.jp 12 13 Total number of pages: 30 14 **Total number of figures: 7** 15 16 **Total number of tables: 4**

## 17 CONTENTS

#### **18 S1: CDOM absorption characteristics**

#### **19 Absorption coefficient** (a<sub>300</sub>)

The absorbance due to CDOM in the samples was monitored using an UV-visible spectrophotometer (UV-2400, Shimadzu, Japan). Samples were placed in a 5 cm pathlength (1) quartz cuvette and absorbance readings at 300 nm ( $A_{300}$ ) were obtained. Prior to sample measurement, MilliQ water was used to obtain baseline values and was intermittently analyzed during sample measurements to check for consistency and correction where necessary. The  $A_{300}$ was then converted to the Napierian absorption coefficient ( $a_{300}$ , m<sup>-1</sup>) according to equation (S1.1).<sup>1</sup>

27 
$$a_{300} = \frac{2.303A_{300}}{l} \quad (S1.1)$$

#### 28 Spectra slope

The slope of the CDOM absorption spectra, which is known as the spectra slope (S), was determined by fitting the absorption coefficient values  $(a_{\lambda})$  from 300–550 nm to the exponential function in equation S1.2 using a non-linear least square regression routine.<sup>1,2</sup>

32 
$$a_{\lambda} = (a_{\lambda 0} - K)e^{-S(\lambda - \lambda 0)} + K \qquad (S1.2)$$

where S is the spectra slope ( $\mu$ m<sup>-1</sup>),  $a_{\lambda}$  is the absorption coefficient at wavelength  $\lambda$ ,  $a_{\lambda 0}$  is the absorption coefficient at reference wavelength  $\lambda_0$  (300 nm) and K is a constant to account for baseline offset.

#### **36 Carbon-specific absorption (a\*300)**

The carbon-specific absorption or specific absorption coefficient  $(a_{300})$  is defined as the absorption coefficient  $(a_{300})$  normalized to DOC concentration (mg C/L) of the sample.<sup>3</sup> The units are m<sup>2</sup> g<sup>-1</sup> C. This variable also provides information regarding variations in CDOM composition as it shows how "chromophoric" the DOC content of a sample is. Additionally, this variable has been shown to have a positive correlation with aromatic content and molecular size of DOC.<sup>4</sup>

#### 42 S2: Photoirradiation experiments

### 43 Laboratory irradiation under a solar simulator

Solutions to be irradiated (7 mL) were contained in an 8.8 mL quartz cell and irradiated under a solar simulator. The device consisted of a lamp housing (WACOM Co., HX-500) equipped with a 500 W Xe lamp (WACOM Co., KXL-500F) and an optical filter (HOYA Co., UV-31) with a transmission wavelength limit of 310 nm. The quartz cell was placed in an air-conditioned compartment of the simulator that maintained the temperature of the sample at 20°C during irradiation. A detailed description of the solar simulator has been reported by Nakatani et al.<sup>5</sup> Aliquots were withdrawn at intervals for HPLC analysis.

#### 51 S3. Analytical determinations

#### 52 S3A. Singlet oxygen

<sup>1</sup>O<sub>2</sub> was determined using FFA as a chemical probe. Samples were spiked with FFA (final concentration; 100  $\mu$ M) and irradiated under a solar simulator or sunlight accordingly. At intervals, aliquots of the reaction mixture were withdrawn and analyzed for FFA and 6-HP-one simultaneously by HPLC. The isocratic HPLC system consisted of a pump (Prominence LC-20AD, Shimadzu,
Kyoto) that delivered *eluent* (0.1% H<sub>3</sub>PO<sub>4</sub>: ACN (90:10)) at a flow rate of 1 mL/min, as well as an
injection valve equipped with a 20 µL sample loop for sample injection. FFA and 6-HP-one were
separated on a C<sub>18</sub> column (Cosmosil, MS-II, 250 mm x 4.6 mm, 5 µm) and detected on a UVVisible detector (Prominence LC-20AD, Shimadzu, Kyoto, Japan) at 219 nm.

61 *Kinetic data treatment* 

Generation of  ${}^{1}O_{2}$  using FFA as a probe was determined by monitoring: (i) FFA degradation (HH method) and (ii) 6-HP-one formation (ZM method) adopting the approach used by Zhou and Mopper.<sup>6</sup>

#### 65 *HH method*

FFA reacts with  ${}^{1}O_{2}$  resulting in a pseudo first order degradation rate constant, k, of FFA. As shown in Fig. S4, the degradation of FFA in this study also followed first order kinetics. Therefore,  $[{}^{1}O_{2}]_{ss}$  was be determined from equation S3.1 by dividing the observed first order degradation rate constant (k) of FFA in the irradiated solution by the reaction rate constant of FFA with  ${}^{1}O_{2}$ ( $k_{FFA,1O2}$ ), which is given as  $1.09 \times 10^{8} \text{ M}^{-1} \text{s}^{-1}$ .<sup>7</sup> The  $k_{FFA,1O2}$  used for each sample was corrected for the effect of salinity on the rate constant as recommended by Appiani et al.<sup>8</sup>

72 
$$[{}^{1}O_{2}]_{ss} = K/k_{FFA,{}^{1}O_{2}}$$
(S3.1)

73 The photoformation rate  $(R^1O_2)$  was calculated using equation S3.2:

74 
$$R^1 O_2 = [{}^1 O_2]_{ss} \times k_d \quad (S3.2)$$

where  $k_d$  is the dissociation rate constant of  ${}^{1}O_2$  in water given as  $2.5 \times 10^5$  s<sup>-1.9</sup> Water is the main scavenger of  ${}^{1}O_2$ ; hence, the scavenging capacity of other potential scavengers in natural waters are negligible.

#### 79 *ZM method*

The photoformation rate of  ${}^{1}O_{2}$  (R ${}^{1}O_{2}$ ) was also investigated using the approach described by Zhou and Mopper<sup>6</sup> by monitoring 6-HP-one formation. It was determined using equation S3.3, where R<sub>6-HP</sub> is the formation rate of 6-HP-one from the reaction of FFA and  ${}^{1}O_{2}$ ; Y<sub>6-HP</sub> is the yield of 6-HP-one defined as the amount of 6-HP-one formed for each mole of FFA that reacts with  ${}^{1}O_{2}$  and F is the fraction of  ${}^{1}O_{2}$  that reacts with FFA. Y<sub>6-HP</sub> was determined using equation S3.4.

85 
$$R_{{}^{1}O_{2}} = \frac{R_{6-HP}}{Y_{6-HP} \ x \ F} \qquad (S3.3)$$

86 
$$Y_{6-HP} = \frac{photoformation\ rate\ of\ 6 - HP - one}{degradation\ rate\ of\ FFA}$$
(S3.4)

The reaction of FFA and  ${}^{1}O_{2}$  in the sample is in competition with the deactivation or quenching of  ${}^{1}O_{2}$  by water as the main quencher of  ${}^{1}O_{2}$ . Therefore, the fraction, F, which is the fraction of  ${}^{1}O_{2}$ that reacts with FFA, compared to physical quenching by H<sub>2</sub>O molecules was obtained using equation S3.5:

91 
$$F = \frac{k_{FFA, 1O_2} [FFA]}{k_d + k_{FFA, 1O_2} [FFA]}$$
(S3.5)

92 The value of F varied slightly between 0.0368-0.0372 due to the salinity correction applied to the 93  $k_{FFA,102}$ .

#### 94 S3B. OH determination

OH photoformed in the seawater sample was measured using benzene as a chemical probe.<sup>10,11</sup>
Briefly, 7 mL samples were spiked with a final concentration of 1.2 mM benzene and irradiated

97 using the solar simulator described above. The same quartz cell used for the  ${}^{1}O_{2}$  irradiation 98 experiment above was also used here. The irradiation lasted for about 40 mins, during which time 99 aliquots were obtained at 10 min intervals for phenol determination using an HPLC.

100 The HPLC system used for this determination consisted of a pump (LC-10A<sub>i</sub>, Shimadzu, Kyoto, 101 Japan) that delivered eluent (acetonitrile:MQ (60:40)) at a flow rate of 1 mL/min. An injection 102 valve equipped with a 50  $\mu$ L sample loop was used to inject samples into the system. Phenol was 103 separated on a C<sub>18</sub> column (Cosmosil, MS-II, 250 mm x 4.6 mm, 5  $\mu$ m) and detected using a 104 fluorescence detector (LC-20AD, Shimadzu, Kyoto, Japan) set at excitation/emission wavelengths 105 of 270/298 nm.

106 The photoformation rate of  $\cdot$ OH (ROH) was determined using equation S3.6:

107 
$$R_{OH} = \frac{R_{phenol}}{Y_{phenol} \ x \ F_{benzene-OH}}$$
(S3.6)

108 where Rphenol is the photoformation rate of phenol in each irradiated sample;  $Y_{phenol}$  is the yield 109 of phenol formed in the reaction between benzene and  $\cdot OH$ , and  $F_{benzene-OH}$  is the fraction of  $\cdot OH$ 110 that reacts with benzene during the irradiation of benzene-spiked samples. A  $Y_{phenol}$  of 0.75 111 reported by Arakaki & Faust<sup>10</sup> and an  $F_{benzene-OH}$  value of 0.68 reported in Seto inland seawater by 112 Takeda et al.<sup>11</sup> were used for all calculations.

113 The generated  $\cdot$ OH will be scavenged by both benzene and the group of all other potential 114 scavengers such as DOM and Br<sup>-</sup>, in seawater. Hence, it is important to determine the scavenging 115 rate constant (SRC) of these scavengers in the seawater sample. The SRC is the sum of the reaction 116 rates (rate constant of scavenger with  $\cdot$ OH (k<sub>s</sub>,OH) x [Scavengers]) given as  $\sum_{i}^{j} (k_{si,OH})[s]$  of all other scavengers present in the seawater sample that compete with benzene for the photoformedOH.

119 The SRC was determined using equation S3.7, which expresses the fraction ( $F_{benzene-OH}$ ) of 'OH 120 that reacts with benzene.

121 
$$F_{benzene-OH} = \frac{k_{benzene-OH} [benzene]}{k_{benzene-OH} [benzene] + \sum_{i}^{j} (k_{si,OH})[s]}$$
(S3.7)

where  $k_{benzene-OH}$  is the reaction rate constant of benzene with OH given as 7.8 x 10<sup>9</sup> M<sup>-1</sup> s<sup>-1</sup>.<sup>12</sup> By substituting equation S3.7 for  $F_{benzene-OH}$  in equation S3.6 and making  $R_{phenol}$  the subject of the formula, the following equation was obtained:

125 
$$\frac{1}{R_{phenol}} = \frac{1}{R_{OH}Y_{OH}} + \frac{\sum_{i}^{j} (k_{si,OH})[s]}{R_{OH}Y_{OH}k_{benzene-OH}} \times \frac{1}{[Benzene]}$$
(S3.8)

126 Therefore, a plot of  $1/R_{phenol}$  against 1/[Benzene] gives a straight-line graph with:

127 Intercept = 
$$\frac{1}{R_{OH}Y_{OH}}$$
; Slope =  $\frac{\sum_{i}^{j}(k_{Si,OH})[S]}{k_{benzene-OH}}$  x Intercept

128 Hence, SRC 
$$(\sum_{i}^{j} (k_{si,OH})[s]) = \frac{Slope \ x \ k_{benzene-OH}}{Intercept}$$
 (S3.9)

To determine SRC experimentally, seawater samples were treated with varying concentrations of benzene (25, 50, 75 and 100  $\mu$ M) and irradiated, after which their corresponding R<sub>phenol</sub> values were obtained. A plot of 1/R<sub>phenol</sub> against 1/[Benzene] gave a straight-line graph as expected from equation S3.8. The slope and intercept obtained in addition to *k*<sub>benzene-OH</sub> were then used in equation S3.9 to obtain the SRC for the sample.

134 The steady state concentration [·OH]ss was determined using equation (S3.10)

135 
$$[\cdot OH]_{ss} = \frac{Photoformation\ rate, R_{OH}}{Scavenging\ rate\ constant}$$
(S3.10)

Having initially obtained ROH, the steady state concentration was obtained after determining theSRC in each sample.

#### 138 **S4.** Other measurements

Nitrite was determined according to the method described by Strickland and Parsons.<sup>13</sup> This procedure is based on the reaction of nitrite with sulfanilamide in an acid solution to form a diazonium compound, which is then coupled to N-(1-Naphthyl)-ethylenediamine dihydrochloride to form a colored azo dye. The absorbance of the azo dye is then read spectrophotometrically at 540 nm. Sample concentrations were determined from a calibration curve obtained using standard solutions of nitrite ion.

Dissolved organic carbon (DOC) was analyzed using a TOC-VCSH analyzer (Shimadzu, Kyoto,
Japan). Potassium hydrogen phthalate was used as the standard to obtain the calibration curve for
DOC measurement.

#### 148 S5. Effect of azide on ${}^{1}O_{2}$ determination

NaN<sub>3</sub> is an effective quencher of  ${}^{1}O_{2}$ ; therefore, irradiation of FFA-spiked samples in the presence of NaN<sub>3</sub> is expected to result in a corresponding decrease in the rate of FFA degradation (R<sub>FFA</sub>) and 6-HP-one formation (R<sub>6-HP</sub>). To investigate this, the S11 seawater sample, which had the highest CDOM abundance, was spiked with FFA and irradiated in the absence and presence of 0.5 mM NaN<sub>3</sub>. The R<sub>FFA</sub> was monitored in both experiments. As shown in Fig. S4, R<sub>FFA</sub> was reduced in the presence of azide compared with its absence. 155 Mathematically, R<sub>FFA</sub> can be expressed as:

156 
$$R_{FFA} = R_{1_{O_2}} x \ Fraction (F) \ (S5.1)$$

157 In the absence of azide, F is obtained from equation S5.2 as shown below.

158 
$$F = \frac{k_{FFA, {}^{1}O_{2}} [FFA]}{k_{d} + k_{FFA, {}^{1}O_{2}} [FFA]}$$
(S5.2)

159 
$$F = \frac{1.09 \ x \ 10^8 \ x \ 1x \ 10^{-4}}{2.76 \ x \ 10^5 \ + \ (1.09 \ x \ 10^8 \ x \ 1x \ 10^{-4})}$$

160 
$$F = 0.038$$

161 However, in the presence of azide, F can be expressed as equation S5.3:

162 
$$F = \frac{k_{FFA, 1O_2} [FFA]}{k_d + k_{FFA, 1O_2} [FFA] + k_{NaN_3, 1O_2} [NaN_3]}$$
(S5.3)

163 
$$F = \frac{1.09 \ x \ 10^8 \ x \ 1x \ 10^{-4}}{2.76 \ x \ 10^5 \ + \ (1.09 \ x \ 10^8 \ x \ 1x \ 10^{-4}) + (7.8 \ x \ 10^8 \ x \ 5 \ x \ 10^{-4})}$$

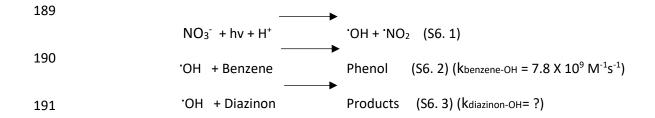
164 
$$F = 0.0163$$

where kNaN<sub>3</sub>,  ${}^{1}O_{2}$  is the reaction rate constant between azide and  ${}^{1}O_{2}$  was given as 7.8 x 10<sup>8</sup> M<sup>-1</sup> s<sup>-1</sup>. 165 F in the presence of azide was 0.0163, which represents a 43% reduction from the value of 0.038 166 obtained in the absence of azide. According to equation S5.1, R<sup>1</sup>O<sub>2</sub> was assumed to be constant in 167 both experiments with and without azide; therefore, R<sub>FFA</sub> is dependent on F. Hence, R<sub>FFA</sub> in the 168 presence of azide was expected to be reduced by 43% based on the % reduction in F. 169 Experimentally, the R<sub>FFA</sub> obtained in the absence of azide was 0.0288 µM/min, while that obtained 170 in the presence of azide was 0.0126  $\mu$ M/min. This represents a 44% reduction in R<sub>FFA</sub> in the 171 presence of azide, which agrees with kinetic estimations of 43%. These findings confirm that the 172

173 degradation of FFA in this study was mediated by  ${}^{1}O_{2}$  photoformed in the irradiated seawater 174 sample.

175 The effects of azide on  $R_{6-HP}$  were also investigated.  $R^1O_2$  determined based on  $R_{6-HP}$  can be 176 expressed as equation X4:

177 
$$R_{1_{O_2}} = \frac{R_{6-HP}}{Y_{6-HP} \ x \ F} \qquad (X4)$$


Assuming  $R^1O_2$  and  $Y_{6-HP}$  are constant in both experiments with and without azide,  $R_{6-HP}$  will be dependent on F and is expected to follow a manner dependent on % reduction in F (43 %). The  $R_{6-HP}$  in the absence of azide was 0.029  $\mu$ M/min, while it was 0.014  $\mu$ M/min in the presence of azide. This represents a 48% reduction in agreement with kinetic estimations based on the % reduction in F. This also shows that formation of 6-HP-one arose from the reaction between FFA and  $^1O_2$ .

#### 183 S6. Reaction rate constants of diazinon with ROS (<sup>1</sup>O<sub>2</sub> and <sup>•</sup>OH)

#### 184

#### • Reaction rate constant of diazinon with OH

The reaction rate constant of diazinon with 'OH was investigated by the competition kinetics method using benzene as a reference compound and 1 mM  $NO_3^-$  as the photochemical source of 'OH generation in MQ.<sup>14</sup> Benzene reacts with 'OH to form phenol, which has a known reaction rate constant of 7.8 x 10<sup>9</sup> M<sup>-1</sup> s<sup>-1</sup>.<sup>12</sup>



When a solution containing  $NO_3^-$  and benzene in MQ is irradiated in the absence of diazinon, all of the generated 'OH reacts with benzene (S6.2) to give phenol product. However, in the presence of diazinon, the generated 'OH reacts with both benzene and diazinon. In this case, the observed phenol product is expected to be lower. This reduction is because of competition of the reaction of diazinon with the generated 'OH.

197 The relationship between phenol produced in the absence and presence of diazinon can be198 expressed according to equation S6.4 below:

199 
$$\frac{R_{phenol}}{R'_{phenol}} = 1 + \frac{k_{diazinon-OH}[diazinon]}{k_{benzene-OH}[benzene]} \quad (S6.4)$$

where  $R_{phenol}$  and  $R'_{phenol}$  are the phenol signals in the absence and presence of diazinon, respectively, and  $k_{benzene-OH}$  and  $k_{diazinon-OH}$  are the reaction rate constants of benzene with 'OH and diazinon with 'OH, respectively.

Based on equation S6.4, a plot of  $R_{phenol}/R'_{phenol}$  against [diazinon]/[benzene] should give a straight line with an intercept of 1 and a slope =  $k_{diazinon-OH}/k_{benzene-OH}$ . Experimentally, the rate of phenol production in the absence of diazinon and its rate in the presence of varying concentrations of diazinon was obtained and plotted against the [diazinon]/[benzene] ratio.

#### 207 Procedure

A stock solution of 30 mg/L (98.6  $\mu$ M) diazinon was prepared by dissolving in MQ. The solubility limit of diazinon in water according to the literature is 40 mg/L. A solution containing 200  $\mu$ M benzene and 1 mM NO<sub>3</sub><sup>-</sup> (as the photochemical source of 'OH generation) was irradiated in the absence of diazinon for 20 min. The phenol signal obtained was taken as R<sub>phenol</sub>. Subsequently, a solution containing the same concentration of benzene and  $NO_3^-$  was irradiated in the presence of varying concentrations of diazinon (5, 10, 30 and 50  $\mu$ M). The phenol signal here was taken as R'<sub>phenol</sub>. The concentrations of benzene and diazinon were selected such that the [diazinon]/[benzene] ratio was  $\leq 1$ . The phenol produced from the irradiated solutions was determined by HPLC. A plot of R<sub>phenol</sub>/R'<sub>phenol</sub> against [diazinon]/[benzene] is shown in Fig. S6.

The HPLC system used in the determination of phenol consisted of a pump (LC-10A<sub>i</sub>, Shimadzu, Kyoto, Japan) that delivered eluent (acetonitrile:MQ (60:40)) at a flow rate of 1 mL/min. An injection valve equipped with a 50  $\mu$ L sample loop was used to inject samples into the system. Phenol was separated on a C<sub>18</sub> column (Cosmosil, MS-II, 250 mm x 4.6 mm, 5  $\mu$ m) and detected using a fluorescence detector (RF-10A<sub>XL</sub>, Shimadzu, Kyoto, Japan) set at excitation/emission wavelengths of 270/298 nm.

223

#### • Reaction rate constant of diazinon with <sup>1</sup>O<sub>2</sub>

The reaction rate constant of  ${}^{1}O_{2}$  with diazinon was determined by monitoring the degradation rate of diazinon as it reacted with excessively high [ ${}^{1}O_{2}$ ] generated using Rose Bengal as a sensitizer.<sup>15,16</sup>

227 
$$RB + hv + O_2 \longrightarrow RB + {}^{1}O_2$$

228 Diazinon + 
$${}^{1}O_{2}$$
  $\longrightarrow$  Products (kdiazinon-  ${}^{1}O_{2}$ )

229 Rate of diazinon degradation ( $R_{deg}$ ) =  $k_{diazinon-1O_2}$  [diazinon][ $^{1}O_2$ ] (S6.5)

where  $k_{diazinon} O_2$  is the reaction rate constant of diazinon with  $O_2$ . At constant  $[O_2]$ ,  $R_{deg}$  was directly proportional to the [diazinon]. Therefore, as [diazinon] increases,  $R_{deg}$  was expected to increase. Moreover, when diazinon reacted with  ${}^{1}O_{2}$ ,  $R_{deg}$  could be expressed as the product of rate of  ${}^{1}O_{2}$ generation ( $R^{1}O_{2}$ ) and fraction (F) of  ${}^{1}O_{2}$  that reacts with diazinon as shown in equation S6.6 below.

$$R_{deg} = R_{1_{O_2}} \times \text{Fraction (F)}$$
(S6.6)

237 
$$F = \frac{k_{diazinon-{}^{1}O_{2}} [diazinon]}{k_{d} + k_{diazinon-{}^{1}O_{2}} [diazinon]}$$
(S6.7)

where  $k_d$  is the dissociation rate constant of  ${}^{1}O_2$  in water = 2.5 x 10<sup>5</sup> s<sup>-1.9</sup>

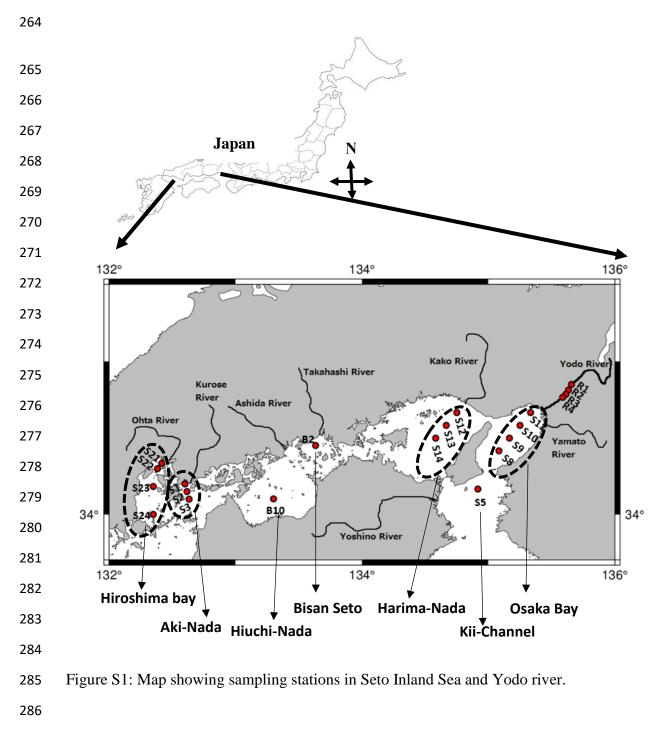
239 
$$R_{deg} = R_{1_{O_2}} x \frac{k_{diazinon-1_{O_2}} [diazinon]}{k_d + k_{diazinon-1_{O_2}} [diazinon]}$$
(S6.8)

At low concentrations of diazinon (μM range), kdiazinon- 'O<sub>2</sub>[diazinon] << kd, giving rise to equation</li>
(S6.9):

242 
$$R_{deg} = R_{1_{O_2}} k_d^{-1} k_{diazinon, 1_{O_2}} [diazinon] (S6.9)$$

Therefore, from equation S6.9, obtaining a plot of  $R_{deg}$  against [diazinon] at constant  ${}^{1}O_{2}$ generation (R<sup>1</sup>O<sub>2</sub>) will give a slope =  $R_{1O_{2}} k_{d}^{-1} k_{diazinon-1O_{2}}$ . Since k<sub>d</sub> is known, R<sup>1</sup>O<sub>2</sub> can be obtained using FFA under the same experimental conditions. A plot of R<sub>deg</sub> against [diazinon] where the slope =  $R_{1O_{2}} k_{d}^{-1} k_{diazinon-1O_{2}}$  is shown in Fig. S7.

247  $R^1O_2$  was determined from the initial degradation rate of FFA ( $R_{FFA}$ ) by equation S6.10:


248 
$$R_{FFA} = R_{1_{O_2}} x \frac{k_{FFA, 1_{O_2}} [FFA]}{k_d + k_{FFA, 1_{O_2}} [FFA]} \quad (S6.10)$$

where  $k_{FFA, 102}$  is the reaction rate constant between FFA and  ${}^{1}O_{2}$  given as  $1.09 \times 10^{8} \text{ M}^{-1} \text{ s}^{-1}$ .

#### 250 *Procedure*

Mixtures of 10 µM Rose Bengal (as a <sup>1</sup>O<sub>2</sub> photosensitizer) and varying concentrations of diazinon 251 252 (5, 10, 25 and 50  $\mu$ M) were irradiated for about 4–6 hours using the solar simulator described above. At intervals, aliquots of reaction mixture were obtained and analyzed for diazinon on HPLC 253 254 to monitor diazinon degradation. The HPLC system used consists of a pump (Prominence LC-255 20AD, Shimadzu, Kyoto) that delivered eluent (ACN:MQ (80:20)) at a flow rate of 1 mL/min, as well as an injection valve equipped with a 100 µL sample loop for sample injection. Diazinon was 256 separated on a C18 column (Cosmosil, MS-II, 250 mm x 4.6 mm, 5 µm) and detected on a UV-257 258 Visible detector (Prominence LC-20AD, Shimadzu, Kyoto, Japan) at 247 nm. Subsequently, the rate of  ${}^{1}O_{2}$  generation (R<sup>1</sup>O<sub>2</sub>) from the irradiation of 10  $\mu$ M RB as 259 photosensitizer was determined using FFA (100 µM) as a probe. The degradation of FFA because 260 of reaction with <sup>1</sup>O<sub>2</sub> was monitored using HPLC. The HPLC system has been described earlier in 261

262 S3A.



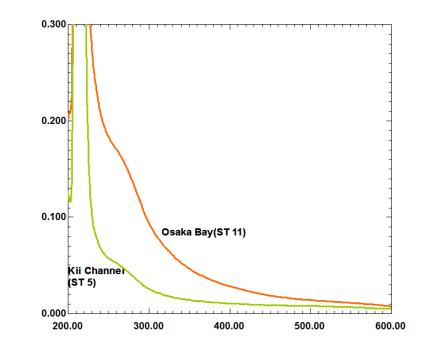
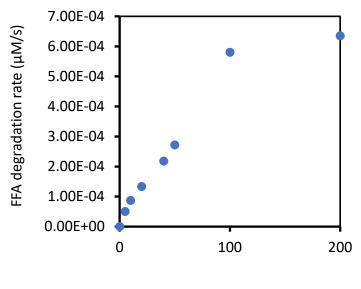
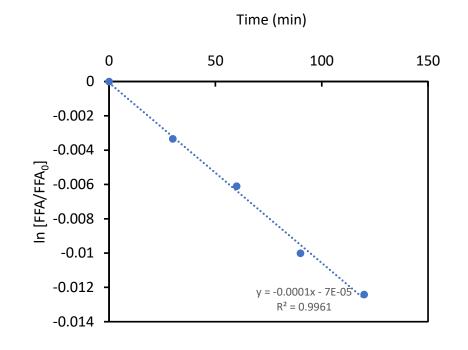




Figure S2: Absorption spectra of Kii Channel and Osaka Bay seawater sample.


294



[FFA] (µM)

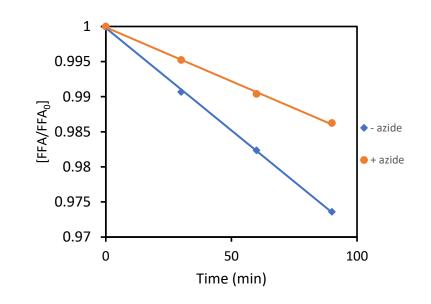
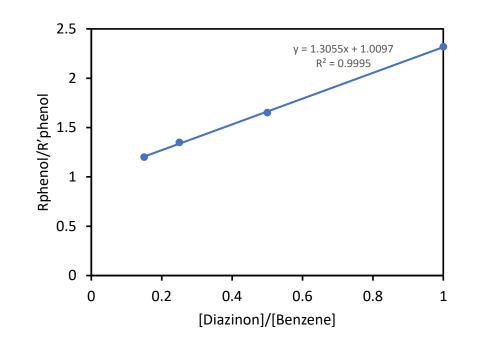
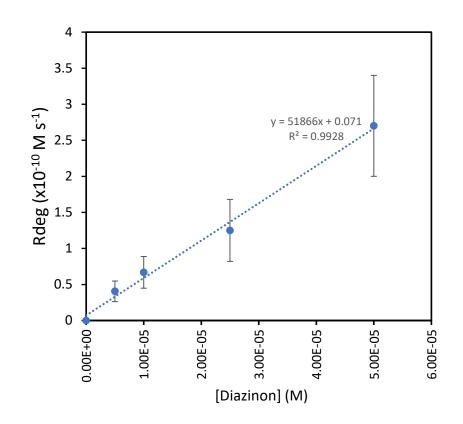

295

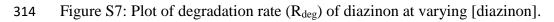
Figure S3: Plot of FFA degradation rate at varying [FFA] upon irradiation in seawater.






301 Figure S4: A typical first order degradation plot of FFA in an irradiated seawater sample





 $305 \qquad \mbox{Figure S5: Effect of NaN_3 on FFA degradation} \\$ 





309 Figure S6: Plot of Rphenol/R'phenol at varying ratios of [diazinon]/[benzene].





313

316 .

| Study Area           | СДОМ                       | *Spectra slope                  | Wavelength  | Method to  | Reference  |
|----------------------|----------------------------|---------------------------------|-------------|------------|------------|
|                      | ( <b>m</b> <sup>·1</sup> ) | ( <b>S</b> , μm <sup>-1</sup> ) | range of S  | Obtain S   |            |
| Seto Inland Sea      | a300 (0.6-3.8)             | 14.8-25                         | 300-550     | NLF        | This study |
| Carribean Sea and    | Sea: a300 (0.93-2.09).     | I. 11-16                        | I. 400-500  | LF         | 17         |
| Orinoco River plume  | River/River impacted: a300 | II. 14-22                       | II. 290-DL  |            |            |
|                      | (2.81-9.03)                | III. 13-20                      | III. 290-DL |            |            |
| Lake Superior        | a300: Open lake (0.9-1.9)  | All samples:                    | 300 - 600   | NLF        | 1          |
|                      | River-impacted (2-9.9)     | 16 - 26                         |             |            |            |
|                      | Riverine (10-150)          |                                 |             |            |            |
| Seto Inland Sea      | a355 (0.14-1.57)           |                                 |             | NLF + B    | This study |
| South Pacific Ocean  | a355 (0.117-0.326)         | Avg. 17.3                       |             | Calculated | 18         |
| Gulf of Mexico: Open |                            |                                 |             |            |            |
| Ocean                |                            |                                 |             |            |            |
| Spring               | a355 (0.19)                | 15                              | 290-DL      | LF         | 19         |
| Fall                 | (0.17)                     | 24                              | 290-DL      |            |            |

Table S1: CDOM and spectra slopes reported in this and previous studies

| Delaware Bay Mouth            | a355 (0.85)      | Avg. 16              | 290-DL                 | LF      | 20         |
|-------------------------------|------------------|----------------------|------------------------|---------|------------|
| (August)                      |                  |                      |                        |         |            |
| Tyrrhenian Sea                |                  |                      |                        | LF      |            |
| Coastal                       | a355 (0.57)      | 12.5                 | 270 – DL               |         | 21         |
| Offshore                      | (0.19)           | 25.6                 |                        |         |            |
| Seto Inland Sea               | a375 (0.1-1.2)   |                      |                        | NLF + B | This study |
| Seto mana Sea                 | as/s (0.1-1.2)   |                      |                        | ILF + D | i ms study |
| North Sea: Surface            | a375 (0.1-1.2)   |                      |                        | NLI + D | 2          |
|                               | a375 (0.26-1.51) | Avg. 18.8            | 300 - 650              | NLF + B | -          |
| North Sea: Surface            |                  | Avg. 18.8            | 300 - 650              |         | -          |
| North Sea: Surface<br>Coastal |                  | Avg. 18.8<br>Avg. 19 | 300 - 650<br>300 - 650 |         | -          |

\*Spectra slope comparison may be somewhat difficult because it depends on the wavelength range used, as well as the method used to obtain S-

either LF or NLF. LF: linear least square fit, NLF: non-linear least square fit

| Parameter Depth                 |           | Aki-Nada |            | Kii<br>Channel | Osaka Bay |           |            | Harima-Nada |      |      | Hiuchi-<br>Nada | Bisan-<br>Seto |      |      |
|---------------------------------|-----------|----------|------------|----------------|-----------|-----------|------------|-------------|------|------|-----------------|----------------|------|------|
|                                 | <b>S1</b> | S2       | <b>S</b> 3 | S5             | <b>S8</b> | <b>S9</b> | <b>S10</b> | S11         | S12  | S13  | S14             | B10            | B2   |      |
| a300<br>(m <sup>-1</sup> )      | S         | 1.06     | 0.88       | 0.78           | 0.64      | 0.92      | 1.2        | 2.21        | 3.82 | 2.0  | 1.2             | 1.01           | 0.92 | 1.61 |
| (                               | Μ         | 0.92     | 0.74       | 0.64           | 0.64      | 0.92      | 0.92       | 1.34        | 1.61 | 1.57 | 1.06            | 0.98           | 0.83 | 1.20 |
|                                 | В         | 0.78     | 0.69       | 0.55           | 0.28      | 0.74      | 0.92       | 1.11        | 1.29 | 1.15 | 1.06            | 1.01           | 1.01 | 1.52 |
| DOC<br>(mg C/L)                 | S         | 0.74     | 0.65       | 0.64           | 0.80      | 0.8       | 0.96       | 1.23        | 1.85 | 1.25 | 1.63            | 1.28           | 1.42 | 1.8  |
| × 8 /                           | Μ         | 0.74     | 0.56       | 0.46           | 0.68      | 1.21      | 0.9        | 0.97        | 1.17 | 1.17 | 1.30            | 1.48           | nd   | nd   |
|                                 | В         | 0.67     | 0.6        | 0.46           | 0.58      | 0.76      | 0.86       | 0.87        | 1.00 | 1.21 | 1.28            | nd             | nd   | nd   |
| S300-500<br>(µm <sup>-1</sup> ) | S         | 14.7     | 14.5       | 16.4           | 21.7      | 15.8      | 16.8       | 16          | 13.4 | 18.8 | 23.7            | 25.2           | 24.3 | 18.1 |
|                                 | Μ         | 18.2     | 20.3       | 16.2           | 14.3      | 14.4      | 16.6       | 15.4        | 13.8 | 20.4 | 25.1            | 26.6           | 21.6 | 22.4 |
|                                 | В         | 20.8     | 20         | 17.5           | 14.4      | 14.7      | 17.6       | 16          | 15.6 | 24.5 | 26              | 26             | 20.7 | 21.3 |

Table S2: CDOM absorption coefficient, spectra slope and DOC at surface(S), middle(M) and bottom (B) depth at the various sampling

stations during the July, 2017 sampling exercise

\*nd: not determined

Table S3: CDOM absorption parameter and experimentally-determined  $[^{1}O_{2}]_{ss}$  for seawater samples (Hiroshima Bay, S21-S24) and Yodo River water sampled in August and November 2019 respectively.

| Seawater (S21-24) &<br>Yodo River (R1-4) | Depth | a300<br>(m <sup>-1</sup> ) | Experimentally-<br>determined<br>[ <sup>1</sup> O <sub>2</sub> ] <sub>ss</sub> (10 <sup>-14</sup> M) |
|------------------------------------------|-------|----------------------------|------------------------------------------------------------------------------------------------------|
| ST 21                                    | S     | 1.93                       | 4.01                                                                                                 |
|                                          | М     | 1.47                       | 3.34                                                                                                 |
|                                          | В     | 1.34                       | 2.86                                                                                                 |
| ST 22                                    | S     | 1.34                       | 3.04                                                                                                 |
|                                          | М     | 1.34                       | 3.42                                                                                                 |
|                                          | В     | 1.24                       | 2.71                                                                                                 |
| ST 23                                    | S     | 1.11                       | 2.5                                                                                                  |
|                                          | М     | 1.01                       | 2.18                                                                                                 |
|                                          | В     | 1.06                       | 2.65                                                                                                 |
| ST 24                                    | S     | 1.11                       | 2.19                                                                                                 |
|                                          | М     | 1.11                       | 2.31                                                                                                 |
|                                          | В     | 0.98                       | 2.29                                                                                                 |
| Yodo River                               | R 1   | 4.59                       | 6.9                                                                                                  |
|                                          | R 2   | 4.81                       | 7.2                                                                                                  |
|                                          | R3    | 5.07                       | 7.59                                                                                                 |
|                                          | R 4   | 4.88                       | 7.34                                                                                                 |

| Compound       | krxn, <sup>1</sup> O <sub>2</sub> | krxn,OH                    | *t <sub>1/2,102</sub> | t <sub>1/2,OH</sub> | Reference for |
|----------------|-----------------------------------|----------------------------|-----------------------|---------------------|---------------|
|                | $(M^{-1} s^{-1})$                 | $(M^{-1} s^{-1})$          | (days)                | (days)              | k values      |
| Diazinon       | $7.29 \pm 0.3 \ x \ 10^4$         | $1.01 \pm 0.18 \ x10^{10}$ | 3185                  | 80.6                | This study    |
| Methyl mercury | $1.90 \text{ x} 10^6$             | 1.90 x10 <sup>9</sup>      | 122                   | 428                 | 24            |
| TBBPA          | $3.90 	ext{ x10}^8$               | 4.80 x10 <sup>9</sup>      | 0.63                  | 186                 | 23,25         |

Table S4: Half-lives (t<sub>1/2</sub>) of compounds in seawater mediated by  $^1O_2$  and  $\cdot OH$ 

\* $t_{1/2,1O2}$  and  $t_{1/2,OH}$  are half-lives calculated based on the average [ $^{1}O_{2}$ ]<sub>ss</sub> of 3.28 × 10<sup>-14</sup> M and [ $^{\cdot}OH$ ]<sub>ss</sub> of 8.96 × 10<sup>-18</sup> M, respectively, obtained in this study.

References

Peterson, B. M.; McNally, A. M.; Cory, R. M.; Thoemke, J. D.; Cotner, J. B.; McNeill, K. Spatial and Temporal Distribution of Singlet Oxygen in Lake Superior. *Environ. Sci. & Technol.*, **2012**, 46(13), 7222-7229.

(2) Stedmon, C. A.; Markager, S.; Kaas, H. Optical Properties and Signatures of ChromophoricDissolved Organic Matter (CDOM) in Danish Coastal Waters. *Estuarine, Coastal and Shelf Science*, **2000**, 51(2), 267-278.

(3) Tzortziou, M.; Zeri, C.; Dimitriou, E.; Ding, Y.; Jaffé, R.; Anagnostou, E.; Pitta, E.; Mentzafou, A. Colored dissolved organic matter dynamics and anthropogenic influences in a major transboundary river and its coastal wetland. *Limnology and Oceanography*, **2015**, 60(4), 1222-1240

(4) Chin, Y.-P.; Aiken, G.; O'Loughlin, E. Molecular Weight, Polydispersity, and Spectroscopic Properties of Aquatic Humic Substances. *Environ. Sci. & Technol.*, **1994**, 28(11), 1853-1858.

(5) Nakatani, N.; Hashimoto, N.; Shindo, H.; Yamamoto, M.; Kikkawa, M.; Sakugawa, H. Determination of photoformation rates and scavenging rate constants of hydroxyl radicals in natural waters using an automatic light irradiation and injection system. *Analytica Chimica Acta*, **2007**, 581(2), 260-267.

(6) Zhou, X.; Mopper, K. Determination of photochemically produced hydroxyl radicals in seawater and freshwater. *Marine Chemistry*, **1990**3, 0, 71-88.

(7) Haag, W. R.; Hoigne´, J. r.; Gassman, E.; Braun, A. M. Singlet oxygen in surface waters —
Part I: Furfuryl alcohol as a trapping agent. *Chemosphere*, **1984**, 13(5), 631-640.

(8) Appiani, E.; Ossola, R.; Latch, D. E.; Erickson, P. R.; McNeill, K. Aqueous singlet oxygen reaction kinetics of furfuryl alcohol: effect of temperature, pH, and salt content. *Environmental Science: Processes & Impacts*, **2017**, 19(4), 507-516. <u>https://doi.org/10.1039/C6EM00646A</u>

(9) Rodgers, M. A. J.; Snowden, P. T. Lifetime of oxygen (O2(1.DELTA.g)) in liquid water as determined by time-resolved infrared luminescence measurements. *J. Am. Chem. Soc.* **1982**, 104(20), 5541-5543.

(10) Arakaki, T.; Faust, B. C. Sources, sinks, and mechanisms of hydroxyl radical ( $\cdot$  OH) photoproduction and consumption in authentic acidic continental cloud waters from Whiteface Mountain, New York: The role of the Fe(r) (r = II, III) photochemical cycle. *Journal of Geophysical Research*, **1998**, 103(D3), 3487-3504.

(11) Takeda, K.; Takedoi, H.; Yamaji, S.; Ohta, K.; Sakugawa, H. Determination of Hydroxyl Radical Photoproduction Rates in Natural Waters. *Analytical Sciences*, **2004**, 20(1), 153-158.

(12) Buxton, G. V.; Greenstock, C. L.; Helman, W. P.; Ross, A. B. Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O– in Aqueous Solution. *Journal of Physical and Chemical Reference Data*, **1988**, 17(2), 513-886.

(13) Strickland, J. D. H.; Parsons, T. R. A practical handbook of seawater analysis, 1972, 167,2ND edition. Canada: Fisheries Research Board Of Canada Bulletin.

(14) Olasehinde, E. F.; Ogunsuyi, H. O.; Sakugawa, H. Determination of Hydroxyl Radical in Seto Inland Sea and its Potential to Degrade Irgarol. *IOSR Journal of Applied Chemistry*, **2012**,1(5), 07-14.

(15) Ruggeri, G.; Ghigo, G.; Maurino, V.; Minero, C.; Vione, D. Photochemical transformation of ibuprofen into harmful 4-isobutylacetophenone: Pathways, kinetics, and significance for surface waters. *Water Research*, **2013**, 47(16), 6109-6121.

(16) Vione, D.; Maddigapu, P. R.; De Laurentiis, E.; Minella, M.; Pazzi, M.; Maurino, V.; Minero,
C.; Kouras, S.; Richard, C. Modelling the photochemical fate of ibuprofen in surface waters. *Water Research*, 2011, 45(20), 6725-6736.

(17) Del Castillo, C. E.; Coble, P. G.; Morell, J. M.; López, J. M.; Corredor, J. E. Analysis of the optical properties of the Orinoco River plume by absorption and fluorescence spectroscopy. *Marine Chemistry*, **1999**, 66(1), 35-51.

(18) Shooter, D.; Davies-Col!ey, R. J.; Kirk, J. T. O. Light absorption and scattering by ocean waters in the vicinity of the Chatham Rise, South Pacific Ocean. *Mar. Freshwater Res.*, **1998**, 49, 455-461, 1998.

(19) Green, S. A.; Blough, N. V. Optical absorption and fluorescence properties of chromophoric dissolved organic matter in natural waters. *Limnology and Oceanography*, **1994**, 39(8), 1903 - 1916

(20) Vodacek, A.; Blough, N. V.; DeGrandpre M. D.; Nelson, R. K. Seasonal variation of CDOM and DOC in the Middle Atlantic Bight: Terrestrial inputs and photooxidation. *Limnology and Oceanography*, **2003**, 42(4), 674-686.

(21) Seriti, A.; Russo, D.; Nannicini, L.; Del Vecchio, R.; DOC, absorption and fluorescence properties of estuarine and coastal waters of the Northern Tyrrhenian Sea. *Chemical Speciation and Bioavailability*, **1998**, 10(3), 95 – 106.

(22) Coble, P. G.; Del Castillo, C. E.; Avril, B. Distribution and optical properties of CDOM in the Arabian Sea during the 1995 Southwest Monsoon,Deep Sea Research Part II: Topical Studies in Oceanography, **1998**, 45, 10–11, 2195-2223.

(23) Han, S. K.; Bilski, P.; Karriker, B.; Sik, R. H.; Chignell, C. F. Oxidation of flame retardant Tetrabromobisphenol A by singlet oxygen. *Environ. Sci. Technol.*, **2008**, 42(1), 166-172. https://www.ncbi.nlm.nih.gov/pubmed/18350892

(24) Zhang, T.; Hsu-Kim, H. Photolytic degradation of methylmercury enhanced by binding to natural organic ligands. *Nat. Geosci.* **2010**, 3(7): 473-476. <u>https://doi.org/10.1038/ngeo892</u>

(25) Zhang, J.; He, S. L.; Hou, M. F.; Wang, L. P.; Tian, L. J. Kinetics of the Ozonation of Tetrabromobisphenol-A in Wastewater. *Advanced Materials Research*, **2011**, 383–390, 2945–2950. https://doi.org/10.4028/www.scientific.net/amr.383-390.2945