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A. Experimental Procedure

A.1. Analytical IR spectra and integration method

Imine synthesis

Analytical IR spectra of imine synthesis and details on the integration method are 
exemplarily provided in Figure S1. The evaluation of the characteristic IR band is based 
on a calculation of absorption height. This is illustrated in Figure S1 for benzaldehyde 1 
as starting material (decreasing band at 1680 cm−1 to 1720 cm−1) and n-
benzylidenebenzylamine 3 (increasing band at 1620 cm−1 to 1660 cm−1).

Figure S1. Exemplary analytical IR spectra of benzaldehyde 1 and n-benzylidenebenzylamine 3 
at different concentrations.  

Legend: ∙∙∙∙∙∙ integration method based on calculation of absorption height.
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Organometallic synthesis

Analytical IR spectra of the organometallic synthesis and details on the integration 
method are exemplary provided in Figure S2. Evaluation of the characteristic IR band is 
based on calculation of absorption height. This is illustrated in Figure S2 for the CH-
acidic compound 4 (decreasing IR band at 782 cm−1 to 755 cm−1). 

Figure S2. Exemplary analytical IR spectra of CH-acidic compound at different concentrations.
Legend: ∙∙∙∙∙∙ integration method based on calculation of absorption height.
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A.2. Reactor characteristics

High mixing efficiency, narrow residence time distribution, and nearly isothermal 
reaction control are preconditions for determining reliable kinetic data. 

Mixing efficiency and effects of reactor geometry

In pre-tests, different reactor geometries and micromixers were tested for their influence 
on the concentration profiles and the related reaction rate. Thus, in order to assess the 
influence of varying flow velocities, variation of reactor length and inner diameters was 
conducted with overlapping residence times. Moreover, the following micromixers were 
compared: glass mixer (HTM-ST-2-1, Little Things Factory, Germany), T mixer (0.5 mm 
bore, Upchurch, United States), T mixer (1 mm bore, Upchurch, United States), T mixer 
(1.23 mm bore, Swagelok, United States). In terms of the T mixers’ inner bore holes 
(comparing the 1 mm with the 0.5 mm bore), the cross-sectional area, and therefore also 
the linear flow velocity, varied by a factor of 4. 

The extant literature has already investigated the mixing performances of the micromixers 
used in this study1. It had been demonstrated that, in case of mixing sensitive chemical 
reactions, the glass mixer (HTM-ST-2-1, Little Things Factory, Germany) has a 
considerably greater mixing efficiency compared to the T mixers. Thus, in this study, the 
effect of mixing efficiency on the reaction kinetics could only be neglected in the event 
that all investigated micromixers yielded the same results, indicating reaction rate's 
independence of the mixing process.

In Figure S3, it can be demonstrated (exemplarily for the organometallic synthesis) that 
the influence of varying degrees of mixing efficiency on the resulting conversion profiles 
(at constant reaction parameters: temperature, concentration of starting materials, and 
stoichiometric ratio, but with differing microreactor setups as described above), can be 
assumed to be negligible. Conversion profiles (Figure S3 and Figure S4) were calculated 
based on previously determined calibration curves.
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Figure S3. Conversion profiles for different reactor geometries and micromixers.
Reaction temperature −35 °C, concentration of CH-acidic compound 0.4 mol L−1, 
stoichiometric ratio n-BuLi:CH-acidic compound 1:1 (steady-state experiments).

Legend: GM – glass mixer ∙ TM – T mixer (side-on).

Moreover, Figure S4 contrasts the two microreactors (MR1 and MR2) used in this study 
to investigate the lithiation reaction regarding their resulting conversion profiles at 
equivalent residence times but differing flow rates (under nonsteady-state conditions). 
Compared to the results that were obtained under steady-state conditions (Figure S3), 
slightly sharper differences between MR1 and MR2 become apparent (regarding their 
respective conversion profiles at overlapping residence times). This may be due to an 
effect of imperfect mixing, but the experiments under steady-state conditions (Figure 3) 
have demonstrated that the influence of varying degrees of mixing efficiency on the 
resulting conversion profiles is nearly negligible. Yet, in case of steady-state experiments, 
each experimental data point is determined by five repeated measurements, with every 
measurement consisting of 32 scans, thus, leading to an average value for every data 
point. By contrast, in case of nonsteady-state experiments, each data point only consists 
of one single measurement (which consists of 32 scans). Nearly pulsating-free syringe 
pumps are used within the presented experimental setup. In reality, however, pulsation 
cannot be completely ruled out. This pulsation effect influences results that are gained 
under nonsteady-state conditions more strongly (as data points are no averaged values), 
and particularly occurs when high flow rates are applied (as syringes then have a high 
turnover rate). To conclude, the slight discrepancies between MR1 and MR2 (in case of 
nonsteady-state experiments) are considered to rather be induced through a pulsation of 
syringe pumps (especially at high flow rates) than through an imperfect mixing. 
Therefore, even in the case of nonsteady-state experiments, the effect of mixing efficiency 
(due to differing flow rates within the capillaries) is assumed to be (nearly) neglectable.
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Figure S4. Comparison of microreactor MR1 and MR2 regarding the influence of mixing 
efficiency on the conversion of the CH-acidic compound (nonsteady-state experiments). 

Residence time distribution

Table S1 compares the two microreactors regarding the Re, Dn, and Bo numbers (both 
for straight2, 3 and for coiled capillary tubes4). Those dimensionless parameters depend 
on the flow rate and are provided for several residence times. 

The dimensionless Bodenstein number Bo is utilized to characterize the degree of 
backmixing:

Bo =  
u ∙  L
Dax

(S1)

For straight reactor tubes, the dispersion coefficient Dax (incorporating molecular 
diffusion, effects of backmixing due to radial velocity profile in laminar flow, and the 
development of secondary flows) can be calculated through a correlation according to 
Taylor2 and Aris3. For coiled reactor tubes, Dax can be estimated according to 
Daskopoulos and Lenhoff4. According to Daskopoulos and Lenhoff4, the Bo number can 
be increased by including secondary flows. As a rule of thumb, the threshold for assuming 
nearly plug flow conditions amounts to Bo > 100.5 As outlined in Table S1, over the 
whole design space, a narrow residence time distribution due to high Bo numbers (when 
using coiled capillaries) can be assumed in good approximation (only in case of the lowest 
residence time of MR2, the threshold Bo > 100 is missed by a narrow margin).
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Table S1. Overview of microreactors used during investigation of organometallic synthesis: 
dimensions and calculated dimensionless parameters for selected residence times.

Parameters MR1 MR2
Channel diameter [mm] 0.5 + 0.75 a) 0.5
Length [m] 5 + 2 a) 2.5
Inner volume [mL] 1.87 0.49
Residence time (lowest – highest) [min] 0.8 5 0.2 1.2
Flow rate (lowest – highest) [mL min−1] 2.33 0.37 2.45 0.41
Flow velocity (lowest – highest) [m s−1]  0.061 0.010 0.208 0.035
Re number 38 6 104 17
Dn number 8 1 18 3
Bo number b)

(straight capillary reactor 2, 3) 57 353 10 55

Bo number c)

(coiled capillary reactor 4) 268 876 65 206

a) MR1: Consisting of two modular reactor pieces that are connected to each other. First 
capillary: inner diameter 0.5 mm; length 5 m. Second capillary: inner diameter 0.75 mm, 
length 2 m.

b) Applicable Bo number when reactor is not coiled. 
c) Actual Bo number present in the experiments given the coiled reactor design.

Heat transfer

Especially in the case of highly exothermic reactions (organometallic syntheses), high 
heat removal is a crucial precondition for determining reliable kinetic data (thus allowing 
for running the latter at nearly isothermal conditions). Usually, kinetic data is required to 
estimate the temperature profile in a given reactor, as heat release depends on reaction 
rate. However, a shortcut approach (as proposed by Westermann6) can be used for a rough 
and rather conservative estimation of hot spot generation at the reactor entrance, 
depending on the inner capillary diameter (without explicitly requiring kinetic data). 

Exemplarily for the investigated (highly exothermic) lithiation reaction, hot spot 
generation was assessed according to Westermann’s shortcut approach6:

For an inner capillary diameter of 0.5 mm (educt concentration c0 = 0.4 mol L−1, half life 
time t0.5 = 5 s, reaction enthalpy ∆hR = −178 kJ mol−1) the maximum temperature release 
(at reactor entrance) was assessed to not exceed 1.8 K, indicating a nearly isothermal 
behavior6.
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∆Tmax =  
d2 ∙  c0 ∙  ( ―∆hR)

14.64 ∙  λ ∙  t0.5

∆Tmax (d =  0.5 mm) ≈  1.8 K

(S2)

Otherwise, if kinetic data is available, the temperature profile can be calculated using the 
energy and mass balance (Figure S5):

dT
dt

 =  ―
R4 ∙  ∆hR +  qW ∙  

2
r

 

ρ ∙  cp

(S3)

dc4

dt
=  R4 =  ― k ∙  cn

4 ∙  cm
5 (S4)

qW =  𝛼𝑖 ∙  (T ― T0) (S5)

𝛼𝑖 =  
Nu ∙  λ

d
(S6)

In this case, αi was defined by assuming fully developed laminar flow heat transfer with 
Nu = 3.66 (constant wall temperature). It was considered that heat transfer in the oil bath 
and heat conduction in the wall of the stainless steel capillary is much higher than the 
inner heat transfer.

Figure S5. Temperature profile of lithiation reaction (concentration of CH-acidic compound 
amounting to 0.4 mol L−1, inner capillary diameter 0.5 mm, cooling temperature −15 °C).
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A.3. Nonsteady-state experiments

In case of the nonsteady-state experiments, a decay function of the total volumetric flow 
rate was applied, while IR spectra were continuously measured. The constant gradient α 
(that was applied to the volumetric flow rate) was calculated as function of overall 
measurement time tend (eq. 1)7. 

α =  
Vr

tend
 ( 1

Qend
 -  

1
Q0

) (S7)

The measurement interval (every measurement consisted of 24 scans) amounted to 30 s. 
Thus, a suitable value for the overall measurement time tend had to be chosen. A suitable 
value had to guarantee that the volumetric flow rate was not varied too fast. Otherwise, 
high deviations of the respective investigated residence times (during the measurement 
time of 30 s) would have occurred.

Values for the constant gradient α (applied in this work) are exemplarily provided in Table 
S2 and Table S3 in case of investigating the deprotonation reaction (utilizing MR1 and 
MR2). Moreover, deviations of residence times (during the measurement interval) are 
illustrated whilst investigating the lowest respectively the highest residence time.

Table S2. Reactor specifications conducting nonsteady-state experiments. Investigation of 
organometallic synthesis utilizing microreactor MR1.

Starting point End point
Vr τ0 Q0 τend Qend tend

[mL] [min] [mL/min] [min] [mL/min] [min]
1.87 0.8 2.33 5 0.37 20

α ∆t (during measurement) deviation (lowest τ) deviation (highest τ)
[-] [s] [%] [%]

0.212 6.36 13.25 2.12

Table S3. Reactor specifications conducting nonsteady-state experiments. Investigation of 
organometallic synthesis utilizing microreactor MR2.

Starting point End point
Vr τ0 Q0 τend Qend tend

[mL] [min] [mL/min] [min] [mL/min] [min]
0.49 0.2 2.45 1.2 0.38 20

α ∆t (during measurement) deviation (lowest τ) deviation (highest τ)
[-] [s] [%] [%]

0.055 1.64 13.64 2.27
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A.4. Data fitting

Figure S6 schematically contrasts the two data evaluation procedures (evaluation based 
on previously determined calibration curves and SMCR soft-modeling) to determine 
concentration profiles based on the experimental results that were gained through inline 
FT-IR measurements.

Figure S6. Generalized procedures for determining concentration profiles. Schematic flow chart 
with individual working steps, contrasting data evaluation based on previously determined 

calibration curves with soft-modeling (SMCR).

The resulting concentration profiles (concentrations over time at defined reaction 
temperatures and stoichiometric ratios; independent of the respective data evaluation 
procedure – calibration curves or soft-modeling –) were transferred to the scale-up and 
kinetic modeling tool DynoChem (Scale-up Systems Ltd., Ireland).
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Kinetic parameters were estimated by fitting the resulting concentration profiles to a 
kinetic model that was defined with the software DynoChem (Figure S7). This kinetic 
model was based on the differential equations describing the reaction rate as a function 
of the concentration of all involved reactants. In order to perform a data fit and to calculate 
kinetic parameters that best represent the experimental data, the least squares method was 
applied. During least squares fitting, the minimization of SSQ (sum of squares; weighted 
SSQ which scaled with the number of data points within the model and the profile 
maximum value) was used as objective function (while Levenberg-Marquardt constituted 
the fitting algorithm). The data fitting resulted in a calculation of rate coefficient kref at a 
defined reference temperature Tref and activation energy EA. In case of the organometallic 
synthesis, reaction orders n and m were calculated as well. Moreover, quality parameters 
of the model fit were provided, including confidence intervals and correlation matrices.

Figure S7. Generalized procedure for estimating kinetic parameters through software            
DynoChem (Scale-up Systems Ltd., Ireland).
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B. Imine Synthesis

B.1. Bilinear model decomposition applying SMCR

The decomposition of the experimental data matrices (eq. 2)8 into concentration profiles, 
pure component spectra (first derivative), and residuals (error matrix), is exemplarily 
discussed in Figure S8. 

D =  C ∙  ST +  E (S8)

Applying SMCR, concentration profiles were obtained directly from the measured IR 
spectra (experimental data matrix). A spectra processing (baseline-correction, calculation 
of first derivative) was followed by an estimation of the number of involved components 
(Singular Value Decomposition9, 10). In case of imine synthesis, two components were 
identified: the starting material benzaldehyde 1 and the product n-
benzylidenebenzylamine 3.

D =

∙

concentration profiles pure component spectra
(first derivative)

+

residuals (error matrix)

Figure S8. Investigation of imine synthesis. Data evaluation utilizing SMCR technique. 
Decomposition of experimental data matrix into concentration profiles, pure component spectra 

(first derivative), and residuals (error matrix).



13

Quality parameters of the model fit (explained variance, lack of fit)11, 12 are provided in 
Table S4 (comparing the evaluation of steady-state and nonsteady-state experiments).

The equations defining the explained data variance (eq. 3) and the lack of data fit (eq. 4) 
are11, 13:

R2 =  100 
∑

i,jd
 2
ij  - ∑

i,je
 2
ij

∑
i,jd

 2
ij

(S9)

lack of fit (%) =  100 
∑

i,je
 2
ij

∑
i,jd

 2
ij

(S10)

where dij is an element of the experimental data matrix and eij is the related residual value 
obtained from the difference between the experimental data matrix (D) and the 
reproduced data ( ).C ∙  ST

Table S4. Quality parameters of SMCR model fit. Investigation of imine synthesis.

Quality parameters Steady-state   
experiments

Nonsteady-state 
experiments

Soft-modeling

Lack of fit (LOF) [%] 8.6 3.1

Percent of variance explained [%] 99.3 99.9

Hard-modeling

Lack of fit (LOF) [%] 9.5 3.6

Percent of variance explained [%] 97.8 99.4

Error limits of model decomposition (applying SMCR) calculated under nonsteady-state 
conditions are slightly more narrow compared to their steady-state counterparts as a 
drastically higher number of data points is evaluated in case of nonsteady-state 
experiments.
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B.2. Constraints set up for SMCR technique

Whilst utilizing the SMCR technique as data evaluation method, the following 
constraints, relating to the row mode (matrix C, concentration profiles), were applied: 
non-negativity, horizontal unimodality (single concentration maximum), and a mass 
balance closure. In case of hard-modeling, a hard constraint was implemented in order to 
make the concentration profiles fit to a kinetic model.

If no constraints were applied, a nearly infinite number of possible solutions would arise. 
This is especially crucial when there are two or more linearly independent components 
within the experimental data matrix: model decomposition may then lead to spectra and 
concentration profiles that constitute an unknown linear combination of the true 
component spectra and the true concentration profiles respectively, also referred to as 
rotational ambiguity14. 

Thus, constraints are set up in order to reduce this number of possible solutions and to 
refine the result (and to decrease the range of rotational ambiguity). They are usually 
derived from physical nature (non-negativity of concentrations) and previous knowledge 
of the system (mass balance closure)14–16. Table S5 provides an overview of the 
constraints set up for the SMCR technique in this study and their respective effects on the 
results. Note that, in general, a non-negativity constraint may also be applied to the 
column mode (spectroscopic component spectra, matrix ST). However, this study worked 
with the first derivative of all IR spectra (yielding the advantage that the impact of a 
general offset trend throughout the entire spectral range could be eliminated). As the first 
derivative represents the gradient throughout the respective spectrum, it may also include 
negative values.
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Table S5. Overview of constraints (related to the concentrations profiles) set up for the SMCR 
technique.

Constraints Soft-
modeling

Hard-
modeling Effect on the result Justification

Non-negativity x x
No negative 

concentration 
values allowed

Physical nature of 
concentration 

profiles

Horizontal   
unimodality

x x

One single 
concentration 

maximum within 
the profile

Physical nature of 
concentration 

profiles

Mass balance 
closure

x x

Relative 
concentration 

values are 
translated into 
absolute ones

Previous 
knowledge of the 

system (initial 
concentrations); 
however, only 
expedient if all 

involved species 
could be identified

Kinetic model - x

Concentration 
profiles are made 
to fit to a kinetic 
model (rotational 

ambiguity is 
minimized)

Previous 
knowledge of the 

kinetic mechanism, 
hard constraint 
(strongly effects 

the result)
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B.3. Evaluation of steady-state experiments applying SMCR

The resulting concentration profiles of imine synthesis, when evaluating steady-state 
experiments using the SMCR technique, are displayed in Figure S9. Herein, the results 
of soft- and hard-modeling are compared.

a) b) 

Figure S9. Kinetic modeling of experimental data. Data evaluation using SMCR technique. 
Imine Synthesis. Steady-state experiments. a) Soft-modeling. b) Hard-modeling.
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C. Organometallic Synthesis

C.1. Kinetic model prediction based on previously determined calibration curves

The fitted conversion-residence time curves (whilst evaluating nonsteady-state 
experiments based on previously determined calibration curves) for different 
temperatures and stoichiometric ratios are displayed in Figure S10.

a) b) 

Figure S10. Kinetic modeling of experimental data. Data evaluation based on previously 
determined calibration curves. Organometallic Synthesis.

a) Temperature dependence. b) Influence of varying stoichiometric ratios.

The relative errors of fitted reaction orders n (CH-acidic compound 4) and m (n-
butyllithium 5) are illustrated in Table S6. Note that, within the final kinetic model, their 
values were rounded to one decimal place and therefore set to constant.

Table S6. Calculated reaction orders of CH-acidic compound and n-butyllithium 
(organometallic synthesis) and their respective confidence intervals (data evaluation based on 

previously determined calibration curves).

Kinetic parameters Steady-state 
experiments17

Nonsteady-state 
experiments

Reaction order n 
(CH-acidic compound 4)

(confidence level 95 %)

1.125 
(± 11.5 %)

1.113 
(± 8.6 %)

Reaction order m 
(n-butyllithium 5)

(confidence level 95 %)

0.306 
(± 16.4 %)

0.301 
(± 10.1 %)
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C.2. Comparison Data evaluation applying SMCR

IR spectra that had been gained in a prior work under steady-state conditions as well as 
IR spectra gathered in this study’s experimental data sets under nonsteady-state 
conditions (investigating the deprotonation reaction) were evaluated using a modified 
version of the SMCR technique (becoming capable of handling complex reaction 
mechanisms with broken reaction orders). 

In case of the deprotonation reaction, a spectrum range between 1800 and 600 cm−1 was 
chosen to construct the experimental data matrix (IR spectra over time). All IR spectra 
were baseline-corrected, and the respective first derivative was subsequently calculated. 
Such a spectra processing is exemplarily demonstrated in Figure S11, displaying a 
spectrum range between 782 and 755 cm−1 (corresponding to the characteristic IR band 
of the CH-acidic compound 4 which was identified in case of data evaluation based on 
previously determined calibration curves).

This spectra processing was followed by an estimation of the number of involved 
components (applying a Singular Value Decomposition algorithm9, 10), resulting in 
identification of one component (CH-acidic compound 4). In a next step, initial estimates 
were generated through the Evolving Factor Analysis method18–20. Finally, constraints 
relating to the row mode (matrix C, concentration profiles) were defined: non-negativity, 
horizontal unimodality, and a mass balance closure (closure 0.34 mol L−1 lower or equal 
than).

a) b) 

Figure S11. Spectra processing of experimental data matrix (IR spectra over time): baseline-
correction and calculation of first derivative. Exemplarily provided for a wave number range 
between 782 and 755 cm−1 (characteristic IR band of the CH-acidic compound 4 identified in 

case of data evaluation based on previously determined calibration curves). 
a) Raw spectra. b) First derivative.
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C.3. Comparison of soft- and hard-modeling 

Soft-modeling

The resulting concentration profiles of the organometallic synthesis, when evaluating 
steady-state experiments through a soft-modeling, are displayed in Figure S12 (for 
different temperatures and stoichiometric ratios). 

a) b) 

Figure S12. Kinetic modeling of experimental data applying SMCR. Data evaluation of steady-
state experiments through soft-modeling. Organometallic Synthesis.

a) Temperature dependence. b) Influence of varying stoichiometric ratios.

Table S7 illustrates the confidence intervals of fitted reaction orders n (CH-acidic 
compound 4) and m (n-butyllithium 5), resulting from soft-modeling. Again, within the 
final kinetic model, their values were rounded to one decimal place and set to constant.

Table S7. Calculated reaction orders of CH-acidic compound and n-butyllithium 
(organometallic synthesis) and their respective confidence intervals (soft-modeling).

Kinetic parameters
Soft-modeling

steady-state 
experiments

Soft-modeling
nonsteady-state 

experiments
Reaction order n 
(CH-acidic compound 4)

(confidence level 95 %)

1.481 
(± 18.9 %)

1.455 
(± 16.4 %)

Reaction order m 
(n-butyllithium 5)

(confidence level 95 %)

0.312 
(± 20.4 %)

0.310 
(± 16.7 %)
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Hard-modeling

In Figure S13, the resulting concentration profiles of the organometallic synthesis, when 
evaluating steady-state experiments through a hard-modeling are illustrated (for different 
temperatures and stoichiometric ratios).

a) b) 

Figure S13. Kinetic modeling of experimental data applying SMCR. Data evaluation of steady-
state experiments through hard-modeling. Organometallic Synthesis.

a) Temperature dependence. b) Influence of varying stoichiometric ratios.

Quality parameters of the model fit whilst conducting a soft-modeling (explained 
variance, lack of fit)8, 11, 12 are provided in Table S8 (comparing the evaluation of steady-
state and nonsteady-state experiments). 

Table S8. Quality parameters of SMCR model fit, conducting soft-modeling. Investigation of 
organometallic synthesis.

Quality parameters Steady-state   
experiments

Nonsteady-state 
experiments

Lack of fit (LOF) [%] 12.2 10.3

Percent of variance explained [%] 97.8 98.7

Again, error limits of model decomposition (applying SMCR as soft-modeling) 
calculated under nonsteady-state conditions are slightly more narrow compared to their 
steady-state counterparts as a drastically higher number of data points is evaluated in case 
of nonsteady-state experiments.

Using SMCR as hard-modeling, a case study was performed to evaluate the sensitivity of 
different reaction orders on the quality of model decomposition (percent of variance 
explained, lack of fit). The resulting quality parameters of model fit are summarized in 
Table S9.
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Table S9. Quality parameters of SMCR model fit, investigating the organometallic synthesis. 
Evaluation of sensitivity of different reaction orders (describing the complex reaction 

mechanism) on the quality of model decomposition.

Quality parameters Steady-state   
experiments

Nonsteady-state 
experiments

dc4

dt
 =  R4 =  - k ∙  c1

4 ∙  c1
5

Lack of fit (LOF) [%] 15.5 14.6

Percent of variance explained [%] 95.1 95.5

dc4

dt
 =  R4 =  - k ∙  c1

4 ∙  c0.5
5

Lack of fit (LOF) [%] 14.6 13.1

Percent of variance explained [%] 95.8 96.2

dc4

dt
 =  R4 =  - k ∙  c1

4 ∙  c0.3
5

Lack of fit (LOF) [%] 12.9 11.1

Percent of variance explained [%] 96.9 97.9

dc4

dt
 =  R4 =  - k ∙  c1.1

4  ∙  c0.3
5

Lack of fit (LOF) [%] 12.4 10.6

Percent of variance explained [%] 97.3 98.5

dc4

dt
 =  R4 =  - k ∙  c1.3

4  ∙  c0.3
5

Lack of fit (LOF) [%] 12.6 10.8

Percent of variance explained [%] 97.0 98.1

dc4

dt
 =  R4 =  - k ∙  c1.5

4  ∙  c0.3
5

Lack of fit (LOF) [%] 13.0 11.3

Percent of variance explained [%] 96.8 97.8
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Highest quality of model decomposition (lowest lack of fit, highest percent of variance 
explained) is reached in case of modeling with broken reaction orders (reaction order of 
CH-acidic compound 4 amounting to 1.1, reaction order of n-butyllithium 5 amounting 
to 0.3). This indicates that a complex reaction mechanism is involved and is in line with 
the results of a previous publication17.
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D. Discussion

D.1. Comparison of steady-state and nonsteady-state experiments

Figure S14 demonstrates both methods‘ speed in generating data points, comparing 
experiments under steady-state and under nonsteady-state conditions. In terms of 
efficiency, when conducting steady-state experiments, data points need to be separated 
by three hydrodynamic residence times each (the higher the respective residence time, 
the longer the waiting time between two measurements). Thus, the overall experiment 
time increases exponentially. Conversely, in nonsteady-state-conditions, the constant 
volumetric flow rate gradient eliminates the waiting times between measured data points 
(linear increase of overall experiment time). Hence, a nonsteady-state approach generates 
100 data points in 20 min, whereas a steady-state approach requires three times as long 
(60 min) to generate the same number of data points.

Figure S14. Methods‘ speed in generating data points: comparison of steady-state and 
nonsteady-state experiments.
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Nomenclature

1 [-] benzaldehyde

2 [-] benzylamine

3 [-] n-benzylidenebenzylamine

4 [-] CH-acidic compound

5 [-] n-butyllithium

Bo [-] Bodenstein number

cj [mol L−1] concentration of compound j

cp [J kg−1 K−1] specific heat capacity

C [-] pure concentration profiles

D [-] experimental data matrix

Dax [m2 s−1] axial dispersion coefficient

d [m] Inner capillary diameter

dij [-] element of the experimental data matrix

E [-] error matrix (residuals)

eij [-] related residual value

ΔhR [kJ mol−1] reaction enthalpy

ki [(m3 mol ―1)n + m - 1
 s -1] reaction rate coefficient of reaction i

L [m] length

MR1 [-] microreactor no. 1

MR2 [-] microreactor no. 2

m [-] reaction order of 4

n [-] reaction order of 5

Nu [-] Nusselt number

Q [mL min−1] volumetric flow rate

 qW [W m−2] wall heat flux density

Rj [mol L−1 s−1] reaction rate of compound j

r [m] tube radius

ST [-] pure component spectra

tend [s] overall measurement time

t0.5 [s] half life time
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u [m s−1] flow velocity

Vr [m³] reactor volume

α [-] constant gradient

αi [W m−2 K−1] heat transfer coefficient

ρ [kg m−3] density

λ [W m−1 K−1] thermal conductivity

τ [s] residence time
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