Supporting information

Structure-activity Relationship of SPOP Inhibitors Against

Kidney Cancer

Ze Dong, †,§ Zhen Wang, ¶,†,§ Zhong-Qiang Guo, $^{\Delta,\#}$ Shouzhe Gong, † Tao Zhang, † Jiang Liu, $^{\#}$ Cheng Luo, †,‡ Hualiang Jiang, †,‡, $^{\Sigma}$ Cai-Guang Yang †,‡,*

Table S1	S1
Table S2	S2
Figure S1 Representative nanoDSF traces	S 3
Figure S2 Binding of compound 6lc and the full-length SPOP	S4
¹ H and ¹³ C NMR Spectra	S5
Representative HPLC	S20

[†] State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China

[¶] College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China

 $^{^{\}Delta}$ Department of Urology, Zhongnan Hospital of Wuhan University, Hubei 430071, China

^{*} CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China

[‡] School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China

 $^{^{\}Sigma}$ Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTec University, Shanghai 201210, China

[§] Z.D. and Z.W. contributed equally.

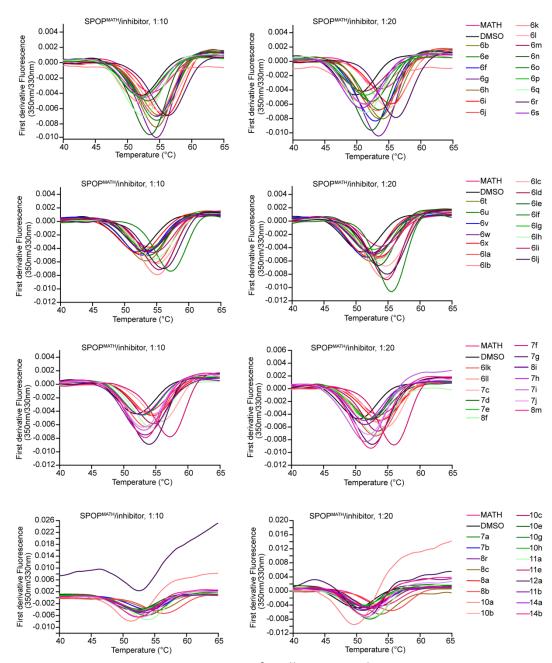
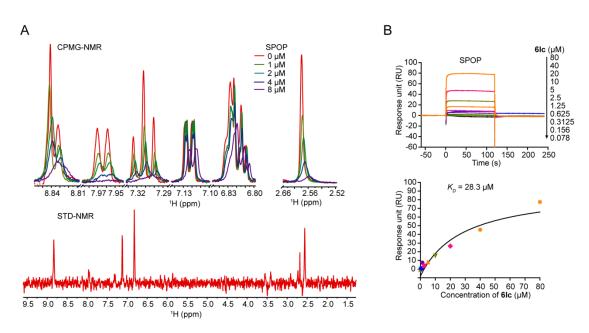
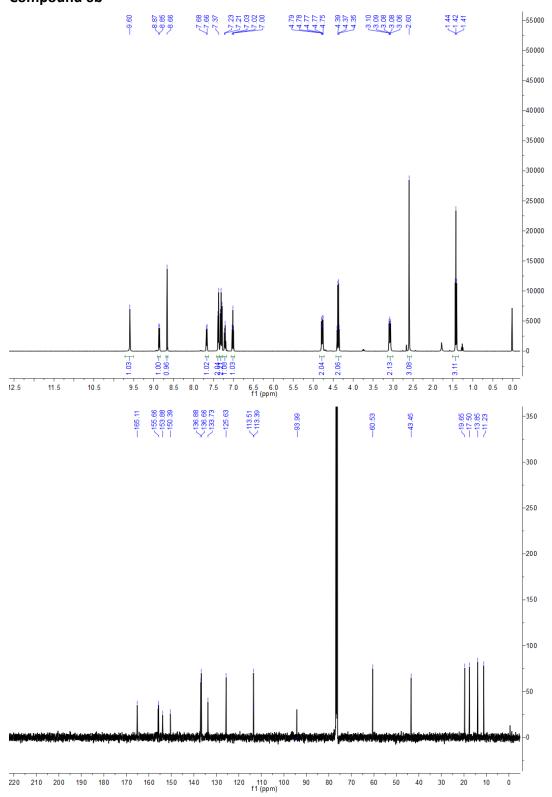
 $\textbf{Table S1}. \ \mathsf{Tm} \ \mathsf{shift} \ \mathsf{when} \ \mathsf{SPOP}^{\mathsf{MATH}} \ \mathsf{was} \ \mathsf{incubated} \ \mathsf{with} \ \mathsf{compounds}$

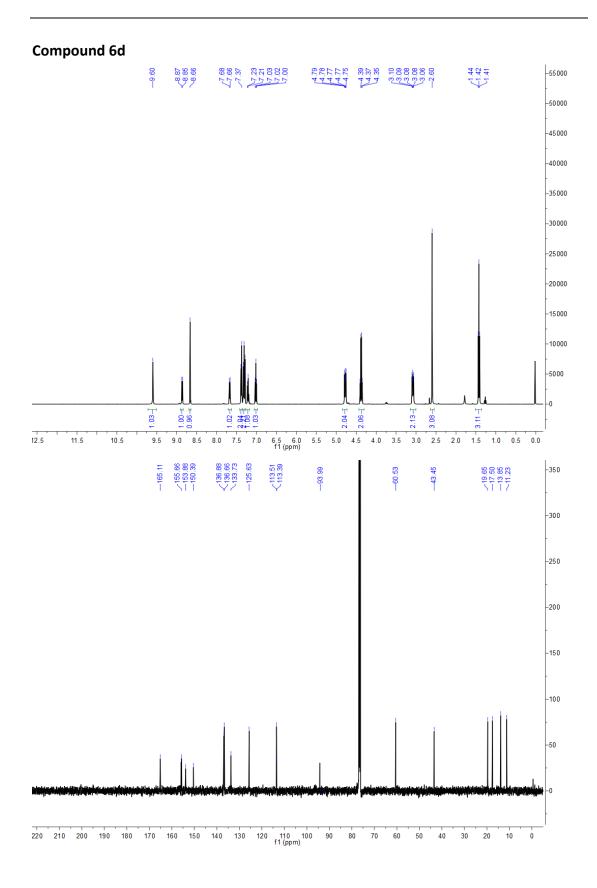
Commonwed	ΔTm (°C)		C	∆Tm (°C)		
Compound —	10 ×	20 ×	 Compound 	10 ×	20 ×	
DMSO	-1.7	-3.8	6lc	3.1	3.5	
6b	2.8	4.0	6ld	3.5	3.7	
6c	0	0.2	6lf	5.3	4.5	
6d	1.8	2.1	6lg	1.6	1.7	
6e	2.5	3.6	6lh	2.7	2.4	
6f	2.5	2.9	6li	2.7	2.7	
6g	2.4	3.5	6lj	4.0	3.8	
6h	2.3	3.5	6lk	1.4	2.5	
6i	3.7	5.3	6II	2.2	2.6	
6k	0.6	1.4	7a	0.8	2.1	
61	3.2	5.1	7b	1.1	2.1	
6m	0.5	1.1	7c	3.7	4.0	
6n	1.4	2.3	7d	0.8	1.6	
6о	1.1	2.3	7 f	4.9	5.3	
6р	0.1	1.5	7g	1.7	1.9	
6q	0.4	1.4	7h	0.6	0.9	
6r	4.3	6.1	7 i	1.0	1.0	
6s	0.3	8.0	7 j	0.9	1.3	
6t	1.4	1.3	8c	2.3	3.7	
6u	1.6	1.6	8a	0.2	1.6	
6v	0.9	0.8	8b	3.5	5.3	
6w	1.6	1.8	11b	0.2	1.3	
6x	0.4	0.9	12a	0.9	2.1	
6у	0.4	0.8	12b	-7.4	1.4	
6la	2.8	2.6	14a	-0.2	2.0	
6lb	3.1	3.3	14b	-0.4	1.2	

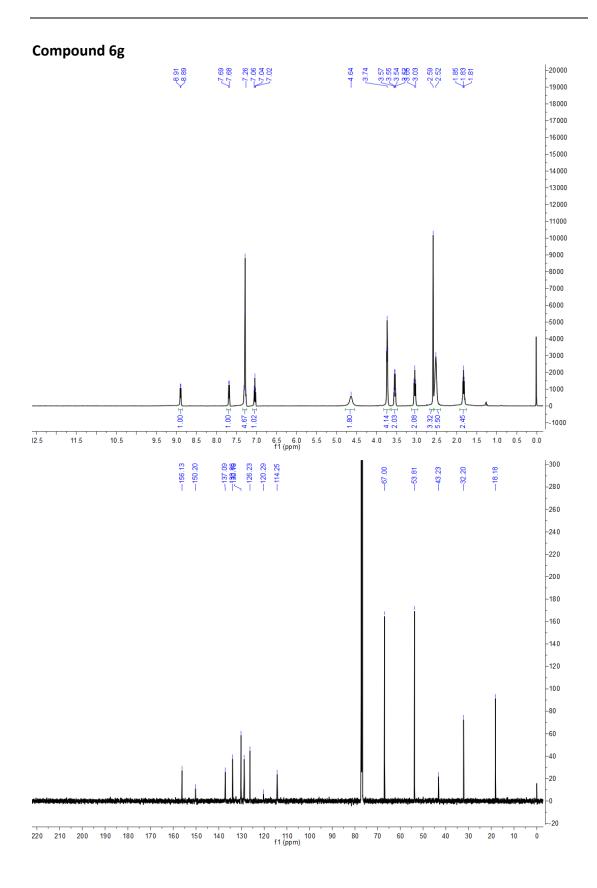
 Δ Tm (°C) for DMSO-treated SPOP^{MATH} was calculated using naive SPOP^{MATH} sample as the reference, while Δ Tm data for compound-treated SPOP^{MATH} were reported using DMSO-treated SPOP^{MATH} as the reference.

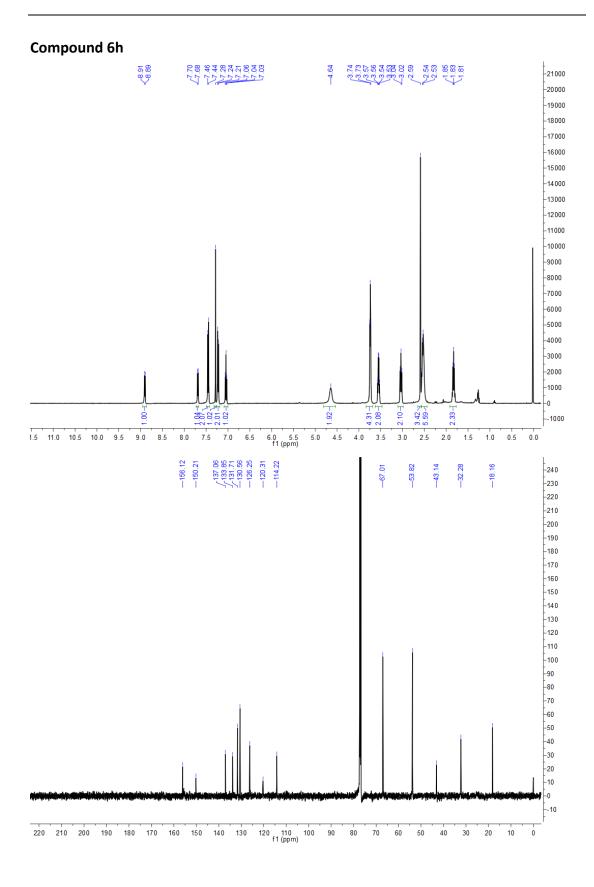
 Table S2.
 Antiproliferative activities of compounds on A498 and OS-RC-2 cell lines

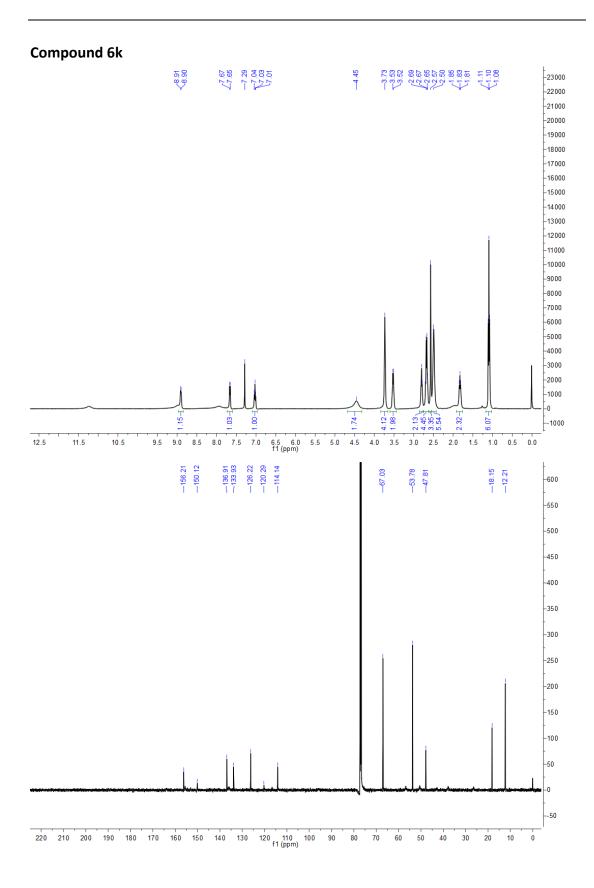
Compound	Inhibition @ 30 μM (%)		Commence	Inhibition @ 30 μM (%)		
Compound	A498	OS-RC-2	Compound	A498	OS-RC-2	
6b	88	90	6li	90	90	
6c	32	22	6lj	83	81	
6d	91	94	6lk	75	77	
6e	90	89	6II	62	56	
6f	90	88	7a	27	23	
6g	90	97	7b	38	35	
6h	89	96	7c	24	20	
6i	89	92	7d	42	48	
6j	61	74	7e	51	49	
6k	86	89	7 f	38	49	
61	90	82	7g	59	56	
6m	35	40	7h	24	26	
6n	90	91	7 i	51	10	
60	50	36	7 j	33	16	
6р	27	35	8a	18	22	
6q	58	46	8b	21	29	
6r	48	34	8c	13	28	
6s	12	23	8d	35	46	
6t	37	22	8e	51	32	
6u	59	62	8f	43	40	
6v	11	15	8g	39	39	
6w	57	66	8h	4	22	
6x	37	37	8i	24	23	
6y	55	51	8j	32	31	
6z	17	38	11a	15	19	
6la	62	58	11b	14	15	
6lb	86	82	12 a	33	24	
6lc	85	90	12b	21	15	
6ld	85	52	13a	8	14	
6le	12	21	13b	13	30	
6lf	87	75	14a	25	16	
6lg	60	50	14b	38	11	
6lh	86	83				

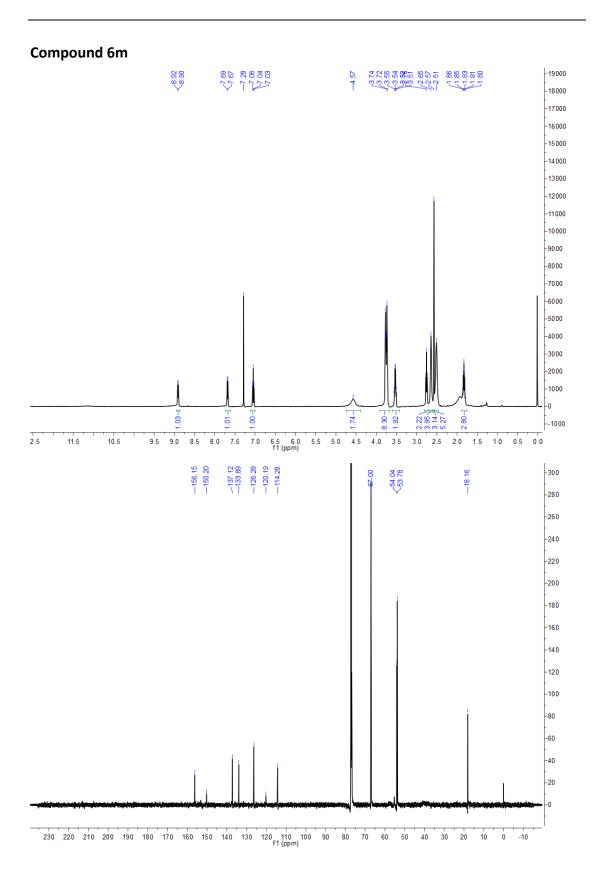





Figure S1 Representative nanoDSF traces for all compounds.

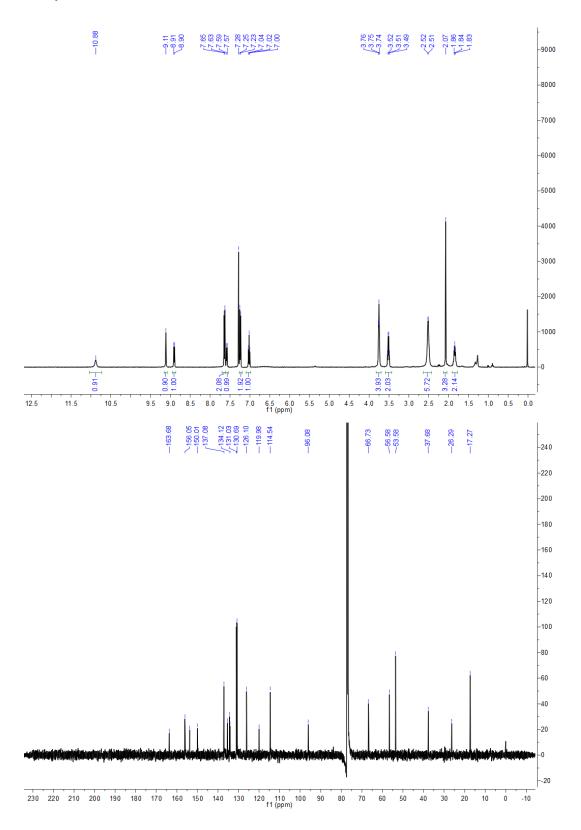


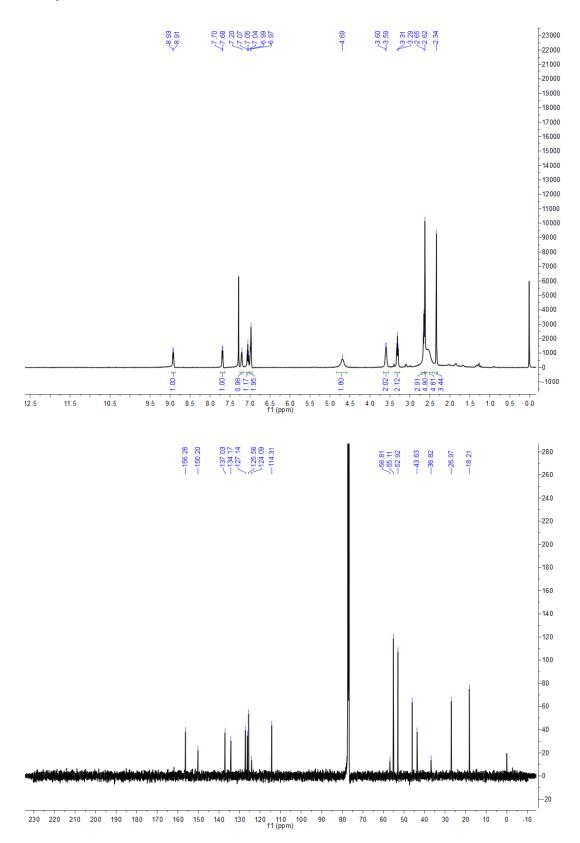

Figure S2 Interaction of **6lc** and full-length SPOP. (A) NMR measurement of **6lc** interaction with SPOP. The STD-NMR spectrum is recorded for **6lc** at 200 μ M with SPOP. (B) SPR measurement of compound **6lc** binding to SPOP. Graphs of equilibrium RU responses versus **6lc** concentrations are plotted. The estimated K_D is 28.3 μ M.

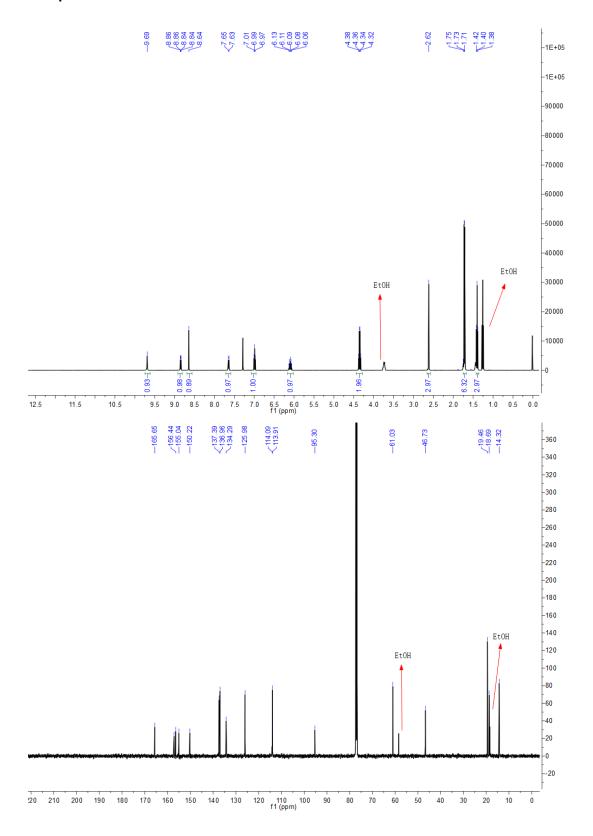

NMR spectrum Compound 6b

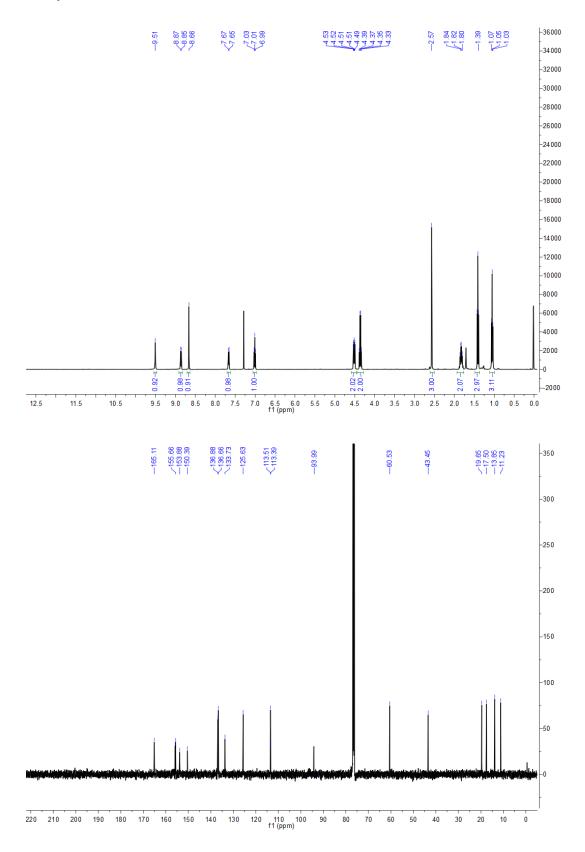


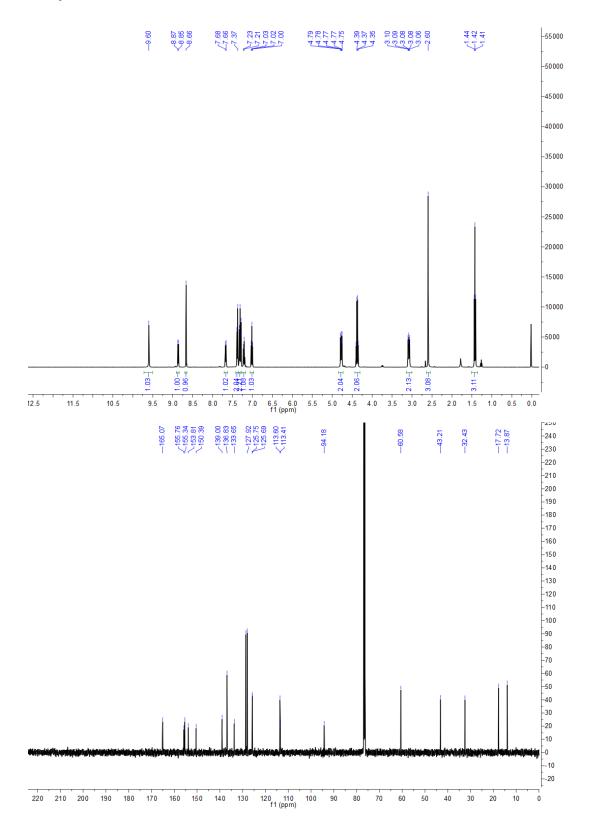


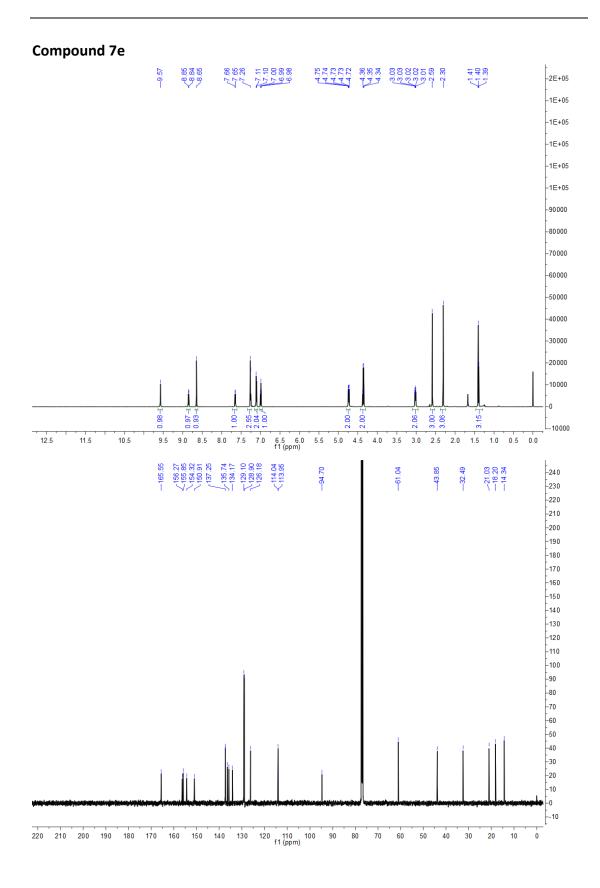



Compound 6w

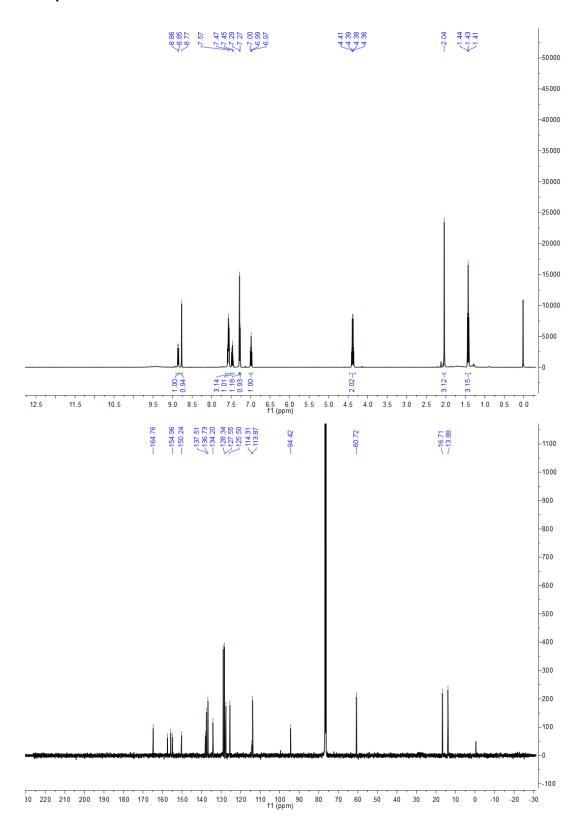

Compound 6z

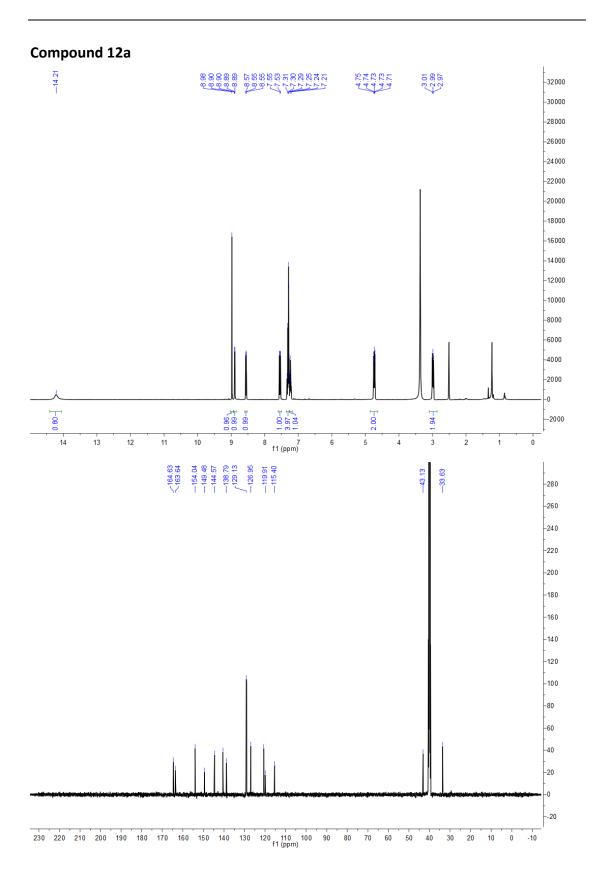

Compound 6lc

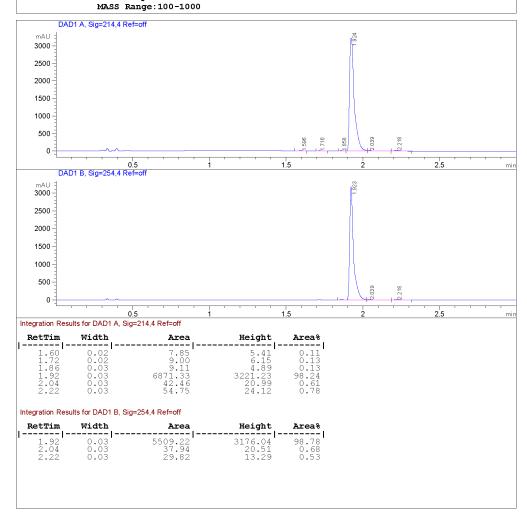

Compound 7a



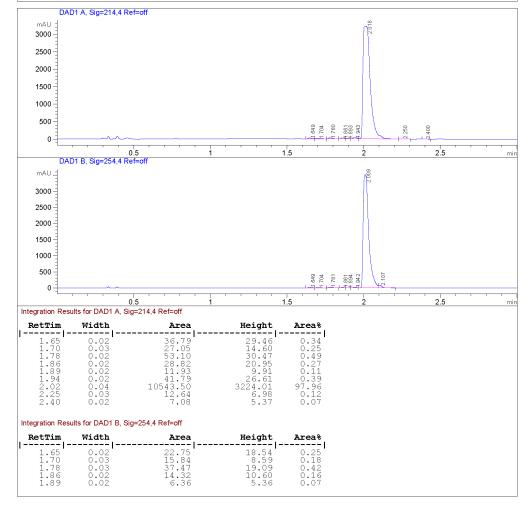
Compound 7b




Compound 7c


Compound 7i

Representative HPLC


Compound 6b

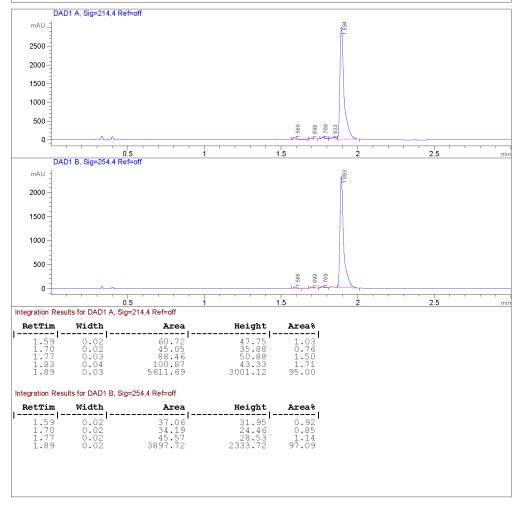
LCMSA042 8/2/2019 10:43:06 AM T311-Monitor

Compound 6d

LC/MS Report

LCMSA042 8/2/2019 10:42:35 AM T311-Monitor

LC/MS Report

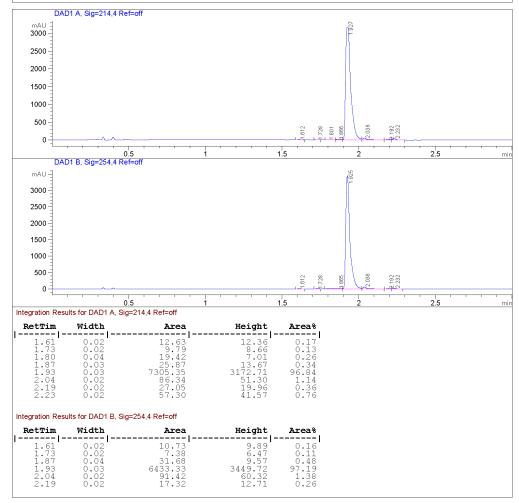

1.94	0.02	16.87	12.50	0.19		
2.01	0.04 0.02	8769.60 100.26	3504.43 69.29	97.62 1.12		
2.11	0.02	100.26	69.29	1.12		

LCMSA042 8/2/2019 10:42:35 AM T311-Monitor

Page 2 of 2

Compound 6e

```
LC/MS Report
```



LCMSA042 8/2/2019 10:52:50 AM T311-Monitor

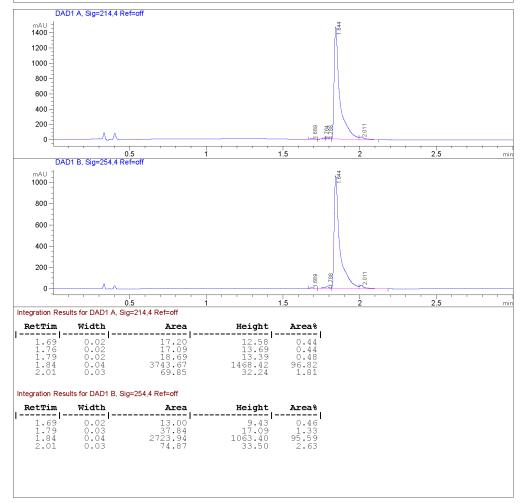
Page 1 of 1

Compound 6f

LC/MS Report

LCMSA042 8/2/2019 10:56:24 AM T311-Monitor

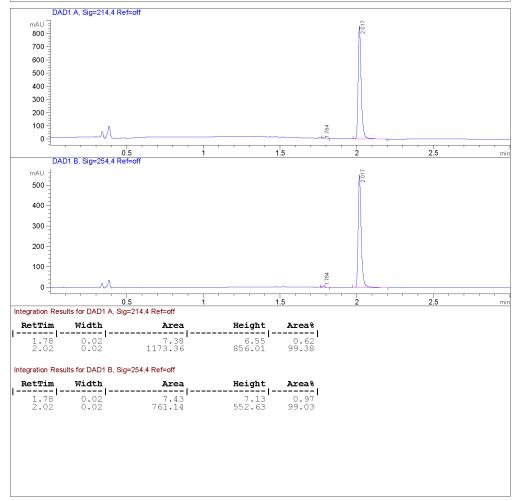
LC/MS Report


2	.23	0.02	27.47	19.67	0.41

LCMSA042 8/2/2019 10:56:24 AM T311-Monitor

Page 2 of 2

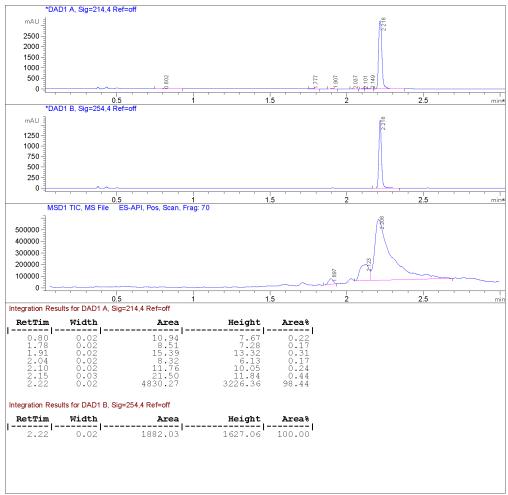
Compound 6lc


LC/MS_Report

LCMSA042 8/2/2019 10:57:06 AM T311-Monitor

Compound 7g

LC/MS_Report

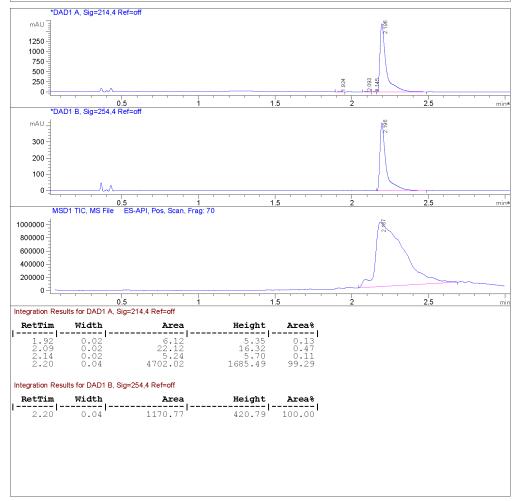


LCMSA042 8/2/2019 10:55:33 AM T311-Monitor

Compound 13a

LC/MS Report

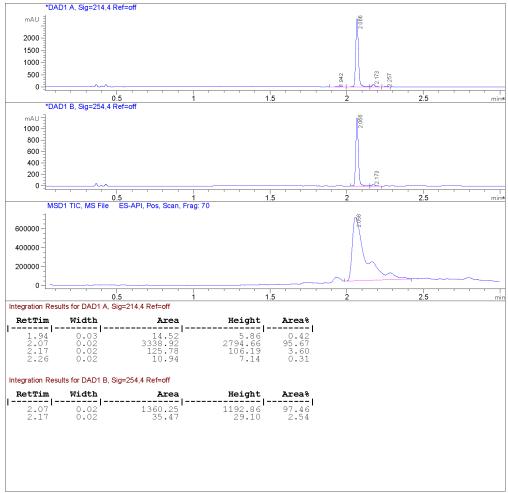
```
File D:\DATA\A02\MONITOR\13a-83256-LCMSA042.D
Injection Date : 21 Jun 19 4:08 pm +0800 Tgt Mass(EZX) :
Sample Name : 11C Location : P2-B-03
Acq. Operator : A02-Monitor Inj : 1
Spec. Reported : MS Integration Inj Volume : 5 ul
Acq. Method : D:\METHODS\2-POS-MON-1.M
Analysis Method : D:\METHODS\2-POS-MON-1.M
Sample Info : Easy-Access Method: '2-POS-MON-1'
Method Info : Mobile Phase: A: water(10mM Ammonium hydrogen carbonate) B: ACN
Gradient: 5%-95% B in 1.5min,95%B for 1.5 min
Flow Rate: 1.8ml/min
Column:XBridge , 4.6*50mm,3.5um
Oven Temperature: 50 C
MASS Range:100-1000
```



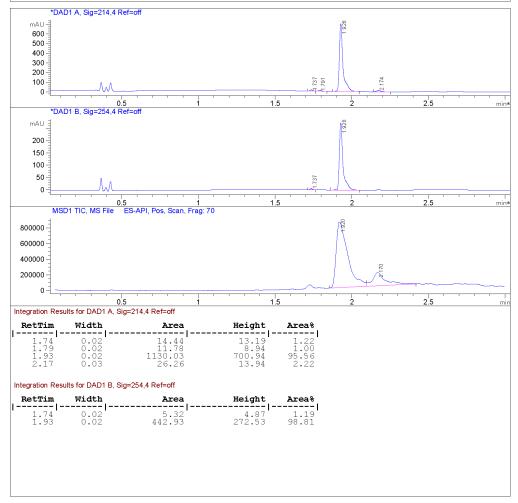
LCMSA042 6/21/2019 4:11:54 PM A02-Monitor

Compound 13b

LC/MS_Report


```
File D:\DATA\A02\MONITOR\13b-83257-LCMSA042.D
Injection Date : 21 Jun 19 4:12 pm +0800 Tgt Mass(EZX) :
Sample Name : 11G Location : P2-B-04
Acq. Operator : A02-Monitor Inj : 1
Spec. Reported : MS Integration Inj Volume : 5 ul
Acq. Method : D:\METHODS\2-POS-MON-1.M
Analysis Method : D:\METHODS\2-POS-MON-1.M
Sample Info : Easy-Access Method: '2-POS-MON-1'
Method Info : Mobile Phase: A: water(10mM Ammonium hydrogen carbonate) B: ACN
Gradient: 5%-95% B in 1.5min,95%B for 1.5 min
Flow Rate: 1.8ml/min
Column:XBridge ,4.6*50mm,3.5um
Oven Temperature: 50 C
MASS Range:100-1000
```


LCMSA042 6/21/2019 4:16:01 PM A02-Monitor


Compound 14a

```
File D:\DATA\A02\MONITOR\14a-83260-LCMSA042.D
Injection Date : 21 Jun 19 4:25 pm +0800 Tgt Mass(EZX) :
Sample Name : 12C Location : P2-B-07
Acq. Operator : A02-Monitor Inj : 1
Spec. Reported : MS Integration Inj Volume : 5 ul
Acq. Method : D:\METHODS\2-POS-MON-1.M
Analysis Method : D:\METHODS\2-POS-MON-1.M
Sample Info : Easy-Access Method: '2-POS-MON-1'
Method Info : Mobile Phase: A: water(10mM Ammonium hydrogen carbonate) B: ACN
Gradient: 5%-95% B in 1.5min,95%B for 1.5 min
Flow Rate: 1.8ml/min
Column:XBridge ,4.6*50mm,3.5um
Oven Temperature: 50 C
MASS Range:100-1000
```


LCMSA042 6/21/2019 4:28:20 PM A02-Monitor

Compound 14b

LCMSA042 6/21/2019 4:32:27 PM A02-Monitor