## Supporting Information

## Ultrafine Nanoporous Gold via Thiol Compound-Mediated Chemical Dealloying

Xufen Xiao,<sup>†,‡,§,∇</sup> Weihui Ou,<sup>†,‡,″,∇</sup> Peng Du,<sup>†,‡,§</sup> Fucong Lyu,<sup>†,‡,§,″</sup> Yingxue Diao,<sup>†,§</sup> Jian Lu,<sup>\*,‡,§,″,⊥</sup> Yang Yang Li<sup>\*,†,‡,§,″,#</sup>

<sup>†</sup>Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 999077, Hong Kong, China.

<sup>‡</sup>Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, 999077, Hong Kong, China.

<sup>§</sup>Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 999077, Hong Kong, China.

<sup>"</sup>Department of Mechanical Engineering, City University of Hong Kong, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Tat Chee Avenue, Kowloon, 999077, Hong Kong, China

<sup>⊥</sup>Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, 8 Yuexing 1st Road, Shenzhen Hi-Tech Industrial Park, Nanshan District, Shenzhen, 518000, China.

<sup>#</sup>City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518000, China

<sup>7</sup> X.X and W.O. contributed equally to this work.

\* E-mail: jianlu@cityu.edu.hk;

\* E-mail: yangli@cityu.edu.hk



**Figure S1.** SEM images of the C-NPG (a-d) and Cys-NPG (e-d) samples fabricated by dealloying for different time duration. Scale bars: 100 nm.



Figure S2. EDS spectra of C-NPG (a) and Cys-NPG (b) samples.



**Figure S3**. Histograms of ligament sizes for different types of NPG samples: (a) C-NPG, (b) BDT-NPG, (c) EDT-NPG, (d) CS-NPG, (e) ME-NPG, and (f) EDA-NPG. Scale bars: 100 nm. The data were obtained by analyzing the SEM images of Figure 6 using the software Nano Measurer.



**Figure S4**. TEM images of different types of NPG samples: (a) C-NPG, (b) BDT-NPG, (c) EDT-NPG, (d) CS-NPG, (e) ME-NPG, and (f) EDA-NPG. Scale bars: 100 nm.



Figure S5. EDS spectra of different types of NPG samples: (a) C-NPG, (b) BDT-NPG, (c) EDT-NPG, (d) CS-NPG, (e) ME-NPG, and (f) EDA-NPG.

| Sample name | Fabricati         | Average                          | Residual Ag  |       |
|-------------|-------------------|----------------------------------|--------------|-------|
|             | Additive          | Chemical structure               | size (nm)    | (at%) |
| C-NPG       | Ν                 | lone                             | $25.2\pm3.5$ | 3     |
| Cys-NPG     | L-cysteine        |                                  | 5.5 ± 0.9    | 11    |
| BDT-NPG     | 1,4-Butanedithio  | HS                               | $5.5\pm0.8$  | 26    |
| EDT-NPG     | 1,2-Ethanedithiol | HS                               | $5.6\pm0.8$  | 19    |
| CS-NPG      | Cysteamine        | HSNH <sub>2</sub>                | $6.9\pm0.8$  | 10    |
| ME-NPG      | 2-Mercaptoethanol | HSOH                             | $13.6\pm1.9$ | 4     |
| EDA-NPG     | Ethylenediamine   | H <sub>2</sub> N NH <sub>2</sub> | $26.2\pm5.0$ | 4     |

**Table S1**. The fabrication conditions and feature sizes of the NPG samples dealloyed for 4 hrs in an aqueous electrolyte of HNO<sub>3</sub> (38.8 wt%) and the specific additives (0.8 mM).

 Table S2. Comparison with previously reported ultrafine dealloyed Au with ligament/channel width

 under 10 nm.

| Dealloy method                  | Parent alloy              | Feature<br>size (nm) | Residual<br>(at%)                  | Special requirement                               | Ref. # in<br>maintext |
|---------------------------------|---------------------------|----------------------|------------------------------------|---------------------------------------------------|-----------------------|
| Low-temperature _               | commercial<br>AgAu leaf   | ~5                   | $Ag_6$                             | -20 °C                                            | 11                    |
|                                 | Al <sub>2</sub> Au        | $5\pm1.0$            | a few at.%<br>Al                   | -20 °C; single roller melt<br>spinning            | 12                    |
| Electrochemical                 | AgAu                      | 6                    | Ag <sub>3</sub>                    | melting; potentiastat                             | 6                     |
|                                 | commercial<br>AgAuPt leaf | 4                    | Ag39 Pt11                          | potentiastat                                      | 15                    |
|                                 | commercial<br>AgAu leaf   | 8                    | Ag <sub>3</sub>                    | potentiastat; pulse<br>electrochemical corrosion  | 16                    |
| Electrochemical<br>& pre-doping | AgAu-Pt                   | 6                    | Ag11                               | arc melting; potentiastat;<br>two-step corrosion; | 13                    |
| Pre-doping                      | Al <sub>2</sub> Au-Pt/Pd  | $3.5\pm1.0$          | Pt <sub>20</sub> Al <sub>3.6</sub> | melting; dealloyed at 90 °C                       | 14                    |
| Surfactant-<br>mediation        | commercial<br>AgAu        | 4.3 ± 0.9            | Agıı                               | thiol-compunds                                    | This<br>work          |