Expanding Ligand Space: Preparation, Characterization and Synthetic Applications of Air-Stable, Odorless Di-tert-alkylphosphine Surrogates

\author{
Thomas Barber, ${ }^{\dagger, \ddagger}$ Stephen P. Argent, ${ }^{\dagger}$ and Liam T. Ball ${ }^{\dagger, \ddagger, *}$
 ${ }^{\dagger}$ School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, U.K.
 ${ }^{\ddagger}$ GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Jubilee Campus, Triumph Road, Nottingham, NG7 2TU, U.K.
 [^0]}

Contents

1. General Experimental Information 3
2. Synthesis and Characterisation of tert-Alkyl Esters 5
3. Determination of $\mathrm{Zn}_{3} \mathrm{P}_{2}$ Purity and Protonolysis Rate (Manuscript Scheme 2B) 26
4. Screening of Carbocation Sources (Manuscript Scheme 2C) 28
5. Synthesis of Di-tert-alkylphosphonium Salts 1 (Manuscript Scheme 3) 29
6. Alkylation of PH_{3} with tert-Butyl Acetate (Manuscript Scheme 4A) 45
7. Isotope Exchange Studies (Manuscript Scheme 4B) 48
8. Derivatisation of Di-(3-ethyl-3-pentyl)phosphonium Triflate 1c (Manuscript Scheme 5) 55
9. Synthesis and Characterisation of Di-tert-alkylbiarylphosphines $\mathbf{3}$ (Manuscript Scheme 6) 59
10. Synthesis of Di-tert-alkylbiarylphosphine Selenides 4 (Manuscript Scheme 6) 69
11. Synthesis and Characterisation of Di-tert-alkylbiarylphosphine Gold(I) Chloride Complexes (Manuscript Scheme 6) 70
12. Suzuki-Miyaura Chemoselectivity Study (Manuscript Scheme 7) 80
13. X-ray Crystallography Data Tables 81
14. NMR Spectra 95
15. References 208

1. General Experimental Information

CAUTION: phosphine gas is highly toxic and is spontaneously flammable in air. Procedures that use phosphine gas should only be performed following appropriate training after consultation with local safety advisors, and after completing a thorough risk assessment. All CO-ware apparatus should be inspected for scratches or imperfections prior to use; new CO-ware septa should be used for each reaction, and the manufacturer's guidelines should be followed (no more than 2 injections per septum, using a needle with a diameter of $21 \mathrm{~g}(0.08 \mathrm{~mm})$ or less). CO-ware is recommended for routine use at pressures up to 46 psi , and not above 60 psi ; this should be considered when changing reaction scales from those presented in this Supporting Information.

Reagents were purchased from commercial suppliers and used as provided. Me ${ }_{3} S i O T f$ and methylmagnesium bromide (3.0 M in $\mathrm{Et}_{2} \mathrm{O}$) were stored under anhydrous dinitrogen in sample flasks with J. Young valves. Anhydrous tetrahydrofuran, toluene, dichloromethane and diethyl ether were obtained from in-house solvent purification systems (Inert ProSolv; dried by passage through activated alumina columns under pressure of Ar). Anhydrous CCl_{4} and DBU were obtained by distillation from CaH_{2} under an atmosphere of anhydrous dinitrogen. Deuterated solvents were used as supplied. Reactions requiring inert conditions were conducted in flame-dried glassware (apart from NMR tubes and CO-ware two-chamber reactor) under an atmosphere of anhydrous dinitrogen using standard Schlenk techniques.

NMR spectra were recorded at 298 K on Bruker Avance-III spectrometers operating at nominal ${ }^{1} \mathrm{H}$ frequencies of 400 and 500 MHz . Chemical shifts (δ) are given in ppm, and are referenced to residual solvent peaks for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} . \mathrm{CDCl}_{3}(7.26 \mathrm{ppm} ; 77.16 \mathrm{ppm}), \mathrm{C}_{6} \mathrm{D}_{6}\left(7.16 \mathrm{ppm} ; 128.06 \mathrm{ppm}\right.$), $\mathrm{CD}_{3} \mathrm{CN}$ ($1.94 \mathrm{ppm} ; 1.32$ and 118.26 ppm). External frequency standards are used for ${ }^{11} \mathrm{~B}\left(\mathrm{BF}_{3} . \mathrm{OEt}_{2} ; 0.00 \mathrm{ppm}\right.$), ${ }^{19} \mathrm{~F}\left(\mathrm{CCl}_{3} \mathrm{~F} ; 0.00 \mathrm{ppm}\right)$ and ${ }^{31} \mathrm{P}\left(85 \% \mathrm{H}_{3} \mathrm{PO}_{4(\mathrm{aq})} ; 0.00 \mathrm{ppm}\right)$. Signals are reported as singlet (s), doublet (d), triplet (t), quartet (q), pentet (p), heptet (h), multiplet (m), broad (br.), apparent (app.) or combinations thereof. Higher multiplicities are expected in several compounds (vide infra), but are reported as multiplets since it was not possible to observe every peak. Due to broadness of peaks, one-bond phosphorus-proton coupling constants measured from the ${ }^{31} \mathrm{P}$ NMR spectra are in many cases not matching the same constant when measured from the ${ }^{1} \mathrm{H}$ spectrum, though the differences are never $>0.5 \%$). A 30 second relaxation delay time $\left(D_{1}\right)$ was used for quantitative ${ }^{19} \mathrm{~F}$ and ${ }^{31} \mathrm{P}$ NMR spectroscopy.

High-resolution mass spectrometry (HRMS) was performed using a Bruker MicroTOF spectrometer, with an electrospray ionisation (ESI) ion source. Infrared spectra (IR) were recorded on a Bruker Alpha
platinum-ATR with diamond window. Melting points were measured on a Gallenkamp melting point apparatus and are uncorrected.

2. Synthesis and Characterisation of tert-Alkyl Esters

General procedure for the synthesis of tert-alkyl esters (GP1)

A mixture of alcohol (1.0 equiv.), acetic anhydride (1.1-1.5 equiv.) and 4-dimethylaminopyridine (DMAP, 0-0.1 equiv.) in pyridine was heated to $100{ }^{\circ} \mathrm{C}$ in a sealed microwave tube overnight. The resulting mixture was diluted with saturated aqueous NaHCO_{3} solution and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times)$. The combined organic portions were washed with saturated aqueous CuSO_{4} solution ($3 \times$), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo. Note: care should be exercised to minimise the loss of the more volatile, low molecular weight esters. Crude products were purified by kugelrohr distillation at the temperatures and pressures stated for individual compounds.

3-Methyl-3-pentyl acetate

GP1 was performed using 3-methyl-3-pentanol ($6.20 \mathrm{~mL}, 50.0 \mathrm{mmol}$), acetic anhydride ($7.10 \mathrm{~mL}, 75.0$ $\mathrm{mmol})$, pyridine $(6.0 \mathrm{~mL})$ and $\operatorname{DMAP}(0.611 \mathrm{~g}, 5.00 \mathrm{mmol})$. After kugelrohr distillation $\left(40-45{ }^{\circ} \mathrm{C}, 10\right.$ mbar), 3-methy-3-pentyl acetate ($5.27 \mathrm{~g}, 36.5 \mathrm{mmol}, 73 \%$) was obtained as a colourless liquid.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.98(\mathrm{~s}, 3 \mathrm{H}), 1.90-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}), 0.85$ (app. $\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right): ~ \delta 170.4,85.4,30.4,22.8,22.3,8.0$.
$\mathbf{V}_{\max }$ (neat)/cm ${ }^{-1}: 2974,2942,2884,1730,1461,1367,1246,1157,1136,1017,940,848,610$.

HRMS: calcd. for $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}_{2}+\mathrm{Na}^{+}$: $167.1043\left[\mathrm{M}+\mathrm{Na}^{+}\right.$; found (ESI^{+}): 167.1034.

3-Ethyl-3-pentyl acetate

GP1 was performed using 3-ethyl-3-pentanol ($6.87 \mathrm{~mL}, 50.0 \mathrm{mmol}$), acetic anhydride ($7.10 \mathrm{ml}, 75.0$ mmol), pyridine (6.0 mL), and DMAP ($0.611 \mathrm{~g}, 5.00 \mathrm{mmol}$). After kugelrohr distillation ($45^{\circ} \mathrm{C}, 1.0 \mathrm{mbar}$) 3-ethyl-3-pentyl acetate ($1.36 \mathrm{~g}, 8.59 \mathrm{mmol}, 43 \%$) was obtained as a colourless liquid.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.99(\mathrm{~s}, 3 \mathrm{H}), 1.81(\mathrm{q}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H}), 0.81(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 9 \mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 170.4,88.3,26.9,27.4,7.8$.
$\mathbf{v}_{\max }($ neat $) / \mathrm{cm}^{-1}: 2971,2944,2884,1727,1458,1366,1244,1205,1138,1040,1014,952,924,864$, 610.

HRMS: Neither the parent ion nor any obvious fragments could be observed by ESI-MS.

2,3-Dimethyl-2-butyl acetate

GP1 was performed using 2,3-dimethyl-2-butanol ($3.72 \mathrm{~mL}, 30.0 \mathrm{mmol}$), acetic anhydride (4.25 mL , 45.0 mmol), pyridine (5.0 mL) and DMAP ($0.366 \mathrm{~g}, 3.00 \mathrm{mmol}$). After kugelrohr distillation (r.t., 1.0 mbar), 2,3-dimethyl-2-butyl acetate ($2.44 \mathrm{~g}, 16.9 \mathrm{mmol}, 56 \%$) was obtained as a colourless liquid.
${ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl $)_{3}$: $\delta 2.20(\mathrm{~h}, \mathrm{~J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 6 \mathrm{H}), 0.88(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 6 \mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 170.7,85.5,36.2,22.9,22.6,17.4$.
$\mathbf{V}_{\text {max }}($ neat $) / \mathrm{cm}^{-1}: 2972,1728,1464,1368,1250,1230,1140,1097,1070,1017,939,897,820,609$.

HRMS: Neither the parent ion nor any obvious fragments could be observed by ESI-MS.

2,3,3-Trimethyl-2-butanol ${ }^{1}$

To a solution of pinacolone ($6.25 \mathrm{~mL}, 50.0 \mathrm{mmol}$) in anhydrous $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ under nitrogen was added methylmagnesium bromide (3.0 M in $\mathrm{Et}_{2} \mathrm{O} ; 20.0 \mathrm{~mL}, 60.0 \mathrm{mmol}$). The mixture was stirred at r.t. for 16 h before being quenched with a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$. The resulting biphasic mixture was separated, and the aqueous portion was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times)$. The organic layers were combined, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and the solvent was removed in vacuo to give 2,3,3-trimethyl-2butanol ($5.76 \mathrm{~g}, 49.6 \mathrm{mmol}, 99 \%$) as a colourless liquid. This material was used without further purification.

Characterisation data were consistent with literature values: ${ }^{1} \mathrm{H}^{1}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}^{1} \mathrm{NMR}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.28(\mathrm{~s}, 1 \mathrm{H}), 1.18(\mathrm{~s}, 6 \mathrm{H}), 0.94(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 75.1,37.5,25.5,25.4$.
$\mathbf{V}_{\max }($ neat $) / \mathrm{cm}^{-1}: 3466,2972,2914,2876,1467,1368,1152,1117,944,909,879,811,734,514$.

HRMS: Neither the parent ion nor any obvious fragments could be observed by ESI-MS.

2,3,3-Trimethyl-2-butyl acetate

GP1 was performed using 2,3,3-trimethyl-2-butanol ($2.32 \mathrm{~g}, 20.0 \mathrm{mmol}$), acetic anhydride (2.84 mL , 30.0 mmol), pyridine (4.0 mL) and DMAP ($0.244 \mathrm{~g}, 2.00 \mathrm{mmol}$). After 72 h , a further portion of acetic anhydride ($5.68 \mathrm{~mL}, 60 \mathrm{mmol}$) was added, and the mixture was stirred for a further 72 h at $100{ }^{\circ} \mathrm{C}$ until complete conversion was observed by ${ }^{1} \mathrm{H}$ NMR spectroscopy. After kugelrohr distillation $\left(40-45{ }^{\circ} \mathrm{C}\right.$, 210 mbar), 2,3,3-trimethyl-2-butyl acetate ($2.82 \mathrm{~g}, 17.8 \mathrm{mmol}, 89 \%$) was obtained as a colourless liquid.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.97$ ($\mathrm{s}, 3 \mathrm{H}$), 1.48 ($\left.\mathrm{s}, 6 \mathrm{H}\right), 0.95(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, CDCl_{3}): $\delta 170.7,86.8,38.2,25.1,22.6,20.4$.
$v_{\max }$ (neat)/cm ${ }^{-1}: 2973,2917,2879,1731,1467,1367,1256,1218,1171,1134,1017,939,847,782$, 610, 506, 491.

HRMS: calcd. for $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{O}_{2}+\mathrm{Na}^{+}$: $181.1199\left[\mathrm{M}+\mathrm{Na}^{+}\right.$; found (ESI^{+}): 181.1182.

2-Methyl-4-(4-bromophenyl)-2-butanol

Dimethylformamide (3 drops) was added to a solution of 3-(4-bromophenyl)propanoic acid (4.12 g, $18.0 \mathrm{mmol})$ and oxalyl chloride ($1.72 \mathrm{~mL}, 20.0 \mathrm{mmol}$) in anhydrous dichloromethane (20 mL) under dinitrogen. Vigorous effervescence was observed. The mixture was stirred at r.t. for 1.5 h , then the solvent was removed in vacuo and anhydrous $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added to give a pale yellow solution. Methylmagnesium bromide (3.0 M in $\mathrm{Et}_{2} \mathrm{O} ; 20.0 \mathrm{~mL}, 60.0 \mathrm{mmol}$) was added slowly and the resulting mixture was stirred at r.t. for 1 h . A saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$ was added and the phases were separated. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times)$ and the combined organic portions were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and the solvent was removed in vacuo to give 2-methyl-4-(4-bromophenyl)-2-butanol ($4.01 \mathrm{~g}, 16.5 \mathrm{mmol}, 92 \%$) as a brown oil which solidified on standing. This material was used without further purification.

Characterisation data were consistent with literature values: ${ }^{1} \mathrm{H}^{2}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}^{2} \mathrm{NMR}$.
${ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl_{3}): δ 7.41-7.38 (m, 2H), 7.09-7.06 (m, 2H), 2.68-2.64 (m, 2H), 1.78-1.73 (m, $2 H), 1.29(s, 6 H), 1.21(s, 1 H)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, CDCl_{3}): $\delta 141.7,131.6,130.2,119.6,70.9,45.7,30.3,29.5$.
$\mathbf{v}_{\text {max }}$ (neat)/cm ${ }^{-1}: 3288,2969,2929,2863,1486,1402,1379,1362,1262,1206,1154,1124,1091,1070$, 1010, $908,834,801,761,631,521,484,452$.

HRMS: calcd. for $\mathrm{C}_{11} \mathrm{H}_{15}{ }^{79} \mathrm{BrO}+\mathrm{Na}^{+}: 265.0198[\mathrm{M}+\mathrm{Na}]^{+}$; found (ESI ${ }^{+}$): 265.0193.
m.p. ${ }^{\circ} \mathrm{C}$: 35-38, lit. ${ }^{2}$ 34-37.

2-Methyl-4-(4-bromophenyl)-2-butyl acetate

GP1 was performed using 2-methyl-4-(4-bromophenyl)-2-butanol ($3.65 \mathrm{~g}, 15.0 \mathrm{mmol}$), acetic anhydride ($2.13 \mathrm{~mL}, 22.5 \mathrm{mmol}$), pyridine (3.0 mL) and DMAP ($0.183 \mathrm{~g}, 1.50 \mathrm{mmol}$). After kugelrohr distillation (200-220 ${ }^{\circ} \mathrm{C}$, 0.3 mbar), 2-methyl-4-(4-bromophenyl)-2-butyl acetate ($3.84 \mathrm{~g}, 13.5 \mathrm{mmol}$, 90%) was obtained as a yellow liquid.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.40-7.37 (m, 2H), 7.08-7.04 (m, 2H), 2.61-2.56 (m, 2H), 2.05-2.00 (m, $2 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 170.6,141.2,135.6,130.3,119.7,81.9,42.6,30.0,26.3,22.5$.
$v_{\max }$ (neat)/cm ${ }^{-1}: 2975,2931,2870,1729,1488,1455,1366,1246,1201,1168,1125,1094,1071,1011$, 945, 828, 803, 761, 609, 519, 466.

HRMS: calcd. for $\mathrm{C}_{13} \mathrm{H}_{17}{ }^{79} \mathrm{BrO}_{2}+\mathrm{Na}^{+}$: $307.0304[\mathrm{M}+\mathrm{Na}]^{+}$; found (ESI^{+}): 307.0303.

1-Methylcyclopentyl acetate

GP1 was performed using 1-methylcyclopentanol ($5.01 \mathrm{~g}, 50.0 \mathrm{mmol}$), acetic anhydride ($7.10 \mathrm{~mL}, 75.0$ mmol), pyridine (6.0 mL) and DMAP ($0.611 \mathrm{~g}, 5.00 \mathrm{mmol}$). After kugelrohr distillation (r.t., 0.3 mbar), 1-methylcyclopentyl acetate ($6.23 \mathrm{~g}, 46.8 \mathrm{mmol}, 88 \%$) was obtained as a colourless liquid.

Characterisation data were consistent with literature values: ${ }^{1} \mathrm{H}^{3}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}^{3} \mathrm{NMR}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.10-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H}), 1.73-1.62(\mathrm{~m}, 4 \mathrm{H}), 1.62-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.52$ (s, 3H).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 170.8,89.8,39.2,24.4,23.9,22.5$.
$\mathbf{V}_{\max }($ neat $) / \mathrm{cm}^{\mathbf{- 1}}: 2966,2874,1731,1443,1367,1337,1249,1188,1122,1018,939,855,613,461$.

HRMS: Neither the parent ion nor any obvious fragments could be observed by ESI-MS.

1-Methylcyclohexyl acetate

GP1 was performed using 1-methylcyclohexanol ($6.21 \mathrm{~mL}, 50.0 \mathrm{mmol}$), acetic anhydride ($5.20 \mathrm{~mL}, 55.0$ mmol) and pyridine (6.0 mL). After kugelrohr distillation (r.t., 0.2 mbar) 1-methylcyclohexyl acetate ($6.87 \mathrm{~g}, 44.0 \mathrm{mmol}, 88 \%$) was obtained as a colourless liquid.

Characterisation data were consistent with literature values: ${ }^{1} \mathrm{H}^{4}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}{ }^{5} \mathrm{NMR}, \mathrm{IR} .{ }^{5}$
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta 2.15-2.08(\mathrm{~m}, 2 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}), 1.58-1.22(\mathrm{~m}, 11 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 170.6,81.9,36.8,25.6,25.5,22.6,22.3$.
$v_{\max }$ (neat)/cm ${ }^{-1}: ~ 2932,2861,1730,1448,1367,1285,1266,1232,1155,1107,10431,1017,964,945$, 918, 870, 809, 611, 467.

HRMS: Neither the parent ion nor any obvious fragments could be observed by ESI-MS.

1-Phenylcyclohexyl acetate

GP1 was performed using 1-phenylcyclohexanol ($3.52 \mathrm{~g}, 20.0 \mathrm{mmol}$), acetic anhydride ($2.84 \mathrm{~mL}, 30.0$ $\mathrm{mmol})$, pyridine $(4.0 \mathrm{~mL})$ and DMAP ($0.244 \mathrm{~g}, 2.00 \mathrm{mmol})$. After kugelrohr distillation $\left(120^{\circ} \mathrm{C}, ~ 0.3-0.4\right.$ mbar), 1-phenylcyclohexyl acetate ($3.64 \mathrm{~g}, 16.7 \mathrm{mmol}, 83 \%$) was obtained as a pale yellow liquid which solidified on standing.
${ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl_{3}): $\delta 7.37-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 1 \mathrm{H}), 2.52-2.46(\mathrm{~m}, 2 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 1.78-$ $1.70(\mathrm{~m}, 3 \mathrm{H}), 1.69-1.63(\mathrm{~m}, 4 \mathrm{H}), 1.35-1.25(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 169.7,145.8,128.4,127.1,124.7,82.6,36.4,25.5,22.3,22.2$.
$\mathbf{v}_{\text {max }}$ (neat)/cm ${ }^{-1}: 3087,3059,3028,2933,2860,1737,1494,1448,1366,1263,1227,1132,1013,960$, $910,843,817,757,696,646,630,600,537$.

HRMS: calcd. for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{2}+\mathrm{Na}^{+}$: $241.1199\left[\mathrm{M}+\mathrm{Na}^{+}\right.$; found (ESI ${ }^{+}$): 241.1196.
m.p. $/{ }^{\circ} \mathrm{C}: 57-59$, lit..6 58-59.

1-Adamantyl acetate

GP1 was performed using 1-adamantanol ($7.61 \mathrm{~g}, 50.0 \mathrm{mmol}$), acetic anhydride ($7.10 \mathrm{~mL}, 75.0 \mathrm{mmol}$), pyridine $(8.0 \mathrm{~mL})$ and DMAP ($0.612 \mathrm{~g}, 5.00 \mathrm{mmol}$). After kugelrohr distillation ($135-140{ }^{\circ} \mathrm{C}, 6-8 \mathrm{mbar}$) 1-adamantyl acetate ($9.71 \mathrm{~g}, 50.0 \mathrm{mmol},>99 \%$) was obtained as a colourless liquid.

Characterisation data were consistent with literature values: ${ }^{1} \mathrm{H}^{5}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}^{5} \mathrm{NMR}, \mathrm{IR} .{ }^{5}$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.18-2.12(\mathrm{~m}, 3 \mathrm{H}), 2.12-2.09(\mathrm{~m}, 6 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}), 1.72-1.64(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 170.4,80.4,41.4,36.4,30.9,22.9$.
$\mathbf{v}_{\max }$ (neat)/cm ${ }^{-1}$: 2910, 2853, 1731, 1456, 1367, 1354, 1241, 1059, 1016, 864.

HRMS: calcd. For $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{2}+\mathrm{Na}^{+}$: $217.1199\left[\mathrm{M}+\mathrm{Na}^{+}\right.$; found (ESI ${ }^{+}$): 217.1192.
m.p. $/{ }^{\circ} \mathrm{C}: 31-32$, lit. ${ }^{5} 31$.

1-Adamantyl pivalate

GP1 was performed using 1-adamantanol ($3.04 \mathrm{~g}, 20.0 \mathrm{mmol}$), pivalic anhydride ($5.59 \mathrm{~mL}, 30.0 \mathrm{mmol}$), pyridine (4.0 mL), and DMAP ($0.244 \mathrm{~g}, 2.00 \mathrm{mmol}$). After stirring for 1 week, the crude product was obtained as a mixture with $\mathrm{Piv}_{2} \mathrm{O}$ (1.0:0.5). Kugelrohr distillation was used to separate the two species (Piv $_{2} \mathrm{O}: 50-60^{\circ} \mathrm{C}, 0.5 \mathrm{mbar} ; 1$-adamantyl pivalate: $120-126^{\circ} \mathrm{C}$, 0.2 mbar). 1-Adamantyl pivalate (4.01 g , $17.0 \mathrm{mmol}, 85 \%$) containing $<5 \% \mathrm{Piv}_{2} \mathrm{O}$ was obtained in this manner as a colourless liquid.

Characterisation data were consistent with literature values: ${ }^{1} \mathrm{H}^{7}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}^{7} \mathrm{NMR}, \mathrm{IR} .{ }^{8}$
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.18-2.13(\mathrm{~m}, 3 \mathrm{H}), 2.11-2.07(\mathrm{~m}, 6 \mathrm{H}), 1.69-1.63(\mathrm{~m}, 6 \mathrm{H}), 1.14(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right): ~ \delta 178.0,79.7,41.4,39.4,36.4,30.9,27.4$.
$\mathbf{v}_{\text {max }}$ (neat)/cm ${ }^{-1}$: 2909, 2853, 1722, 1479, 1457, 1394, 1355, 1318, 1281, 1161, 1103, 1056, 1004, 969, 940, 917, 872, 814, 770, 573, 427, 407.

HRMS: calcd. For $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{2}+\mathrm{Na}^{+}: 259.1669\left[\mathrm{M}+\mathrm{Na}^{+}\right.$; found (ESI ${ }^{+}$): 259.1673.

1-Adamantyl benzoate

Benzoyl chloride ($1.27 \mathrm{~mL}, 11.0 \mathrm{mmol}$) was added to a solution of 1-adamantanol ($1.52 \mathrm{~g}, 10.0 \mathrm{mmol}$) in pyridine (5.0 mL) at r.t. The mixture was stirred at r.t. for 16 h , then an aqueous solution of NaHCO_{3} ($5 \% \mathrm{w} / \mathrm{v}, 25 \mathrm{~mL}$) was added. The aqueous phase was separated and extracted with dichloromethane $(3 \times 20 \mathrm{~mL})$, the organic portions were combined and washed with brine $(3 \times 20 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo to give the crude product as a colourless solid. Recrystallisation from hot methanol gave 1-adamantyl benzoate ($2.08 \mathrm{~g}, 8.12 \mathrm{mmol}, 81 \%$) as a colourless crystalline solid.

Characterisation data were consistent with literature values: ${ }^{1} \mathrm{H}^{9}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}{ }^{9} \mathrm{NMR}, \mathrm{IR} .{ }^{10}$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.01-7.96(\mathrm{~m}, 2 \mathrm{H}), 7.52(\mathrm{tt}, J=7.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.38(\mathrm{~m}, 2 \mathrm{H}), 2.28-$ $2.25(\mathrm{~m}, 6 \mathrm{H}), 2.25-2.19(\mathrm{~m}, 3 \mathrm{H}), 1.76-1.67(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 165.6,132.5,132.3,129.6,128.3,81.2,41.6,36.4,31.1$.
$\mathbf{V}_{\max }$ (neat)/cm $\mathbf{c m}^{-1}$: 2907, 2847, 1704, 1453, 1321, 1271, 1178, 1117, 1103, 1070, 1048, 1027, 711, 685.

HRMS: calcd. for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{2}+\mathrm{Na}^{+}: 279.1356\left[\mathrm{M}+\mathrm{Na}^{+}\right.$; found (ESI ${ }^{+}$): 279.1357.
m.p. $/{ }^{\circ} \mathrm{C}$: 64-65, lit. ${ }^{11}$ 66.5-67.

2-Methyl-2-adamantanol ${ }^{12}$

Methylmagnesium bromide (3.0 M in $\mathrm{Et}_{2} \mathrm{O} ; 10.0 \mathrm{~mL}, 30.0 \mathrm{mmol}$) was added to a solution of 2-adamantanone ($2.25 \mathrm{~g}, 15.0 \mathrm{mmol}$) in anhydrous THF (20 mL) at $0^{\circ} \mathrm{C}$. The mixture was stirred at 0 ${ }^{\circ} \mathrm{C}$ for 1 h before a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$ was added. The phases were separated and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times)$. The organic layers were combined, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and the solvent was removed in vacuo to give 2-methyl-2-adamantanol ($2.41 \mathrm{~g}, 14.5 \mathrm{mmol}$, 97%) as a colourless solid.

Characterisation data were consistent with literature values: ${ }^{1} \mathrm{H}^{13}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}^{13} \mathrm{NMR}$.
${ }^{1} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.21-2.15(\mathrm{~m}, 2 \mathrm{H}), 1.89-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.71(\mathrm{~m}$, $2 \mathrm{H})$, 1.69-1.65 (m, 4H), 1.58-1.53 (m, 2H), $1.42(\mathrm{~s}, 1 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, CDCl_{3}): $\delta 74.0,39.3,38.4,35.3,33.1,27.7,27.5,27.2$.
$\mathbf{v}_{\text {max }}$ (neat)/cm ${ }^{-1}: 3355,2989,2888,2852,1442,1374,1353,1334,1207,1121,1079,1045,1029,953$, 916, 870, 825, 802, 607, 492, 468, 446.

HRMS: calcd. for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}+\mathrm{Na}^{+}$: $189.1250[\mathrm{M}+\mathrm{Na}]^{+}$; found (ESI^{+}): 189.1236 .
m.p. ${ }^{\circ} \mathrm{C}:$ 203-206, lit. ${ }^{13} 207$.

2-Methyl-2-adamantyl acetate

GP1 was performed using 2-methyl-2-adamantanol ($2.00 \mathrm{~g}, 12.0 \mathrm{mmol}$), acetic anhydride (1.70 mL , $18.0 \mathrm{mmol})$, pyridine $(3.0 \mathrm{~mL})$ and DMAP $(0.147 \mathrm{~g}, 1.20 \mathrm{mmol})$. After kugelrohr distillation $\left(100{ }^{\circ} \mathrm{C}, 0.2-\right.$ 0.3 mbar), 2-methyl-2-adamantyl acetate ($2.27 \mathrm{~g}, 10.9 \mathrm{mmol}, 91 \%$) was obtained as a colourless liquid.

Characterisation data were consistent with literature values: ${ }^{1} \mathrm{H}^{14}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}^{14} \mathrm{NMR}$.
${ }^{1} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.28-2.25(\mathrm{~m}, 2 \mathrm{H}), 2.03-1.98(\mathrm{~m}, 2 \mathrm{H}$ and $\mathrm{s}, 3 \mathrm{H}), 1.89-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.81-$ $1.77(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.68(\mathrm{~m}, 3 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}), 1.58-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.53(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 170.4,86.9,38.3,36.3,34.6,33.2,27.4,26.7,22.4,22.2$.
$v_{\max }$ (neat)/cm ${ }^{-1}: 2902,2860,1726,1446,1363,1244,1218,1104,1025,956,935,887,841,609,504$, 456.

HRMS: calcd. for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{2}+\mathrm{Na}^{+}$: $231.1356\left[\mathrm{M}+\mathrm{Na}^{+}\right.$; found (ESI^{+}): 231.1347.

(+)-Cedryl acetate

GP1 was performed using (+)-cedrol ($4.45 \mathrm{~g}, 20.0 \mathrm{mmol}$), acetic anhydride ($2.84 \mathrm{~mL}, 30.0 \mathrm{mmol}$), pyridine (4.0 mL) and DMAP ($0.244 \mathrm{~g}, 2.00 \mathrm{mmol}$). After kugelrohr distillation ($130-140{ }^{\circ} \mathrm{C}, 0.1 \mathrm{mbar}$), (+)-cedryl acetate ($5.20 \mathrm{~g}, 19.7 \mathrm{mmol}, 98 \%$) was obtained as a pale yellow liquid, which solidified on standing.

Characterisation data were consistent with literature values: ${ }^{1} \mathrm{H}^{15}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}^{15}$ NMR. Note: the literature ${ }^{1} \mathrm{H}$ NMR spectroscopic data only accounts for 25 of the 28 expected protons.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.39$ (dd, $J=5.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.03 (ddt, $J=13.7,5.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), $1.96-$ $1.83(\mathrm{~m}, 5 \mathrm{H}$ including a singlet at 1.95 ppm$)$, 1.82-1.78(m, 1H), 1.68-1.60(m, 2H), 1.55-1.49 (m, 4H including a singlet at 1.54 ppm$), 1.46-1.23(\mathrm{~m}, 5 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H}), 0.97(\mathrm{~s}, 3 \mathrm{H}), 0.83(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, CDCl_{3}): $\delta 170.5,86.4,57.0,56.8,54.1,43.5,41.5,41.1,37.1,33.3,31.4,28.6$, 27.1, 26.0, 25.4, 22.9, 15.7.
$\mathbf{v}_{\max }$ (neat)/ $\mathrm{cm}^{-1}: 2963,2952,2934,2901,2872,1722,1471,1457,1364,1262,1242,1117,1086,1021$, 949, 927, 840, 757, 696, 612, 461.

HRMS: calcd. for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{2}+\mathrm{Na}^{+}$: $287.1982\left[\mathrm{M}+\mathrm{Na}^{+}\right.$; found (ESI ${ }^{+}$): 287.1981.
m.p. ${ }^{\circ} \mathrm{C}: ~ 40-42$, lit. ${ }^{15}$ 44-46.

2-Methyl-4-phenyl-2-butanol

Methylmagnesium bromide (3.0 M in $\mathrm{Et}_{2} \mathrm{O} ; 10.0 \mathrm{~mL}, 30.0 \mathrm{mmol}$) was added dropwise to a solution of 3-phenylpropionyl chloride ($1.49 \mathrm{~mL}, 10.0 \mathrm{mmol}$) in anhydrous $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ at r.t. The mixture was stirred at r.t. for 3 h , then a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$ was added. The phases were separated and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times)$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and the solvent was removed in vacuo to give 2-methyl-4-phenyl-2-butanol ($1.62 \mathrm{~g}, 9.86 \mathrm{mmol}, 99 \%$) as a colourless liquid.

Characterisation data were consistent with literature values: ${ }^{1} \mathrm{H}^{16}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}^{16} \mathrm{NMR}$.
${ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl_{3}): δ 7.31-7.27 (m, 2H), 7.23-7.17 (m, 3H), 2.74-2.69 (m, 2H), 1.83-1.78 (m, 2H), 1.30 (app. s, 7H).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, CDCl_{3}): $\delta 142.7,128.6,128.5,125.9,71.1,45.9,30.9,29.5$.
$\mathbf{v}_{\max }$ (neat)/ $\mathrm{cm}^{-1}: 3383,3026,2968,2932,2864,1604,1494,1454,1376,1210,1149,1071,1031,913$, 829, 767, 738, 697, 519.

HRMS: calcd. for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}+\mathrm{NH}_{4}^{+}$: $182.1539\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$; found ($\mathrm{ESI}{ }^{+}$): 182.1534.

2-Methyl-4-phenyl-2-butyl acetate ($d_{0}-2$)

GP1 was performed using 2-methyl-4-phenyl-2-butanol (1.64 g, 10.0 mmol), acetic anhydride (1.42 $\mathrm{mL}, 15.0 \mathrm{mmol})$, pyridine (2.0 mL) and DMAP ($0.122 \mathrm{~g}, 1.00 \mathrm{mmol}$). After kugelrohr distillation (90-100 ${ }^{\circ} \mathrm{C}$, 0.05-0.06 mbar), 2-methyl-4-phenyl-2-butyl acetate ($\boldsymbol{d}_{0}-2$) ($1.86 \mathrm{~g}, 9.02 \mathrm{mmol}, 90 \%$) was obtained as a colourless liquid.

Characterisation data were consistent with literature values: ${ }^{1} \mathrm{H}^{17}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}{ }^{17} \mathrm{NMR}, \mathrm{IR} .{ }^{17}$
${ }^{1} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.30-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.17(\mathrm{~m}, 3 \mathrm{H}), 2.67-2.62(\mathrm{~m}, 2 \mathrm{H}), 2.10-2.05(\mathrm{~m}$, 2H), 1.98 (s, 3H), 1.51 (s, 6H).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right): ~ \delta 170.6,142.2,128.51,128.50,125.9,82.1,42.8,30.5,26.2,22.5$.
$\mathbf{v}_{\max }$ (neat)/ $\mathrm{cm}^{-1}: 3027,2977,2936,2867,1730,1604,1495,1454,1366,1246,1202,1169,1123,1073$, 1017, $945,822,765,742,698,611,517,464$.

HRMS: calcd. for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2}+\mathrm{Na}^{+}$: $229.1199\left[\mathrm{M}+\mathrm{Na}^{+}\right.$; found (ESI ${ }^{+}$): 229.1200.

2-Methyl-4-phenyl-2-butanol-d ${ }_{6}$

A crystal of iodine was sublimed onto magnesium turnings ($1.09 \mathrm{~g}, 45.0 \mathrm{mmol}$) under nitrogen, then anhydrous $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$ was added. (2-Bromoethyl)benzene ($5.55 \mathrm{~g}, 30.0 \mathrm{mmol}$) was added dropwise with stirring to generate 2-phenylethylmagnesium bromide. This mixture was stirred for 0.5 h at r.t. before it was added slowly by cannula transfer to a solution of acetone $-d_{6}(1.84 \mathrm{~mL}, 25.0 \mathrm{mmol})$ in anhydrous $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$. The mixture was stirred at $\mathrm{r} . \mathrm{t}$. for 1 h , then a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$ was added. The phases were separated and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times)$. The organic layers were combined, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and the solvent was removed in vacuo. The crude material was layered onto a pad of silica gel which was eluted sequentially with pentane (to remove the 1,4-diphenylbutane side-product) and $\mathrm{Et}_{2} \mathrm{O}$ to give 2-methyl-4-phenyl-2-butanol- d_{6} (3.50 g, $20.5 \mathrm{mmol}, 82 \%,>99 \%$ deuterium incorporation) as a colourless liquid.
${ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl_{3}): $\delta 7.31-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.16(\mathrm{~m}, 3 \mathrm{H}), 2.73-2.68(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.77(\mathrm{~m}$, $2 \mathrm{H}), 1.25(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, CDCl_{3}): $\delta 142.7,128.6,128.5,125.9,70.8,45.8,30.9,28.5$ (1:3:6:7:6:3:1 h, J = 19.2 Hz).
$v_{\text {max }}$ (neat)/cm ${ }^{-1}: 3376,3027,2935,2863,2224,1603,1497,1454,1263,1175,1114,1050,956,812$, 743, 696, 577, 509, 465, 430.

HRMS: calcd. for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{D}_{6} \mathrm{O}+\mathrm{Na}^{+}$: $193.1470[\mathrm{M}+\mathrm{Na}]^{+}$; found (ESI^{+}): 193.1477.

2-Methyl-4-phenyl-2-butyl acetate- $d_{6}\left(d_{6}-2\right)$

GP1 was performed using 2-methyl-4-phenyl-2-butanol- $d_{6}(2.55 \mathrm{~g}, 15.0 \mathrm{mmol})$, acetic anhydride $(2.13 \mathrm{~mL}, 22.5 \mathrm{mmol})$, pyridine $(3.0 \mathrm{~mL})$ and DMAP ($0.183 \mathrm{~g}, 1.50 \mathrm{mmol})$. After kugelrohr distillation (90-100 $\left.{ }^{\circ} \mathrm{C}, 0.05-0.06 \mathrm{mbar}\right), 2-m e t h y l-4-$ phenyl-2-butyl acetate- $d_{6}\left(d_{6}-2\right)(3.06 \mathrm{~g}, 14.4 \mathrm{mmol}, 96 \%$, $>99 \%$ deuterium incorporation) was obtained as a colourless liquid.
${ }^{1} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.30-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.17(\mathrm{~m}, 3 \mathrm{H}), 2.67-2.62(\mathrm{~m}, 2 \mathrm{H}), 2.09-2.04(\mathrm{~m}$, 2H), 1.98 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right): ~ \delta 170.6,142.3,128.5,128.5,125.9,81.8,42.7,30.4,25.3$ (1:3:6:7:6:3:1 h, $J=19.2 \mathrm{~Hz}$), 22.5.
$\mathbf{v}_{\max }$ (neat)/cm ${ }^{-1}: 3027,2935,2866,2232,1728,1498,1454,1366,1252,1168,1104,1041,1018,963$, $923,809,745,697,607,509,462,436$.

HRMS: calcd. for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{D}_{6} \mathrm{O}_{2}+\mathrm{Na}^{+}: 235.1576[\mathrm{M}+\mathrm{Na}]^{+}$; found (ESI ${ }^{+}$): 235.1576.

3. Determination of $\mathrm{Zn}_{3} \mathrm{P}_{2}$ Purity and Protonolysis Rate (Manuscript Scheme 2B)

CAUTION: phosphine gas is highly toxic and is spontaneously flammable in air. Procedures that use phosphine gas should only be performed following appropriate training after consultation with local safety advisors, and after completing a thorough risk assessment. A syringe-stop should be employed to ensure that the barrel of the gas-syringe cannot be ejected during the titration.

Solid $\mathrm{Zn}_{3} \mathrm{P}_{2}$ (for mass see Figure S1) was added to a two-necked flask fitted with septa. The flask was evacuated and backfilled with anhydrous dinitrogen $(3 \times)$ before a gas syringe (50 mL) with a luer lock needle was inserted through one of the septa and purged with $N_{2}(3 \times)$. The flask was then disconnected from the Schlenk line and degassed aqueous $\mathrm{HCl}(5.0 \mathrm{M} ; 2.0 \mathrm{~mL}, 10 \mathrm{mmol}$) was added quickly in one portion using a Luer lock syringe. CAUTION: gas pressure within the apparatus increases immediately; the plunger of the syringe used to add hydrochloric acid should be held down after the acid has been added and while the syringe is removed carefully from the apparatus. The time taken for generation of gas was measured in 2.0 mL increments (taking into account the volume of hydrochloric acid (2.0 mL) that was added), and the mixture was stirred until no further gas was released. A solution of KMnO_{4} in aqueous sulfuric acid (0.50 M in $0.50 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}, 10 \mathrm{~mL}, 5.0 \mathrm{mmol}$) was added slowly, and the plunger of the gas syringe was driven back in to allow oxidation of the PH_{3} gas. CARE! exothermic reaction. After 10 minutes the vessel was opened to air.

Volumetric gas evolution data for two independent experiments are displayed in Figure S1.

Figure S1. Volumetric gas titration of $\mathrm{Zn}_{3} \mathrm{P}_{2}$.

Blue - Run 1 ($0.128 \mathrm{~g} \mathrm{Zn}_{3} \mathrm{P}_{2}, 0.496 \mathrm{mmol}$ at 100% purity): $19.0 \pm 0.5 \mathrm{~mL}$ gas evolved in 583 s. Using PV = nRT ($\mathrm{P}=1.00$ bar, $\mathrm{T}=297 \mathrm{~K}) . \mathrm{n}=0.780 \mathrm{mmol}$ gas. Purity $=\mathbf{7 8 . 6 \%}$.

Orange - Run 2 ($0.129 \mathrm{~g} \mathrm{Zn}_{3} \mathrm{P}_{2}, 0.500 \mathrm{mmol}$ at 100% purity): $19.0 \pm 0.5 \mathrm{~mL}$ gas evolved in 674 s.
Using PV = nRT $(P=1.00$ bar, $T=297 K) . n=0.780$ mmol gas. Purity $=\mathbf{7 8 . 0 \%}$.

4. Screening of Carbocation Sources (Manuscript Scheme 2C)

CAUTION: phosphine gas is highly toxic and is spontaneously flammable in air. Procedures that use phosphine gas should only be performed following appropriate training after consultation with local safety advisors, and after completing a thorough risk assessment. All CO-ware apparatus should be inspected for scratches or imperfections prior to use; new CO-ware septa should be used for each reaction, and the manufacturer's guidelines should be followed (no more than 2 injections per septum, using a needle with a diameter of 21 g (0.08 mm) or less). CO-ware is recommended for routine use at pressures up to 46 psi , and not above 60 psi ; this should be considered when changing reaction scales from those presented in this Supporting Information.

Zinc phosphide (78.0% purity, $0.165 \mathrm{~g}, 0.50 \mathrm{mmol}$ (to give $1.00 \mathrm{mmol}_{\mathrm{mH}}^{3}$)) was added to chamber one of a two-chamber reactor (CO-ware, 20 mL total volume, fitted with compatible septa). The reactor was evacuated and backfilled with anhydrous dinitrogen ($3 \times$). Tert-amyl carbocation source (6.00 mmol, 6.00 equiv.) and trimethylsilyl trifluoromethanesulfonate ($0.181 \mathrm{~mL}, 1.00 \mathrm{mmol}$) or trifluoromethanesulfonic acid ($0.088 \mathrm{~mL}, 1.00 \mathrm{mmol}$) were added to chamber two. Degassed aqueous hydrochloric acid ($5.0 \mathrm{M} ; 2.0 \mathrm{~mL}, 10 \mathrm{mmol}$) was added to chamber one quickly in a single portion using a Luer lock syringe. CAUTION: gas pressure within the apparatus increases immediately; the plunger of the syringe used to add hydrochloric acid should be held down after the acid has been added and while the syringe is removed carefully from the apparatus. The reaction was stirred at r.t. for 4 h . The reactor was then opened to air and an aliquot was removed from chamber two for ${ }^{31} \mathrm{P}$ NMR spectroscopic analysis.

5. Synthesis of Di-tert-alkylphosphonium Salts $\underline{1}$ (Manuscript Scheme 3)

General procedure - Synthesis of di-tert-alkylphosphonium salts (GP2)

CAUTION: phosphine gas is highly toxic and is spontaneously flammable in air. Procedures that use phosphine gas should only be performed following appropriate training and after consultation with local safety advisors.

Zinc phosphide (78.0% purity, $0.165 \mathrm{~g}, 0.50 \mathrm{mmol}$ (to give $1.00 \mathrm{mmol}_{\mathrm{PH}}^{3}$)) was added to chamber one of a two-chamber reactor (CO-ware, 20 mL total volume, fitted with compatible septa). The reactor was evacuated and backfilled with anhydrous dinitrogen ($3 \times$). Tert-alkyl ester ($3.00 \mathrm{mmol}, 3.00$ equiv.) and trimethylsilyl trifluoromethanesulfonate ($0.181 \mathrm{~mL}, 1.00 \mathrm{mmol}$) were added to chamber two. Degassed hydrochloric acid ($5.0 \mathrm{M} ; 2.0 \mathrm{~mL}, 10 \mathrm{mmol}$) was added to chamber one quickly in a single portion using a Luer lock syringe. CAUTION: gas pressure within the apparatus increases immediately; the plunger of the syringe used to add hydrochloric acid should be held down after the acid has been added and while the syringe is removed carefully from the apparatus. The reaction was stirred at r.t. for 4 h . The reactor was then opened to air and washed into a flask with $\mathrm{Et}_{2} \mathrm{O}$. Products that spontaneously precipitated/crystallised from solution were isolated by filtration and washed with $\mathrm{Et}_{2} \mathrm{O}$. If the product did not spontaneously precipitate/crystallise, the reaction was concentrated in vacuo before $\mathrm{Et}_{2} \mathrm{O}$ was added; if no precipitation/crystallisation occurred at this point, mixtures were placed in a freezer at $-25^{\circ} \mathrm{C}$ overnight. The isolated phosphonium salts are stable under ambient laboratory conditions for at least a year.

Di-tert-amylphosphonium trifluoromethanesulfonate (1a)

Conditions 1: GP2 was performed using tert-amyl acetate ($0.460 \mathrm{~mL}, 3.00 \mathrm{mmol}$). Di-tertamylphosphonium trifluoromethanesulfonate 1 a ($0.151 \mathrm{~g}, 0.466 \mathrm{mmol}, 47 \%$) was obtained as a colourless crystalline solid.

Conditions 2: GP2 was performed using tert-amyl acetate ($0.920 \mathrm{~mL}, 6.00 \mathrm{mmol}$). Di-tertamylphosphonium trifluoromethanesulfonate 1a ($0.249 \mathrm{~g}, 0.768 \mathrm{mmol}, 77 \%$) was obtained as a colourless crystalline solid.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.41$ (d, $J=472.5 \mathrm{~Hz}, 2 \mathrm{H}$), $1.89(\mathrm{dq}, J=14.8,7.4 \mathrm{~Hz}, 4 \mathrm{H}), 1.54(\mathrm{~d}, \mathrm{~J}=18.5$ $\mathrm{Hz}, 12 \mathrm{H}), 1.08(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, CDCl_{3}): $\delta 120.7(\mathrm{q}, J=319.8 \mathrm{~Hz}), 35.5(\mathrm{~d}, \mathrm{~J}=33.6 \mathrm{~Hz}), 32.9,24.6,8.0(\mathrm{~d}, J=8.7$ Hz).
${ }^{19}$ F NMR (470 MHz, CDCl_{3}): $\delta-78.47$.
${ }^{31}$ P NMR (202 MHz, CDCl ${ }_{3}$): $\delta 15.25(\mathrm{tm}, J=472.6 \mathrm{~Hz})$.
$\mathbf{v}_{\max }($ neat $) / \mathrm{cm}^{-1}: 2975,2424,1509,1468,1418,1250,1222,1153,1065,1026,939,867,828,812,772$, $755,702,675,635,572,516,494,418$.

HRMS: calcd. for $\mathrm{C}_{10} \mathrm{H}_{24} \mathrm{P}^{+}$: 175.1610 [M-OTf] ${ }^{+}$; found (ESI ${ }^{+}$): 175.1613.
m.p. $/{ }^{\circ} \mathrm{C}: ~ 113-115$.

Di-(3-methyl-3-pentyl)phosphonium trifluoromethanesulfonate (1b)

Conditions 1: GP2 was performed using 3-methyl-3-pentyl acetate ($0.433 \mathrm{~g}, 3.00 \mathrm{mmol}$). Di-(3-methyl-3-pentyl)phosphonium trifluoromethanesulfonate 1b ($0.159 \mathrm{~g}, 0.451 \mathrm{mmol}, 45 \%$) was obtained as a colourless crystalline solid.

Conditions 2: GP2 was performed on a 5.0 mmol scale in a 100 mL CO-ware reactor using $\mathrm{Zn}_{3} \mathrm{P}_{2}$ (78.0% purity, $0.827 \mathrm{~g}, 2.50 \mathrm{mmol}), 3-m e t h y l-3-$ pentyl acetate ($2.16 \mathrm{~g}, 15.0 \mathrm{mmol}$), trimethylsilyl trifluoromethanesulfonate $(0.905 \mathrm{~mL}, 5.00 \mathrm{mmol}$) and degassed hydrochloric acid (5.0 M ; $10 \mathrm{~mL}, 50$ mmol). Di-(3-methyl-3-pentyl)phosphonium trifluoromethanesulfonate 1b (1.14 g, $3.24 \mathrm{mmol}, 65 \%$) was obtained as a colourless crystalline solid.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.36(\mathrm{~d}, \mathrm{~J}=470.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.00-1.83(\mathrm{~m}, 8 \mathrm{H}), 1.54(\mathrm{~d}, \mathrm{~J}=18.7 \mathrm{~Hz}, 6 \mathrm{H}), 1.08$ ($\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 12 \mathrm{H}$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, CDCl_{3}): $\delta 120.7(\mathrm{q}, J=319.7 \mathrm{~Hz}), 39.8(\mathrm{~d}, J=32.0 \mathrm{~Hz}), 29.6,22.2,7.9(\mathrm{~d}, J=7.9$ Hz).
${ }^{19}$ F NMR (470 MHz, CDCl_{3}): $\delta-78.42$.
${ }^{31}$ P NMR (202 MHz, CDCl ${ }_{3}$): $\delta 3.45$ ($\mathrm{tm}, \mathrm{J}=470.3 \mathrm{~Hz}$).
$\mathbf{V}_{\max }$ (neat)/cm ${ }^{-1}: 2978,2949,2887,2410,1460,1394,1248,1222,1148,1027,939,754,635,571,516$.

HRMS: calcd. for $\mathrm{C}_{12} \mathrm{H}_{28} \mathrm{P}^{+}$: 203.1923 [M-OTf] ${ }^{+}$; found (ESI ${ }^{+}$): 203.1920.
m.p. $/{ }^{\circ} \mathrm{C}: 105-109$.

Di-(3-ethyl-3-pentyl)phosphonium trifluoromethanesulfonate (1c)

Conditions 1: GP2 was performed using 3-ethyl-3-pentyl acetate ($0.475 \mathrm{~g}, 3.00 \mathrm{mmol}$). Di-(3-ethyl-3pentyl)phosphonium trifluoromethanesulfonate 1c ($0.336 \mathrm{~g}, 0.883 \mathrm{mmol}, 88 \%$) was obtained as a colourless crystalline solid.

Conditions 2: GP2 was performed on a 5.0 mmol scale in a 100 mL CO-ware reactor using $\mathrm{Zn}_{3} \mathrm{P}_{2}$ (78.0\% purity, $0.827 \mathrm{~g}, 2.50 \mathrm{mmol})$, 3-ethyl-3-pentyl acetate ($2.37 \mathrm{~g}, 15.0 \mathrm{mmol}$), trimethylsilyl trifluoromethanesulfonate ($0.91 \mathrm{~mL}, 5.0 \mathrm{mmol}$) and degassed hydrochloric acid (5.0 M ; $10 \mathrm{~mL}, 50$ mmol). Di-(3-ethyl-3-pentyl)phosphonium trifluoromethanesulfonate $\mathbf{1 c}(1.84 \mathrm{~g}, 4.84 \mathrm{mmol}, 97 \%)$ was obtained as a colourless crystalline solid.

A triplet of 13 -ets is expected in the ${ }^{31} \mathrm{P}$ NMR spectrum, from ${ }^{1} J_{\mathrm{P}-\mathrm{H}}$ and ${ }^{3} \int_{\mathrm{P} \text {-H }}$ couplings respectively. However, the lower intensity peaks of the multiplet are not observed due to poor signal:noise, and as such is reported below as a triplet of multiplets with both coupling constants given.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.21(\mathrm{~d}, J=468.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.89(\mathrm{dq}, J=17.4,7.4 \mathrm{~Hz}, 12 \mathrm{H}), 1.05(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 18 \mathrm{H}$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, CDCl ${ }_{3}$): $\delta 120.8(\mathrm{q}, J=320.1 \mathrm{~Hz}), 44.9(\mathrm{~d}, J=29.1 \mathrm{~Hz}), 27.2,8.0(\mathrm{~d}, J=7.1 \mathrm{~Hz})$.
${ }^{19}$ F NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-78.38$.
${ }^{31}$ P NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-13.43(\mathrm{tm}, J=468.9,17.3 \mathrm{~Hz})$.
$\mathbf{v}_{\max }$ (neat)/cm ${ }^{-1}: 2976,2938,2885,2424,2400,1456,1393,1272,1243,1222,1153,1025,957,896$, $862,755,635,600,572,515,450,410$.

HRMS: calcd. for $\mathrm{C}_{14} \mathrm{H}_{28} \mathrm{P}^{+}: 231.2236$ [M-OTf] ${ }^{+}$; found (ESI ${ }^{+}$): 231.2239.
m.p. ${ }^{\circ} \mathrm{C}: ~ 115-117$.

Bis-(2,3-dimethyl-2-butyl)phosphonium trifluoromethanesulfonate (1d)

GP2 was performed using 2,3-dimethyl-2-butyl acetate ($0.433 \mathrm{~g}, 3.00 \mathrm{mmol}$). Bis-(2,3-dimethyl-2butyl)phosphonium trifluoromethanesulfonate $1 \mathrm{~d}(0.281 \mathrm{~g}, 0.797 \mathrm{mmol}, 80 \%)$ was obtained as a colourless crystalline solid.
${ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl_{3}): $\delta 6.46(\mathrm{~d}, J=472.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.15(\mathrm{dh}, J=10.8,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.52(\mathrm{~d}, J=18.8$, 12 H), 1.09 ($\mathrm{d}, \mathrm{J}=6.8,12 \mathrm{H}$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, CDCl ${ }_{3}$): $\delta 120.8(\mathrm{q}, J=320.1 \mathrm{~Hz}), 39.8(\mathrm{~d}, \mathrm{~J}=32.1 \mathrm{~Hz}), 35.4,22.7,17.5(\mathrm{~d}, J=$ 6.8 Hz).
${ }^{19}$ F NMR (470 MHz, CDCl_{3}): $\delta-78.37$.
${ }^{31}$ P NMR (202 MHz, CDCl ${ }_{3}$): $\delta 8.02(\mathrm{tm}, J=472.3 \mathrm{~Hz})$.
$v_{\max }($ neat $) / \mathrm{cm}^{-1}: 2973,2415,1470,1392,1377,1254,1222,1157,1083,1025,934,757,635,572,516$, 423.

HRMS: calcd. for $\mathrm{C}_{12} \mathrm{H}_{28} \mathrm{P}^{+}$: 203.1923 [M-OTf] ${ }^{+}$; found (ESI ${ }^{+}$): 203.1922.
m.p. $/{ }^{\circ} \mathrm{C}: 151-154$.

Bis-(2,3,3-trimethyl-2-butyl)phosphonium trifluoromethanesulfonate (1e)

GP2 was performed using 2,3,3-trimethyl-2-butyl acetate ($0.475 \mathrm{~g}, 3.00 \mathrm{mmol}$). Bis-(2,3,3-trimethyl-2-butyl)phosphonium trifluoromethanesulfonate $1 \mathbf{e}(0.294 \mathrm{~g}, 0.773 \mathrm{mmol}, 77 \%$) was obtained as a colourless crystalline solid.

A triplet of 13 -ets is expected in the ${ }^{31} \mathrm{P}$ NMR spectrum, from ${ }^{1} /_{P-H}$ and ${ }^{3} /_{P-H}$ couplings respectively. However, the lower intensity peaks of the multiplet are not observed due to poor signal:noise, and as such is reported below as a triplet of multiplets with both coupling constants given.
${ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl ${ }_{3}$): $\delta 6.50(\mathrm{~d}, \mathrm{~J}=468.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.57(\mathrm{~d}, J=18.6 \mathrm{~Hz}, 12 \mathrm{H}), 1.18(\mathrm{~s}, 18 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, CDCl 3): $\delta 120.8(\mathrm{q}, J=320.1 \mathrm{~Hz}), 43.7(\mathrm{~d}, \mathrm{~J}=29.5 \mathrm{~Hz}), 38.7,25.8(\mathrm{~d}, \mathrm{~J}=5.7 \mathrm{~Hz})$, 21.9.
${ }^{19}$ F NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-78.22$.
${ }^{31}$ P NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-7.25(\mathrm{tm}, J=469.1,18.6 \mathrm{~Hz})$.
$\mathbf{V}_{\max }($ neat $) / \mathrm{cm}^{-1}: 2981,2881,2430,1476,1388,1250,1224,1148,1029,964,755,636,572,516$.

HRMS: calcd. for $\mathrm{C}_{14} \mathrm{H}_{32} \mathrm{P}^{+}$: 231.2236 [M-OTf] $^{+}$; found (ESI ${ }^{+}$): 231.2235.
m.p. ${ }^{\circ} \mathrm{C}: ~ 134-137$.

Di-(2-methyl-4-phenyl-2-butyl)phosphonium trifluoromethanesulfonate (1f)

Conditions 1: GP2 was performed using 2-methyl-4-phenyl-2-butyl isobutyrate ($0.619 \mathrm{~g}, 3.00 \mathrm{mmol}$). Di-(2-methy-4-phenyl-2-butyl)phosphonium trifluoromethanesulfonate $1 \mathrm{f}(0.398 \mathrm{~g}, 0.835 \mathrm{mmol}, 83 \%$) was obtained as a colourless crystalline solid.

Conditions 2: GP2 was performed on a 5.0 mmol scale in a 100 mL CO-ware reactor using $\mathrm{Zn}_{3} \mathrm{P}_{2}$ (78.0\% purity, $0.827 \mathrm{~g}, 2.50 \mathrm{mmol}$), 2-methyl-4-phenyl-2-butyl isobutyrate ($3.51 \mathrm{~g}, 15.0 \mathrm{mmol}$), trimethylsilyl trifluoromethanesulfonate ($0.905 \mathrm{~mL}, 5.00 \mathrm{mmol}$) and degassed hydrochloric acid ($5.0 \mathrm{M} ; 10 \mathrm{~mL}, 50$ mmol). Di-(2-methyl-4-phenyl-2-butyl)phosphonium trifluoromethanesulfonate 1 f (2.02 g, 4.24 mmol, 85\%) was obtained as a colourless crystalline solid.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.30-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.24-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.14(\mathrm{~m}, 4 \mathrm{H}), 6.57(\mathrm{~d}, \mathrm{~J}=476.5$ $\mathrm{Hz}, 2 \mathrm{H}), 2.76-2.69(\mathrm{~m}, 4 \mathrm{H}), 2.14-2.05(\mathrm{~m}, 4 \mathrm{H}), 1.60(\mathrm{~d}, \mathrm{~J}=18.4 \mathrm{~Hz}, 12 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, CDCl_{3}): $\delta 139.7,129.0,128.5,126.8,120.7(\mathrm{q}, \mathrm{J}=319.9 \mathrm{~Hz}), 41.8,35.4(\mathrm{~d}, \mathrm{~J}=$ $33.1 \mathrm{~Hz}), 29.8(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}), 25.2$.
${ }^{19}$ F NMR (470 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta-78.34$.
${ }^{31}$ P NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 14.52(\mathrm{tm}, J=476.6 \mathrm{~Hz})$.
$\mathbf{v}_{\text {max }}$ (neat)/cm ${ }^{-1}: 3065,3029,2965,2936,2863,2427,2397,1603,1498,1456,1379,1273,1248,1220$, 1152, 1025, 986, 935, 745, 701, 636, 572, 516, 466, 418.

HRMS: calcd. for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{P}^{+}$: 327.2236 [M-OTf] ${ }^{+}$; found (ESI ${ }^{+}$): 327.2239.

Di-(2-Methyl-4-(4-bromophenyl)-2-butyl)phosphonium trifluoromethanesulfonate (1g)

GP2 was performed using 2-methyl-4-(4-bromophenyl)-2-butyl acetate ($0.856 \mathrm{~g}, 3.00 \mathrm{mmol}$). Di-(2-methyl-4-(4-bromophenyl)-2-butyl)phosphonium trifluoromethanesulfonate $\mathbf{1 g}$ ($0.401 \mathrm{~g}, 0.632 \mathrm{mmol}$, $63 \%)$ was obtained as a colourless crystalline solid.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.39(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 4 \mathrm{H}), 7.05(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 4 \mathrm{H}), 6.64(\mathrm{~d}, J=478.1 \mathrm{~Hz}, 2 \mathrm{H})$, 2.71-2.64 (m, 4H), 2.10-2.00 (m, 4H), 1.62-1.52 (d, J = $18.2 \mathrm{~Hz}, 12 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, CDCl_{3}): $\delta 138.8,132.0,130.3,120.7(\mathrm{q}, \mathrm{J}=320.1 \mathrm{~Hz}), 120.6,41.9,35.2(\mathrm{~d}, \mathrm{~J}=$ $31.9 \mathrm{~Hz}), 29.2(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}), 25.2$.
${ }^{19}$ F NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-78.36$.
${ }^{31}$ P NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 14.43$ ($\mathrm{tm}, \mathrm{J}=479.6 \mathrm{~Hz}$).
$\mathbf{v}_{\max }$ (neat)/cm ${ }^{-1}: \mathbf{2 9 6 5}, 2943,2873,2416,2391,1488,1471,1402,1377,1252,1222,1154,1071,1027$, $1009,922,798,756,636,608,572,515,486,456$.

HRMS: calcd. for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{Br}_{2} \mathrm{P}^{+}$: 483.0446 [$\left.\mathrm{M}-\mathrm{OTf}\right]^{+}$; found (ESI^{+}): 483.0448.
m.p. $/{ }^{\circ} \mathrm{C}: ~ 93-95$.

Di-(1-methylcyclopentyl)phosphonium trifluoromethanesulfonate (1h)

Conditions 1: GP2 was performed using 1-methylcyclopentyl acetate ($0.427 \mathrm{~g}, 3.00 \mathrm{mmol}$). Di-(1methylcyclopentyl)phosphonium trifluoromethanesulfonate 1 h ($0.118 \mathrm{~g}, 0.339 \mathrm{mmol}, 34 \%$) was obtained as a colourless crystalline solid.

Conditions 2: GP2 was performed using 1-methylcyclopentyl acetate ($0.853 \mathrm{~g}, 6.00 \mathrm{mmol}$). Di-(1methylcyclopentyl)phosphonium trifluoromethanesulfonate 1 h ($0.193 \mathrm{~g}, 0.554 \mathrm{mmol}, 55 \%$) was obtained as a colourless crystalline solid.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.53(\mathrm{~d}, \mathrm{~J}=478.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.21-2.08(\mathrm{~m}, 4 \mathrm{H}), 1.95-1.82(\mathrm{~m}, 12 \mathrm{H}), 1.50(\mathrm{~d}$, $J=18.0 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, CDCl ${ }_{3}$): $\delta 120.7(q, J=320.0 \mathrm{~Hz}), 38.6(\mathrm{~d}, \mathrm{~J}=2.7 \mathrm{~Hz}), 37.3(\mathrm{~d}, \mathrm{~J}=38.7 \mathrm{~Hz}), 24.4$ (d, J = 9.1 Hz), $23.7(\mathrm{~d}, J=3.4 \mathrm{~Hz})$.
${ }^{19}$ F NMR (470 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta-78.50$.
${ }^{31}$ P NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 18.22$ ($\mathrm{tm}, \mathrm{J}=478.2 \mathrm{~Hz}$).
$\mathbf{v}_{\max }$ (neat)/cm ${ }^{-1}: 29692878,2442,2415,1453,1390,1248,1222,1147,1025,943,915,755,635,572$, 515, 475.40.

HRMS: calcd. for $\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{P}^{+}$: 199.1610 [M-OTf] ${ }^{+}$; found (ESI ${ }^{+}$): 199.1619.
m.p. $/{ }^{\circ} \mathrm{C}: 58-61$.

Di-(1-methylcyclohexyl)phosphonium trifluoromethanesulfonate (1i)

GP2 was performed using 1-methylcyclohexyl acetate (0.469 g, 3.00 mmol). Di-(1methylcyclohexyl)phosphonium trifluoromethanesulfonate 1 i ($0.278 \mathrm{~g}, 0.739 \mathrm{mmol}$, 74%) was obtained as a colourless crystalline solid.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.33(\mathrm{~d}, \mathrm{~J}=469.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.05-1.96(\mathrm{~m}, 4 \mathrm{H}), 1.89-1.82(\mathrm{~m}, 4 \mathrm{H}), 1.69-1.60$ (m, 16H), 1.45-1.41 (m, 2H).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, CDCl ${ }_{3}$): $\delta 120.7(\mathrm{q}, \mathrm{J}=320.1 \mathrm{~Hz}), 36.2(\mathrm{~d}, \mathrm{~J}=33.8 \mathrm{~Hz}), 35.1,24.8,21.6 .20 .7$ (d, $J=9.6 \mathrm{~Hz}$.
${ }^{19}$ F NMR (470 MHz, CDCl_{3}): $\delta-78.41$.
${ }^{31}$ P NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 17.44(\mathrm{tm}, J=470.1 \mathrm{~Hz})$.
$\mathbf{v}_{\max }($ neat $) / \mathrm{cm}^{-1}: ~ 2932,2862,2426,2403,1460,1388,1350,1250,1222,1151,1025,988,968,941$, $920,847,756,635,613,571,515,466,440$.

HRMS: calcd. for $\mathrm{C}_{14} \mathrm{H}_{28} \mathrm{P}^{+}$: 227.1923 [M-OTf] ${ }^{+}$; found (ESI ${ }^{+}$): 227.1928.
m.p. ${ }^{\circ} \mathrm{C}: 138-142$.

Di-(1-phenylcyclohexyl)phosphonium trifluoromethanesulfonate (1j)

Conditions 1: GP2 was performed using a solution of 1-phenylcyclohexyl acetate ($0.655 \mathrm{~g}, 3.00 \mathrm{mmol}$) dissolved in degassed anhydrous dichloromethane (2.0 mL), with chamber two heated to $40{ }^{\circ} \mathrm{C}$. Di-(1phenylcyclohexyl)phosphonium trifluoromethanesulfonate $\mathbf{1 j}$ ($0.203 \mathrm{~g}, 0.369 \mathrm{mmol}, 37 \%$) was obtained as a colourless crystalline solid.

Conditions 2: GP2 was performed using 1-phenylcyclohexyl acetate ($0.655 \mathrm{~g}, 3.00 \mathrm{mmol}$), with chamber two heated to $40{ }^{\circ} \mathrm{C}$. Di-(1-phenylcyclohexyl)phosphonium trifluoromethanesulfonate $\mathbf{1 j}$ ($0.291 \mathrm{~g}, 0.581 \mathrm{mmol}, 58 \%$) was obtained as a colourless crystalline solid.
${ }^{1} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.50-7.44(\mathrm{~m}, 4 \mathrm{H}), 7.43-7.32\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{Ar}-\mathrm{H}+\right.$ one peak of PH_{2} doublet), 6.18 (app. s, 1 H , one peak of PH_{2} doublet), 2.10-2.00 (m, 4H), 1.89-1.78 (m, 4H), 1.53-1.41 (m, 6H), 1.38-1.23 (m, 6H).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, CDCl ${ }_{3}$): $\delta 133.6,130.0(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 129.2(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 128.0(\mathrm{~d}, J=5.4 \mathrm{~Hz})$, 120.9 (q, $J=320.2 \mathrm{~Hz}$), 42.3 ($d, J=31.9 \mathrm{~Hz}$), 33.1, 25.0, $21.0(\mathrm{~d}, J=9.7 \mathrm{~Hz})$.
${ }^{19}$ F NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-78.26$.
${ }^{31}$ P NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 18.28$ ($\mathrm{tm}, \mathrm{J}=478.6 \mathrm{~Hz}$).
$v_{\max }$ (neat)/cm ${ }^{-1}: 2940,2858,2398,2366,1448,1256,1222,1142,1051,1026,948,750,699,634,571$, 514, 415.

HRMS: calcd. for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{P}^{+}: 351.2236$ [M-OTf] ${ }^{+}$; found (ESI ${ }^{+}$): 351.2232.
m.p. $/{ }^{\circ} \mathrm{C}: ~ 167-170$.

Di-(1-Adamantyl)phosphonium trifluoromethanesulfonate (1k)

Conditions 1: GP2 was performed using a solution of 1-adamantyl acetate ($0.583 \mathrm{~g}, 3.00 \mathrm{mmol}$) dissolved in degassed anhydrous dichloromethane (2.0 mL), with chamber two heated to $40^{\circ} \mathrm{C}$. $\mathrm{Di}-(1-$ adamantyl) phosphonium trifluoromethanesulfonate $1 \mathrm{k}(0.378 \mathrm{~g}, 0.835 \mathrm{mmol}, 84 \%)$ was obtained as a colourless crystalline solid.

Conditions 2: GP2 was performed using a solution of 1-adamantyl benzoate ($0.769 \mathrm{~g}, 3.00 \mathrm{mmol}$) dissolved in degassed anhydrous dichloromethane (2.0 mL), with chamber two heated to $40^{\circ} \mathrm{C}$. Di-(1adamantyl) phosphonium trifluoromethanesulfonate $1 \mathrm{k}(0.373 \mathrm{~g}, 0.824 \mathrm{mmol}, 82 \%)$ was obtained as a colourless crystalline solid.

Conditions 3: GP2 was performed using a solution of 1-adamantyl pivalate ($0.709 \mathrm{~g}, 3.00 \mathrm{mmol}$) dissolved in degassed anhydrous dichloromethane (2.0 mL), with chamber two heated to $40^{\circ} \mathrm{C}$. $\mathrm{Di}-(1-$ adamantyl) phosphonium trifluoromethanesulfonate $1 \mathrm{k}(0.380 \mathrm{~g}, 0.840 \mathrm{mmol}, 84 \%)$ was obtained as a colourless crystalline solid.

Conditions 4: GP2 was performed on a 5.0 mmol scale in a 100 mL CO-ware reactor using $\mathrm{Zn}_{3} \mathrm{P}_{2}$ (78.0\% purity, $0.827 \mathrm{~g}, 2.50 \mathrm{mmol})$, 1-adamantyl acetate $(2.91 \mathrm{~g}, 15.0 \mathrm{mmol})$, trimethylsilyl trifluoromethanesulfonate ($0.905 \mathrm{~mL}, 5.00 \mathrm{mmol}$) and degassed hydrochloric acid ($5.0 \mathrm{M} ; 10 \mathrm{~mL}, 50$ $\mathrm{mmol})$. Di-(1-adamantyl)phosphonium trifluoromethanesulfonate $1 \mathbf{k}$ ($2.06 \mathrm{~g}, 4.55 \mathrm{mmol}, 91 \%$) was obtained as a colourless crystalline solid.

Note: one of the peaks of the doublet at 35.4 ppm in the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum overlaps with the doublet at 35.5 ppm , but can be observed with additional processing.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.99(\mathrm{~d}, J=469.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.21-2.16(\mathrm{br} . \mathrm{m}, 12 \mathrm{H}), 2.14-2.09(\mathrm{br} . \mathrm{m}, 6 \mathrm{H})$, 1.84-1.78 (br. m, 12H).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, CDCl_{3}): $\delta 120.8(\mathrm{q}, J=320.4 \mathrm{~Hz}), 38.9(\mathrm{~d}, J=2.0 \mathrm{~Hz}), 35.5(\mathrm{~d}, J=2.0 \mathrm{~Hz}), 35.4$ (d, $J=34.8 \mathrm{~Hz}$), $27.5(\mathrm{~d}, J=10.4 \mathrm{~Hz}$).
${ }^{19}$ F NMR (470 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta-78.31$.
${ }^{31}$ P NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 13.04(\mathrm{t}, \mathrm{J}=469.6 \mathrm{~Hz})$.
$\mathbf{v}_{\text {max }}($ neat $) / \mathrm{cm}^{-1}: 2906,2854,2424,2400,1450,1345,1305,1276,1245,1221,1154,1022,973,944$, 898, 755 ,634, 571, 515, 489, 447.40, 417.

HRMS: calcd. for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{P}^{+}: 303.2236$ [M-OTf] ${ }^{+}$; found (ESI ${ }^{+}$): 303.2258.
m.p. $/{ }^{\circ} \mathrm{C}$: >280, decomposition.

Di-(2-methyl-2-adamantyl)phosphonium trifluoromethanesulfonate (1I)

GP2 was performed using 2-methyl-2-adamantyl acetate ($0.625 \mathrm{~g}, 3.00 \mathrm{mmol}$). Di-(2-methyl-2adamantyl) phosphonium trifluoromethanesulfonate $\mathbf{1 l}$ ($0.145 \mathrm{~g}, 0.302 \mathrm{mmol}, 30 \%$) was obtained as a colourless crystalline solid.
${ }^{1} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.82(\mathrm{~d}, \mathrm{~J}=466.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.29-2.19(\mathrm{~m}, 12 \mathrm{H}), 2.16-2.11(\mathrm{~m}, 2 \mathrm{H}), 1.99-$ $1.90(\mathrm{~m}, 6 \mathrm{H}), 1.80-1.68(\mathrm{~m}, 14 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, CDCl 3): $\delta 121.9(\mathrm{q}, J=320.2 \mathrm{~Hz}), 46.0(\mathrm{~d}, \mathrm{~J}=30.1 \mathrm{~Hz}), 38.6,35.7(\mathrm{~d}, J=1.7 \mathrm{~Hz})$, $33.8(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 31.5(\mathrm{~d}, J=8.7 \mathrm{~Hz}), 26.9,26.8,22.2(\mathrm{~d}, J=2.5 \mathrm{~Hz})$.
${ }^{19}$ F NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-78.36$.
${ }^{31}$ P NMR (202 MHz, CDCl 3): $\delta-4.30(\mathrm{tm}, J=466.2 \mathrm{~Hz})$.
$v_{\max }($ neat $) / \mathrm{cm}^{-1}: 2912,2869,2449,2408,1462,1282,1245,1223,1150,1026,955,934,755,635,572$, 516.

HRMS: calcd. for $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{P}^{+}: 331.2549$ [M-OTf] ${ }^{+}$; found (ESI ${ }^{+}$): 351.2553.
m.p. $/{ }^{\circ} \mathrm{C}: ~ 202-206$.

GP2 was performed using (+)-cedryl acetate ($0.793 \mathrm{~g}, 3.00 \mathrm{mmol}$) with chamber two heated to $40^{\circ} \mathrm{C}$. Dicedrylphosphonium trifluoromethanesulfonate 1 m ($0.419 \mathrm{~g}, 0.252 \mathrm{mmol}, 25 \%$) was obtained as a colourless crystalline solid.
${ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl_{3}): $\delta 6.52(\mathrm{~d}, \mathrm{~J}=465.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.42-2.32(\mathrm{~m}, 2 \mathrm{H}), 2.14-1.86(\mathrm{~m}, 8 \mathrm{H}), 1.85-1.73$ $(\mathrm{m}, 12 \mathrm{H}), 1.63-1.54(\mathrm{~m}, 4 \mathrm{H}), 1.48-1.39(\mathrm{~m}, 4 \mathrm{H}), 1.38-1.25(\mathrm{~m}, 8 \mathrm{H}), 1.10(\mathrm{~s}, 6 \mathrm{H}), 0.89(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 6 \mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, CDCl_{3}): $\delta 120.7(\mathrm{q}, \mathrm{J}=320.5 \mathrm{~Hz}), 57.8,55.2,54.7,47.4(\mathrm{~d}, \mathrm{~J}=13.0 \mathrm{~Hz}), 46.2(\mathrm{~d}$, $J=25.4 \mathrm{~Hz}), 43.2(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}), 41.5,36.4,34.0,30.5,29.7(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}), 29.5,27.0,25.3,15.4$.
${ }^{19}$ F NMR (470 MHz, CDCl_{3}): $\delta-78.26$.
${ }^{31}$ P NMR (202 MHz, CDCl $)$: $\delta 11.18$ (tm, $\left.J=466.5 \mathrm{~Hz}\right)$.
$\mathbf{v}_{\max }$ (neat)/cm ${ }^{-1}: 2941,2871,2418,1464,1392,1281,1249,1225,1149,1029,972,942,755,636,571$, 516.

HRMS: calcd. for $\mathrm{C}_{30} \mathrm{H}_{52} \mathrm{P}^{+}: 443.3801$ [M-OTf] ${ }^{+}$; found (ESI ${ }^{+}$): 443.3803.
m.p. ${ }^{\circ} \mathrm{C}: 142-144$.

Tribenzhydrylphosphonium trifluoromethanesulfonate (1n)

GP2 was performed using a solution of benzhydryl acetate ${ }^{18}(0.679 \mathrm{~g}, 3.00 \mathrm{mmol})$ dissolved in degassed anhydrous dichloromethane (2.0 mL), with chamber 2 heated to $40{ }^{\circ} \mathrm{C}$. Tribenzhydrylphosphonium trifluoromethanesulfonate 1 n ($0.516 \mathrm{~g}, 0.756 \mathrm{mmol}, 76 \%$) was obtained as a colourless crystalline solid.

The PH signal in the ${ }^{1} \mathrm{H}$ NMR spectrum (8.82 ppm) appears as a broad doublet of quartets (from coupling to the ${ }^{31} \mathrm{P}$ and benzhydrylic methine protons, respectively), but the resolution is not sufficient to allow accurate measurement of the second coupling constant.
${ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl ${ }_{3}$): $\delta 8.82(\mathrm{dm}, J=486.8 \mathrm{~Hz}, 1 \mathrm{H}) 7.09-7.22(\mathrm{~m}, 30 \mathrm{H}), 5.13(\mathrm{dd}, \mathrm{J}=17.4,7.4 \mathrm{~Hz}$, 3 H).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 132.8(\mathrm{~d}, \mathrm{~J}=4.0 \mathrm{~Hz}), 129.6,129.1(\mathrm{~d}, J=6.9 \mathrm{~Hz}), 128.5,121.3(\mathrm{q}, J=$ 320.6 Hz), 46.1 (d, J=34.2 Hz).
${ }^{19}$ F NMR (376 MHz, CDCl_{3}): $\delta-77.89$.
${ }^{31}$ P NMR (162 MHz, CDCl 3): $\delta 20.05$ (dq, $J=488.9,17.3 \mathrm{~Hz}$).
$v_{\max }($ neat $) / \mathrm{cm}^{-1}: 3064,3033,2910,2420,1600,1586,1494,1453,1255,1224,1153,1029,929,744$, 693, 637, 572, 511, 475.

HRMS: calcd. for $\mathrm{C}_{12} \mathrm{H}_{28} \mathrm{P}^{+}$: 203.1923 [M-OTf] ${ }^{+}$; found (ESI ${ }^{+}$): 203.1920.
m.p. $/{ }^{\circ} \mathrm{C}: ~ 215-218$.

6. Alkylation of PH_{3} with tert-Butyl Acetate (Manuscript Scheme 4A)

Di-tert-butylphosphonium trifluoromethanesulfonate (10), tert-butyl(2,4,4-trimethyl-2-pentyl)phosphonium trifluoromethanesulfonate (1p) and bis-(2,4,4-trimethyl-2-pentyl)phosphonium trifluoromethanesulfonate (1q)

GP2 was performed using tert-butyl acetate ($0.80 \mathrm{~mL}, 6.00 \mathrm{mmol}$). The product distribution was determined by ${ }^{31}$ P NMR spectroscopic analysis of the reaction mixture (1.0:3.6:5.1 10:1p:1q) prior to work-up. Work-up as per GP2 afforded a mixture of 10, 1p and $\mathbf{1 q}(0.115 \mathrm{~g}, 0.32: 0.42: 0.26$ 10:1p:1q) as a colourless crystalline solid. Assignments were confirmed by comparison to literature data (10) ${ }^{19}$ or by independent synthesis of pure samples (1q, vide infra).

Characterisation data for 10
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta 6.45(\mathrm{~d}, \mathrm{~J}=474.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.58(\mathrm{~d}, \mathrm{~J}=18.0 \mathrm{~Hz}, 18 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, CDCl_{3}): $\delta 120.6(\mathrm{q}, J=319.9 \mathrm{~Hz}), 31.3(\mathrm{~d}, J=29.5 \mathrm{~Hz}), 28.0(\mathrm{~d}, J=1.8 \mathrm{~Hz})$.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (202 MHz, CDCl_{3}): δ 22.30.

Characterisation data for 1p
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.38(\mathrm{~d}, J=472.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.84(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.72(\mathrm{~d}, \mathrm{~J}=20.4 \mathrm{~Hz}$, 6 H), 1.59 (d, J = $17.7 \mathrm{~Hz}, 9 \mathrm{H}), 1.10(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13}{ }^{1}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, CDCl_{3}): $\delta 120.6(\mathrm{q}, J=319.9 \mathrm{~Hz}), 50.3,37.5(\mathrm{~d}, J=31.9 \mathrm{~Hz}), 34.1(\mathrm{~d}, \mathrm{~J}=12.5$ $\mathrm{Hz}), 32.2$ ($\mathrm{d}, \mathrm{J}=32.8 \mathrm{~Hz}$), 31.8, $27.5(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}), 25.8$.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (202 MHz, CDCl_{3}): δ 25.82.

Characterisation data for 1q
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.30(\mathrm{~d}, J=470.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.86(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 4 \mathrm{H}), 1.73(\mathrm{~d}, \mathrm{~J}=20.4 \mathrm{~Hz}$, $12 \mathrm{H}), 1.10(\mathrm{~s}, 18 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, CDCl ${ }_{3}$): $\delta 120.6(\mathrm{q}, \mathrm{J}=319.9 \mathrm{~Hz}), 50.5,38.7(\mathrm{~d}, \mathrm{~J}=29.5 \mathrm{~Hz}), 34.2(\mathrm{~d}, J=12.6$ Hz), 31.9, 26.2.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (202 MHz, CDCl_{3}): δ 29.56.

Bis-(2,4,4-trimethyl-2-pentyl)phosphonium trifluoromethanesulfonate (1q)

$\mathrm{Zn}_{3} \mathrm{P}_{2}+\longrightarrow \mathrm{OAc} \xrightarrow{\mathrm{TfOH}}$

Trifluoromethanesulfonic acid $(0.26 \mathrm{~mL}, 3.00 \mathrm{mmol})$ was added to a mixture of $\mathrm{Zn}_{3} \mathrm{P}_{2}(0.129 \mathrm{~g}, 0.39$ mmol) and anhydrous, degassed tert-butyl acetate (2.5 mL) at r.t. The resulting heavy black suspension was stirred overnight. The mixture was filtered through a plug of cotton wool, eluting with $\mathrm{Et}_{2} \mathrm{O}$, and the resulting biphasic mixture was placed in a freezer at $-25^{\circ} \mathrm{C}$ overnight. The solids were collected by Büchner filtration, washed with $\mathrm{Et}_{2} \mathrm{O}$ and dried under a flow of air to give di-(2,2,4-trimethyl-2pentyl)phosphonium trifluoromethanesulfonate 1q ($30.4 \mathrm{mg}, 74.4 \mu \mathrm{~mol}, 9 \%$).

Note that the trifluoromethyl carbon is not observed in the ${ }^{13} \mathrm{C}$ NMR spectrum at this concentration due to low signal:noise, but the presence of the trifluoromethanesulfonate counterion is confirmed by the ${ }^{19} \mathrm{~F}$ NMR and IR spectroscopy and IR .
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.31(\mathrm{~d}, J=470.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.86(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, 4 \mathrm{H}), 1.73(\mathrm{~d}, \mathrm{~J}=20.1 \mathrm{~Hz}$, 12H), 1.10 (s, 18H).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 50.7,38.8(\mathrm{~d}, \mathrm{~J}=29.1 \mathrm{~Hz}), 34.3(\mathrm{~d}, \mathrm{~J}=12.8 \mathrm{~Hz}), 32.0,26.4$.
${ }^{19}$ F NMR (470 MHz, CDCl_{3}): $\delta-78.31$.
${ }^{31}$ P NMR (202 MHz, CDCl ${ }_{3}$): $\delta 29.53(\mathrm{tm}, J=470.0 \mathrm{~Hz})$.
$v_{\text {max }}$ (neat)/cm ${ }^{-1}: 2955,2910,2875,2414,1472,1399,1378,1255,1223,1158,1028,950,756,638$, 572, 517.

HRMS: calcd. for $\mathrm{C}_{16} \mathrm{H}_{36} \mathrm{P}^{+}: 259.2549$ [M-OTf] ${ }^{+}$; found (ESI ${ }^{+}$): 259.2533.
m.p. ${ }^{\circ} \mathrm{C}: 119-121$.

7. Isotope Exchange Studies (Manuscript Scheme 4B)

Preparation of 5.0 M DCl in $\mathrm{D}_{2} \mathrm{O}$

Trimethylsilyl chloride ($6.35 \mathrm{~mL}, 50.0 \mathrm{mmol}$) was added slowly to $\mathrm{D}_{2} \mathrm{O}(10.0 \mathrm{~mL})$, and the mixture was stirred for 1 h . The resulting biphasic mixture was degassed by sparging with nitrogen, and the aqueous phase was removed by syringe for use in isotope exchange studies.

Reaction of 2-methyl-4-phenylbut-2-yl acetate $\left(d_{0}-2\right)$ with PD $_{3}$

GP2 was performed using 2-methyl-4-phenylbut-2-yl acetate $\boldsymbol{d}_{\mathbf{0}} \mathbf{- 2}$ ($0.619 \mathrm{~g}, 3.00 \mathrm{mmol}$) and DCl (5.0 M in $\mathrm{D}_{2} \mathrm{O}$). Di-(2-methyl-4-phenylbut-2-yl)phosphonium trifluoromethanesulfonate $\boldsymbol{d}_{\mathrm{n}} \mathbf{- 1 f}(0.245 \mathrm{~g})$ was obtained as a colourless crystalline solid. The isotopic distribution of $\boldsymbol{d}_{\mathrm{n}}$ - $\mathbf{1 f}$ prepared in this way was determined by ESI-MS (Figure S2) and ${ }^{1} \mathrm{H}$ NMR spectroscopy (Figure S3).

Figure S2. ESI-MS mass distribution for the $\boldsymbol{d}_{\mathbf{n}} \mathbf{- 1} \mathbf{1 f}$ cation prepared from the reaction of $\boldsymbol{d}_{\mathbf{0}} \mathbf{- 2}$ with PD_{3}.

Figure S3. ${ }^{\mathbf{1}} \mathrm{H}$ NMR spectrum of $\boldsymbol{d}_{\mathrm{n}} \mathbf{- 1} \mathbf{f}$ prepared from the reaction of $\boldsymbol{d}_{\mathbf{0}} \mathbf{- 2}$ with PD_{3}.

Reaction of 2-methyl-4-phenylbut-2-yl acetate- $d_{6}\left(2-d_{6}\right)$ with PH_{3}

GP2 was performed using $d_{6}-2$-methyl-4-phenylbut-2-yl acetate $\boldsymbol{d}_{6}-\mathbf{2}$ ($0.637 \mathrm{~g}, 3.00 \mathrm{mmol}$). $\boldsymbol{d}_{\mathrm{n}}$-Di-(2-methyl-4-phenylbut-2-yl)phosphonium trifluoromethanesulfonate $\boldsymbol{d}_{\mathrm{n}} \mathbf{- 1 f}(0.356 \mathrm{~g})$ was obtained as a colourless crystalline solid. The isotopic distribution of $\boldsymbol{d}_{\mathrm{n}}$-1f prepared in this way was determined by ESI-MS (Figure S4) and ${ }^{1} \mathrm{H}$ NMR spectroscopy (Figure S5).

Figure S4. ESI-MS mass distribution for the $\boldsymbol{d}_{\mathbf{n}} \mathbf{- 1} \mathbf{1 f}$ cation prepared from the reaction of $\boldsymbol{d}_{\mathbf{6}} \mathbf{- 2}$ with PH_{3}.

Figure $\mathbf{S 5}$. ${ }^{\mathbf{1}} \mathrm{H}$ NMR spectrum of $\boldsymbol{d}_{\mathbf{n}} \mathbf{- 1} \mathbf{f}$ prepared from the reaction of $\boldsymbol{d}_{\mathbf{6}} \mathbf{- \mathbf { 2 }}$ with PH_{3}.

Reaction of 2-methyl-4-phenylbut-2-yl acetate- $d_{6}\left(2-d_{6}\right)$ with PD_{3}

GP2 was followed, with $d_{6}-2$-methyl-4-phenylbut-2-yl acetate $\mathbf{2 - d} \mathbf{d}$ ($0.637 \mathrm{~g}, 3.00 \mathrm{mmol}$) and DCI (5.0 M in $\mathrm{D}_{2} \mathrm{O}$). $\boldsymbol{d}_{\mathrm{n}}$-Di-(2-methyl-4-phenylbut-2-yl)phosphonium trifluoromethanesulfonate $\boldsymbol{d}_{\mathrm{n}}$ - $\mathbf{1 f}$ (0.208 g) was obtained as a colourless crystalline solid. The isotopic distribution of $\boldsymbol{d}_{\mathbf{n}} \mathbf{- 1} \mathbf{f}$ prepared in this way was determined by ESI-MS (Figure S6) and ${ }^{1} \mathrm{H}$ NMR spectroscopy (Figure S7).

Figure S6. ESI-MS mass distribution for the $\boldsymbol{d}_{\mathbf{n}} \mathbf{- 1} \mathbf{1 f}$ cation prepared from the reaction of $\boldsymbol{d}_{\mathbf{6}} \mathbf{- 2}$ with $\mathrm{PD}_{\mathbf{3}}$.

Figure $\mathbf{S 7 .}{ }^{\mathbf{1}} \mathrm{H}$ NMR spectrum of $\boldsymbol{d}_{\mathbf{n}} \mathbf{- 1} \mathbf{1 f}$ prepared from the reaction of $\boldsymbol{d}_{\mathbf{6}} \mathbf{- 2}$ with PD_{3}.

8. Derivatisation of Di-(3-ethyl-3-pentyl)phosphonium Triflate 1c (Manuscript Scheme 5)

Di-(3-ethyl-3-pentyl)phosphine borane complex

A flame-dried microwave tube containing di-(3-ethyl-3-pentyl)phosphonium trifluoromethanesulfonate $1 \mathrm{c}(0.190 \mathrm{~g}, 0.500 \mathrm{mmol})$ was evacuated and backfilled with anhydrous dinitrogen $(3 \times)$, then anhydrous degassed THF (2.0 mL) and DBU ($83.7 \mathrm{mg}, 0.550 \mathrm{mmol}$) were added. The mixture was stirred at r.t. for 10 minutes before borane dimethylsulfide complex (2.0 M in THF; $0.50 \mathrm{~mL}, 1.00 \mathrm{mmol}$) was added and the mixture was stirred overnight at r.t. The vessel was opened to air, the solvent was removed in vacuo, and the resulting crude material was passed through a pad of silica gel (eluent: cyclohexane:Et ${ }_{2} \mathrm{O}, 5: 1$). After concentration in vacuo, di-(3-ethyl-3pentyl)phosphine borane complex ($0.118 \mathrm{~g}, 0.484 \mathrm{mmol}, 97 \%$) was obtained as a low-melting colourless solid.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.41(\mathrm{dq}, J=353.6,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.82-1.70(\mathrm{~m}, 12 \mathrm{H}), 0.95(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}$, 18H), 0.90-0.20 (br. m, 3H).
${ }^{11}$ B NMR ($160 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-42.5$ to -38.5 (m).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, CDCl ${ }_{3}$): $\delta 42.9(\mathrm{~d}, J=20.2 \mathrm{~Hz}), 28.3(\mathrm{~d}, J=1.9 \mathrm{~Hz}), 8.8(\mathrm{~d}, J=5.2 \mathrm{~Hz})$.
${ }^{31} \mathrm{P}$ NMR ($\mathbf{2 0 2} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$): $\delta 12.66(\mathrm{dm}, J=356.5 \mathrm{~Hz})$.
$\mathbf{v}_{\text {max }}$ (neat)/cm ${ }^{-1}:$ 2965, 2939, 2881, 2398, 2368, 1451, 1384, 1330, 1172, 1143, 1064, 1039, 970, 927, 884, 858, 801, 743, 695, 608, 556, 504, 427.

HRMS: calcd. for $\mathrm{C}_{14} \mathrm{H}_{34} \mathrm{BP}+\mathrm{Na}^{+}: 267.2383\left[\mathrm{M}+\mathrm{Na}^{+}\right.$; found (ESI ${ }^{+}$): 267.2381.

Di-(3-ethyl-3-pentyl)chlorophosphine

A flame-dried microwave tube containing di-(3-ethyl-3-pentyl)phosphonium trifluoromethanesulfonate 1c ($0.190 \mathrm{~g}, 0.500 \mathrm{mmol}$) was evacuated and backfilled with anhydrous dinitrogen $(3 \times)$, then anhydrous degassed $\mathrm{CCl}_{4}(2.0 \mathrm{~mL})$ and DBU ($76.1 \mathrm{mg}, 0.500 \mathrm{mmol}$) were added. The mixture was stirred for 27 h at $50^{\circ} \mathrm{C}$. Stirring was then stopped to allow the biphasic mixture to separate; the lower layer was transferred into a flame-dried Schlenk tube (previously evacuated and backfilled with anhydrous dinitrogen $(3 \times)$) and the solvent was removed in vacuo giving di-(3-ethyl-3pentyl)chlorophosphine ($0.128 \mathrm{~g}, 0.481 \mathrm{mmol}, 96 \%$) as a colourless liquid.

A 13-et is expected in the ${ }^{31} \mathrm{P}$ NMR spectrum, from ${ }^{3} J_{\text {P-н }}$ coupling. This is not observed in full as the lower intensity peaks are not observed due to poor signal:noise and as such is reported below as a multiplet with the coupling constant given.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.84-1.67(\mathrm{~m}, 12 \mathrm{H}), 0.98(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 18 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, CDCl_{3}): $\delta 46.4(\mathrm{~d}, J=51.4 \mathrm{~Hz}), 27.89(\mathrm{~d}, J=15.4 \mathrm{~Hz}), 9.38(\mathrm{~d}, J=10.7 \mathrm{~Hz})$.
${ }^{31}$ P NMR (202 MHz, CDCl ${ }_{3}$): $\delta 158.34(\mathrm{~m}, \mathrm{~J}=8.9 \mathrm{~Hz})$.

Di-(3-ethyl-3-pentyl)phosphine oxide

A suspension of di-(3-ethyl-3-pentyl)phosphonium trifluoromethanesulfonate 1c ($76.1 \mathrm{mg}, 0.200$ $\mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(27.6 \mathrm{mg}, 0.200 \mathrm{mmol})$ in methanol (1.0 mL) was stirred for 30 minutes. 30% aqueous $\mathrm{H}_{2} \mathrm{O}_{2}(60 \mu \mathrm{~L}, 0.50 \mathrm{mmol})$ was added and the mixture was stirred for 2 h . A saturated aqueous solution of sodium metabisulfite $(0.5 \mathrm{~mL})$ and aqueous hydrochloric acid ($1 \mathrm{M} ; 1.0 \mathrm{~mL}$) were then added. The methanol was removed in vacuo and the remaining mixture was extracted with dichloromethane (3 \times). The combined organic portions were concentrated in vacuo to give di-(3-ethyl-3-pentyl)phosphine oxide ($46.9 \mathrm{mg}, 0.190 \mathrm{mmol}, 95 \%$) as a colourless solid.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.60(\mathrm{~d}, J=421.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.87-1.63(\mathrm{~m}, 12 \mathrm{H}), 1.00(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 18 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, CDCl 3): $\delta 44.5(\mathrm{~d}, J=54.8 \mathrm{~Hz}), 26.0,8.5(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz})$.
${ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 53.88(\mathrm{dm}, J=421.5 \mathrm{~Hz})$.
$\mathbf{v}_{\max }$ (neat)/cm ${ }^{-1}: 2964,2940,2880,2294,1460,1441,1378,1333,1273,1176,1158,1134,1075,1033$, 997, 983 ,915, 886, 803, 765, 735, 623, 552, 517, 485, 448, 415.

HRMS: calcd. for $\mathrm{C}_{14} \mathrm{H}_{31} \mathrm{OP}+\mathrm{H}^{+}: 247.2185[\mathrm{M}+\mathrm{H}]^{+}$; found (ESI ${ }^{+}$): 247.2190.
m.p. $/{ }^{\circ} \mathrm{C}$: 34-35.

Di-(3-ethyl-3-pentyl)benzylphosphine borane complex

A flame-dried microwave tube containing di-(3-ethyl-3-pentyl)phosphonium trifluoromethanesulfonate $1 \mathrm{c}(0.190 \mathrm{~g}, 0.500 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.207 \mathrm{~g}, 1.50 \mathrm{mmol})$ was evacuated and backfilled with dry nitrogen ($3 \times$) before anhydrous degassed toluene $(2.0 \mathrm{~mL}$) and benzyl bromide ($85.5 \mathrm{mg}, 0.500 \mathrm{mmol}$) were added. The mixture was stirred overnight at $120^{\circ} \mathrm{C}$, then allowed to cool without stirring so that the suspended solids settled. The supernatant was then transferred to a second flame-dried microwave tube containing borane dimethylsulfide complex ($2.0 \mathrm{M} \mathrm{in} \mathrm{THF;} 0.50$ $\mathrm{mL}, 1.00 \mathrm{mmol}$). Anhydrous degassed toluene (2.0 mL) was added to the solid residue in the first tube, the suspension was stirred and allowed to settle, and the supernatant transferred to the microwave tube containing borane dimethylsulfide complex; this process was repeated a further two times. The mixture containing borane dimethylsulfide was stirred at r.t. for 2 h . The vessel was then opened to air, solvent was removed in vacuo, and the resulting crude material was passed through a pad of silica gel (eluent: cyclohexane: $\mathrm{Et}_{2} \mathrm{O}, 5: 1$). Removal of solvent in vacuo afforded di-(3-ethyl-3pentyl)benzylphosphine borane complex ($0.143 \mathrm{~g}, 0.426 \mathrm{mmol}, 85 \%$) as a colourless liquid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.50-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.15(\mathrm{~m}, 3 \mathrm{H}), 3.31(\mathrm{~d}, \mathrm{~J}=11.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.93-1.82$ ($\mathrm{m}, 12 \mathrm{H}$), 1.03-0.17 (m, 21H, including $\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}$)
${ }^{11}$ B NMR ($\mathbf{1 2 8} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$): δ-39.5 to -34.5 (m).
${ }^{13}{ }^{1}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 135.7$ ($\mathrm{d}, \mathrm{J}=3.6 \mathrm{~Hz}$), 131.1 ($\mathrm{d}, \mathrm{J}=3.9 \mathrm{~Hz}$), 127.9 ($\mathrm{d}, \mathrm{J}=1.8 \mathrm{~Hz}$), 126.5 $(d, J=2.2 \mathrm{~Hz}), 44.3(\mathrm{~d}, J=17.1 \mathrm{~Hz}), 29.7(\mathrm{~d}, J=21.0 \mathrm{~Hz}), 27.4(\mathrm{~d}, J=1.7 \mathrm{~Hz}), 10.2(\mathrm{~d}, J=5.6 \mathrm{~Hz})$.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\mathbf{1 6 2} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$): 53.31 (m).
$\mathbf{v}_{\text {max }}$ (neat)/ cm^{-1} : 2969, 2940, 2881, 2399, 2302, 1601, 1496, 1454, 1382, 1339, 1156, 1064, 1032, 914 , 819, 769, 699, 601, 559, 470, 435.

HRMS: calcd. for $\mathrm{C}_{21} \mathrm{H}_{40} \mathrm{BP}+\mathrm{Na}^{+}$: $357.2853\left[\mathrm{M}+\mathrm{Na}^{\dagger}\right]^{+}$; found (ESI ${ }^{+}$): 357.2852 .

9. Synthesis and Characterisation of Di-tert-alkylbiarylphosphines $\underline{3}$ (Manuscript Scheme 6)

2-Biphenyl trifluoromethanesulfonate ${ }^{20}$

A flame-dried Schlenk tube containing 2-phenylphenol ($8.51 \mathrm{~g}, 50.0 \mathrm{mmol}$) was evacuated and backfilled with anhydrous dinitrogen ($3 \times$), then anhydrous degassed dichloromethane (50 mL) and pyridine ($4.83 \mathrm{~mL}, 60.0 \mathrm{mmol}$) were added. The resulting solution was cooled to $0^{\circ} \mathrm{C}$ and trifluoromethanesulfonic anhydride ($10.1 \mathrm{~mL}, 50.0 \mathrm{mmol}$) was added slowly. The mixture was stirred at r.t. for 2 h , then passed through a pad of silica gel (eluent: dichloromethane). The solvent was removed in vacuo and the resulting crude material was passed through another pad of silica gel (eluent: 19:1 petroleum ether : $\mathrm{Et}_{2} \mathrm{O}$). Concentration in vacuo afforded 2-biphenyl trifluoromethanesulfonate ($15.1 \mathrm{~g}, 50.0 \mathrm{mmol},>99 \%$) as a colourless liquid. This material was used without further purification.

Characterisation data were consistent with literature values: ${ }^{1} \mathrm{H},{ }^{20}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\},{ }^{20}$ and ${ }^{19} \mathrm{~F}^{20} \mathrm{NMR}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 7.51-7.39 (m, 9H).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 147.0,135.7,132.1,129.5,129.1,128.7,128.6,128.5,122.2,118.5$ ($q, J=320.6 \mathrm{~Hz}$).
${ }^{19}$ F NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-74.08$.
$\mathbf{v}_{\max }$ (neat)/cm ${ }^{-1}: 3066,1477,1419,1246,1203,1135,1099,1046,1011,881,783,764,751,731,698$, 625, 593, 570, 503, 462.

HRMS: calcd. for $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{O}_{3} \mathrm{~S}+\mathrm{Na}^{+}$: 325.0117 [$\left.\mathrm{M}+\mathrm{Na}\right]^{+}$; found (ESI ${ }^{+}$): 325.0118.

General procedure for P-C cross couplings with 2-biphenyl triflate (GP3)

A microwave tube containing XPhosPdG3 ${ }^{21}$ ($8.5 \mathrm{mg}, 10 \mu \mathrm{~mol}, 2 \mathrm{~mol} \%$) and di-tert-alkylphosphonium trifluoromethanesulfonate 1 (0.500 mmol) was evacuated and backfilled with anhydrous dinitrogen $(3 \times)$, then degassed toluene (2.50 mL), 2-biphenyl trifluoromethanesulfonate ($151 \mathrm{mg}, 0.500 \mathrm{mmol}$), and DBU ($0.224 \mathrm{~mL}, 1.50 \mathrm{mmol})$ were added. The mixture was stirred at $100^{\circ} \mathrm{C}$ for 16 h , then allowed to cool to r.t. The reaction was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and washed with water. The aqueous portion was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times)$, and the combined organic portions were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo. Recrystallisation from methanol afforded the pure dialkylbiarylphosphine 3.

General procedure for P-C cross couplings with 2-biphenyl bromide (GP4)

A microwave tube containing $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4} \quad$ (3 mol\%), di-tert-alkylphosphonium trifluoromethanesulfonate 1 (1.00 equiv.) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ (3.00 equiv.) was evacuated and backfilled with anhydrous dinitrogen ($3 \times$), then degassed xylenes (to give $[1]_{0}=0.4-0.5 \mathrm{M}$) and 2-biphenyl bromide (1.20 equiv.) were added. The mixture was stirred at $140^{\circ} \mathrm{C}$ for 16 h , then allowed to cool to r.t. The reaction was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and washed with water. The aqueous portion was extracted with $\mathrm{Et}_{2} \mathrm{O}$ $(2 \times)$, and the combined organic portions were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo. Recrystallisation from methanol or acetone afforded the pure dialkylbiarylphosphine 3.

Note: di-tert-alkylbiarylphosphines $\mathbf{3}$ obtained by GP3 or GP4 that could not be isolated by recrystallisation were employed directly in the synthesis of the corresponding di-tert-
alkylbiarylphosphine selenides 4 and di-tert-alkylbiarylphosphine gold(I) chloride complexes 5. Details of these procedures are provided in Sections S10 and S11, below.

2-(Bis-(2,3-dimethyl-2-butyl)phosphino)biphenyl (3d)

GP3 was performed using bis-(2,3-dimethyl-2-butyl)phosphonium trifluoromethanesulfonate 1d ($0.138 \mathrm{~g}, 0.500 \mathrm{mmol}$). 2-(Bis-(2,3-dimethyl-2-butyl)phosphino)biphenyl 3d ($0.098 \mathrm{~g}, 0.276 \mathrm{mmol}$, $55 \%)$ was isolated as an off-white crystalline solid.
${ }^{1} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.94(\mathrm{dt}, J=7.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.26(\mathrm{~m}, 7 \mathrm{H}), 1.66$ (app. dq, J=13.4, 6.9 Hz, 2H), $1.25(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 6 \mathrm{H}), 0.92(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 6 \mathrm{H}), 0.84(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H})$, 0.73 (d, J = $6.7 \mathrm{~Hz}, 6 \mathrm{H}$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, CDCl_{3}): $\delta 151.9(\mathrm{~d}, \mathrm{~J}=34.5 \mathrm{~Hz}), 144.0(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}), 136.6(\mathrm{~d}, \mathrm{~J}=1.7 \mathrm{~Hz}), 135.7$ $(\mathrm{d}, \mathrm{J}=32.3 \mathrm{~Hz}), 131.0(\mathrm{~d}, J=4.1 \mathrm{~Hz}), 130.7(\mathrm{~d}, J=6.5 \mathrm{~Hz}), 128.4,127.0,126.2,125.7,39.8(\mathrm{~d}, J=31.0$ $\mathrm{Hz}), 35.8(\mathrm{~d}, J=22.2 \mathrm{~Hz}), 23.6(\mathrm{~d}, J=9.5 \mathrm{~Hz}), 23.2(\mathrm{~d}, J=6.8 \mathrm{~Hz}), 18.1(\mathrm{~d}, J=12.8 \mathrm{~Hz}), 17.8(\mathrm{~d}, J=14.8$ Hz).
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 3.14$ (s).
$\mathbf{v}_{\max }$ (neat)/cm ${ }^{-1}: 3051,2974,2958,2898,2867,1463,1442,1375,1160,1122,1079,1050,1008,995$, 909, 870, 778, 746, 695, 616, 555, 514, 476.

HRMS: calcd. for $\mathrm{C}_{24} \mathrm{H}_{35} \mathrm{P}+\mathrm{H}^{+}$: $355.2549[\mathrm{M}+\mathrm{H}]^{+}$; found ($\mathrm{ESI}{ }^{+}$): 355.2544.
m.p. $/{ }^{\circ} \mathrm{C}$: 64-66.

2-(Di-(2-methyl-4-phenyl-2-butyl)phosphino)biphenyl (3f)

GP3 was performed using di-(2-methyl-4-phenyl-2-butyl)phosphonium trifluoromethanesulfonate $\mathbf{1 f}$ ($0.238 \mathrm{~g}, 0.500 \mathrm{mmol}$). 2-(Di-(2-methyl4-phenyl-2-butyl)phosphino)biphenyl 3 f ($0.162 \mathrm{~g}, 0.338 \mathrm{mmol}$, 68\%) was isolated as an off-white crystalline solid.
${ }^{1} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.94(\mathrm{dt}, J=7.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{td}, J=7.5,1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.28-7.21(\mathrm{~m}, 10 \mathrm{H}), 7.15(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.06-7.02(\mathrm{~m}, 4 \mathrm{H}), 2.69-2.62(\mathrm{~m}, 2 \mathrm{H}), 2.57-2.49(\mathrm{~m}$, $2 H$), 1.80-1.70 (m, 4H), 1.34 (d, J = $10.1 \mathrm{~Hz}, 6 \mathrm{H}$), 1.16 (d, J=10.3 Hz, 6H).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, CDCl ${ }_{3}$): $\delta 151.6(\mathrm{~d}, \mathrm{~J}=33.2 \mathrm{~Hz}), 143.7(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}), 143.3,136.9(\mathrm{~d}, \mathrm{~J}=2.5$ Hz), 134.7 (d, J = 29.2 Hz), $131.0(\mathrm{~d}, J=6.4 \mathrm{~Hz}), 130.8(\mathrm{~d}, J=4.1 \mathrm{~Hz}), 128.7,128.5,128.4,127.2,126.5$, 126.0, 125.6, 45.2 (d, $J=20.0 \mathrm{~Hz}$), 36.6 (d, $J=28.6 \mathrm{~Hz}$), 30.3 (d, J=13.9 Hz), $27.5(\mathrm{~d}, J=11.1 \mathrm{~Hz}), 27.4$ (d, $J=12.3 \mathrm{~Hz}$).
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (202 MHz, CDCl ${ }_{3}$): $\delta 13.81$ (s).
$\mathbf{v}_{\text {max }}$ (neat)/ $\mathrm{cm}^{-1}: 3082,3057,3020,2959,2939,2860,1600,1582,1495,1453,380,1362,1176,1129$, 1069, 1030, 1008, 908, 840, 745, 696, 600, 577, 508, 492, 460.

HRMS: calcd. for $\mathrm{C}_{34} \mathrm{H}_{39} \mathrm{P}+\mathrm{H}^{+}$: $479.2862[\mathrm{M}+\mathrm{H}]^{+}$; found (ESI^{+}): 479.2874.
m.p. $/{ }^{\circ} \mathrm{C}: 85-86$.

2-(Di-(1-methylcyclopentyl)phosphino)biphenyl (3h)

GP3 was performed using di-(1-methylcyclopentyl) phosphonium trifluoromethanesulfonate $\mathbf{1 h}$ (0.174 $\mathrm{g}, 0.500 \mathrm{mmol}$). 2-(Di-(1-methylcyclopentyl)phosphino)biphenyl 3 h ($0.115 \mathrm{~g}, 0.328 \mathrm{mmol}, 66 \%$) was isolated as an off-white crystalline solid.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.94(\mathrm{dt}, J=7.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.38(\mathrm{~m}, 7 \mathrm{H}), 7.23-7.26$ (ddd, $J=7.4$, $4.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.76-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.69(\mathrm{~m}, 12 \mathrm{H}), 1.31-1.37(\mathrm{~m}, 2 \mathrm{H}), 1.22(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 150.9(\mathrm{~d}, J=31.3 \mathrm{~Hz}), 143.9(\mathrm{~d}, J=5.9 \mathrm{~Hz}), 136.4(\mathrm{~d}, J=28.1 \mathrm{~Hz})$, $135.7(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 130.9(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 130.8(\mathrm{~d}, J=5.9 \mathrm{~Hz}), 128.3,127.3,126.5,125.9,42.3(\mathrm{~d}, J=$ $23.7 \mathrm{~Hz}), 40.6(\mathrm{~d}, J=24.4 \mathrm{~Hz}), 40.0(\mathrm{~d}, J=17.1 \mathrm{~Hz}), 25.9(\mathrm{~d}, J=7.3 \mathrm{~Hz}), 24.4(\mathrm{~d}, J=8.2 \mathrm{~Hz}), 23.7(\mathrm{~d}, J=$ 7.5 Hz).
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (202 MHz, CDCl_{3}): $\delta 18.31$ (s).
$\mathbf{v}_{\max }($ neat $) / \mathrm{cm}^{-1}: 3050,2954,2864,1443,1376,1315,1241,1216,1073,1007,910,829,775,743,701$, 617, 505, 473.

HRMS: calcd. for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{P}+\mathrm{H}^{+}$: $351.2236[\mathrm{M}+\mathrm{H}]^{+}$; found ($\mathrm{ESI}{ }^{+}$): 351.2242.
m.p. $/{ }^{\circ} \mathrm{C}$: 79-81.

2-(Di-(1-methylcyclohexyl)phosphino)biphenyl (3i)

GP3 was performed using di-(1-methylcyclohexyl)phosphonium trifluoromethanesulfonate $\mathbf{1 i}$ (0.188 g, 0.500 mmol). 2-(Di-(1-methylcyclohexyl)phosphino)biphenyl 3 i ($0.114 \mathrm{~g}, 0.301 \mathrm{mmol}, 60 \%$) was isolated as an off-white crystalline solid. The product could not be separated from 2% residual XPhos ($\delta_{\mathrm{p}}-12.31 \mathrm{ppm}$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.92(\mathrm{dt}, \mathrm{J}=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.23(\mathrm{~m}, 8 \mathrm{H}), 1.80-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.66-$ $1.60(\mathrm{~m}, 2 \mathrm{H}), 1.52-1.41(\mathrm{~m}, 8 \mathrm{H}), 1.36-1.29(\mathrm{~m}, 6 \mathrm{H}), 1.26(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 6 \mathrm{H}), 1.18-1.10(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 151.8(\mathrm{~d}, J=32.6 \mathrm{~Hz}), 144.1(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}), 136.8(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}), 134.5$ $(\mathrm{d}, J=31.0 \mathrm{~Hz}), 130.9(\mathrm{~d}, J=3.9 \mathrm{~Hz}), 130.8(\mathrm{~d}, J=6.1 \mathrm{~Hz}), 128.3,127.2,126.4,125.5,37.8(\mathrm{~d}, J=18.3$ $\mathrm{Hz}), 37.6,37.5,37.4,26.3,22.7(\mathrm{~d}, J=7.9 \mathrm{~Hz}), 21.6(\mathrm{~d}, J=10.7 \mathrm{~Hz})$.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (202 MHz, CDCl_{3}): $\delta 25.16$ (br. s.).
$\mathbf{v}_{\max }($ neat $) / \mathrm{cm}^{-1}: 3054,2916,2847,2665,1442,1377,1339,1284,1162,1123,1073,963,926,850$, 772 ,744, 698, 615, 523, 490 ,461.

HRMS: calcd. for $\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{P}+\mathrm{H}^{+}$: $379.2549[\mathrm{M}+\mathrm{H}]^{+}$; found (ESI ${ }^{+}$): 379.2549.
m.p. $/{ }^{\circ} \mathrm{C}: 77-79$.

2-(Di-(1-adamantyl)phosphino)biphenyl (3k)

GP3 was performed using di-(1-adamantyl)phosphonium trifluoromethanesulfonate $\mathbf{1 k}$ ($0.226 \mathbf{g}$, 0.500 mmol). 2-(Di-(1-adamantyl)phosphino)biphenyl $3 k(0.161 \mathrm{~g}, 0.354 \mathrm{mmol}, 71 \%$) was isolated as an off-white crystalline solid.

Characterisation data were consistent with literature values: ${ }^{1} \mathrm{H},{ }^{22}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\},{ }^{22}{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}^{22} \mathrm{NMR}, I R .{ }^{22}$
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.90(\mathrm{dt}, \mathrm{J}=7.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.29(\mathrm{~m}, 5 \mathrm{H}), 7.28-7.22(\mathrm{~m}, 3 \mathrm{H}), 1.93-$ $1.82(\mathrm{~m}, 18 \mathrm{H}), 1.68-1.63(\mathrm{~m}, 12 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 152.0(\mathrm{~d}, \mathrm{~J}=32.7 \mathrm{~Hz}), 144.1(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}), 136.8(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}), 133.2$ $(\mathrm{d}, J=27.7 \mathrm{~Hz}), 130.8(\mathrm{~d}, J=6.2 \mathrm{~Hz}), 130.8(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 128.3,127.2,126.4,125.5,42.0(\mathrm{~d}, J=13.0$ $\mathrm{Hz}), 37.5$ (d, $J=25.6 \mathrm{~Hz}), 37.1,29.0(\mathrm{~d}, J=8.5 \mathrm{~Hz})$.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (202 MHz, CDCl_{3}): $\delta 21.10$ (s).
$\mathbf{v}_{\max }($ neat $) / \mathrm{cm}^{-1}: 2897,2844,2675,1444,1342,1301,1252,1101,1071,1047,1008,970,825,770$, 744, 696, 552, 504, 471, 426.

HRMS: calcd. for $\mathrm{C}_{34} \mathrm{H}_{39} \mathrm{P}+\mathrm{H}^{+}: 455.2862[\mathrm{M}+\mathrm{H}]^{+}$; found ($\mathrm{ESI}{ }^{+}$): 455.2865.
m.p. $/{ }^{\circ} \mathrm{C}: ~ 218-223$, lit. ${ }^{22}$ 222-224.

2-(Di-(2-methyl-2-adamantyl)phosphino)biphenyl (3I)

GP4 was performed using $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(6.9 \mathrm{mg}, 6.0 \mu \mathrm{~mol})$, di-(2-methyl-2-adamantyl)phosphonium trifluoromethanesulfonate $1 \mathrm{I}(96.1 \mathrm{mg}, 0.200 \mathrm{mmol})$, 2-bromobiphenyl ($45 \mu \mathrm{~L}, 0.240 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(82.9 \mathrm{mg}, 0.600 \mathrm{mmol})$ and degassed xylenes $(0.5 \mathrm{~mL})$. 2-(Di-(2-methyladamant-2yl)phosphino)biphenyl $31(56.3 \mathrm{mg}, 0.117 \mathrm{mmol}, 58 \%$) was obtained as an off-white solid after recrystallisation from methanol.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.90(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.18(\mathrm{~m}, 8 \mathrm{H}), 2.83(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.26-$ $2.06(\mathrm{~m}, 6 \mathrm{H}), 1.85-1.71(\mathrm{~m}, 6 \mathrm{H}), 1.66-1.50(\mathrm{~m}, 12 \mathrm{H}), 1.49-1.41(\mathrm{~m}, 4 \mathrm{H}), 1.30(\mathrm{dt}, J=13.1,2.8 \mathrm{~Hz}, 2 \mathrm{H})$, $1.00(\mathrm{dt}, J=12.6,2.9 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 151.1(\mathrm{~d}, J=34.2 \mathrm{~Hz}), 144.1(\mathrm{~d}, J=5.3 \mathrm{~Hz}), 138.0,134.2(\mathrm{~d}, J=38.3$ $\mathrm{Hz}), 131.6(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}), 131.5(\mathrm{~d}, \mathrm{~J}=3.2 \mathrm{~Hz}), 128.2,127.5,126.3,125.3,45.1(\mathrm{~d}, \mathrm{~J}=36.3 \mathrm{~Hz}), 40.1(\mathrm{~d}$, $J=3.2 \mathrm{~Hz}), 36.4(\mathrm{~d}, J=16.0 \mathrm{~Hz}), 35.9(\mathrm{~d}, J=9.5 \mathrm{~Hz}), 34.5(\mathrm{~d}, J=17.9 \mathrm{~Hz}), 33.6(\mathrm{~d}, J=15.0 \mathrm{~Hz}), 32.8(\mathrm{~d}, J$ $=5.4 \mathrm{~Hz}), 32.5(\mathrm{~d}, \mathrm{~J}=4.0 \mathrm{~Hz}), 28.3(\mathrm{~d}, J=1.4 \mathrm{~Hz}), 27.6,22.5$.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (202 MHz, CDCl_{3}): δ-0.09 (s).
$\mathbf{v}_{\max }$ (neat)/cm ${ }^{-1}:$ 2896, 2844, 2663, 1441, 1380, 1351, 1304, 1221, 1098, 1072, 1021, 956, 868, 774, 744, 696, 615, 552, 486, 465, 450.

HRMS: calcd. for $\mathrm{C}_{34} \mathrm{H}_{43} \mathrm{P}+\mathrm{H}^{+}$: $483.3175[\mathrm{M}+\mathrm{H}]^{+}$; found (ESI ${ }^{+}$): 483.3180.
m.p. ${ }^{\circ} \mathrm{C}: 169-171$.

tert-Alkyl Group Contributions to ${ }^{31}$ P NMR Chemical Shifts

Group contributions of individual tert-alkyl substituents to ${ }^{31} \mathrm{P}$ NMR chemical shifts were calculated according to the method of Grim et al. ${ }^{23}$ The excellent correlation observed between the calculated group contributions and the observed chemical shifts of JohnPhos analogues $\mathbf{3}$ does not hold for phosphines featuring two substituents at the C_{β}-position (Figure S8).

Figure S8. Correlation of calculated tert-alkyl group contributions vs observed ${ }^{31} \mathrm{P}$ NMR chemical shifts (/ppm) of JohnPhos analogues 3.

10. Synthesis of Di-tert-alkylbiarylphosphine Selenides 4 (Manuscript Scheme 6)

General procedure for the synthesis of di-tert-alkylbiarylphosphine selenides (4) (GP5)

Di-tert-alkylbiarylphosphine $\mathbf{3}$ (ca 7 mg pure, or ca 2 mg of crude material from the examples where pure material was not obtained, vide supra) and selenium powder (20 mg , excess) were added to an NMR tube, which was evacuated and filled with anhydrous dinitrogen ($3 \times$). Anhydrous degassed CDCl_{3} $(0.60 \mathrm{~mL}$) was added, and the tube was capped under a flow of anhydrous dinitrogen. After sealing with PTFE tape, the mixture was heated to $100{ }^{\circ} \mathrm{C}$ overnight. The tube was cooled to r.t., the solids were allowed to settle and a ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum was recorded. The resulting ${ }^{31} \mathrm{P}$ NMR chemical shifts and ${ }^{1} J_{\text {P-se }}$ coupling constants below were measured from these spectra are listed in Table S1.

entry	\mathbf{R}	$\boldsymbol{\delta}_{\mathrm{P}} / \mathbf{p p m}$	${ }^{1} \mathbf{J}_{\mathrm{P}-\mathrm{Se}} / \mathbf{H z}$
$\mathbf{1}$	tert-amyl 4a	76.71	732.7
$\mathbf{2}$	3-methyl-3-pentyl 4b	15.12	708.1
$\mathbf{3}$	3-ethyl-3-pentyl 4c	11.34	704.0
$\mathbf{4}$	2,3-dimethylbut-2-yl 4d	15.69	708.2
$\mathbf{5}$	2-methyl-4-phenylbut-2-yl 4f	73.35	738.8
$\mathbf{6}$	1-methylcyclopentyl 4h	74.69	723.0
$\mathbf{7}$	1-methylcyclohexyl 4i	80.39	729.3
$\mathbf{8}$	1-adamantyl 4k	69.99	726.0
$\mathbf{9}$	2-methyladamant-2-yl 4l	4.49	702.2

Table S1. ${ }^{31} \mathrm{P}$ NMR chemical shifts (/ppm) and ${ }^{1} \mathrm{~J}_{\mathrm{p} \text {-se }}$ coupling constants (/ Hz) of di-tertalkylbiarylphosphine selenides 4, measured as dilute solutions in CDCl_{3} at 298 K .

11. Synthesis and Characterisation of Di-tert-alkylbiarylphosphine Gold(I) Chloride Complexes $\underline{5}$ (Manuscript Scheme 6)

General procedure for the synthesis of di-tert-alkylbiarylphosphinegold(I) chloride complexes (5) (GP6)

Dichloromethane ($[3]_{0}=0.1 \mathrm{M}$) was added to a vial containing di-tert-alkylbiarylphosphine 3 (50.0 $\mu \mathrm{mol}$ pure isolated material, or 0.50 mmol crude material from the examples where pure di-tertalkylbiarylphosphine 3 was not obtained (vide infra)) and dimethylsulfide gold(I) chloride complex (1 equiv.). The mixture was stirred at r.t. for 1 h then concentrated in vacuo. The residue was triturated with pentane and the resulting solid was collected by Büchner filtration; where necessary, the products were further purified by passage through a pad of silica gel or Celite ${ }^{\circledR}$ (eluent: dichloromethane). The di-tert-alkylbiarylphosphinegold(I) chloride complexes 5 were obtained as offwhite solids.
[(2-Biphenyl)di-tert-amylphosphine]gold(I) chloride (5a)

GP3 was performed using di-tert-amylphosphonium trifluoromethanesulfonate 1a $0.138 \mathrm{~g}, 0.500$ mmol). Crude 2-(di-tert-amylphosphino)biphenyl 3a was obtained as a viscous yellow liquid $\left[{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}\right.$ NMR (202 MHz, $\mathbf{C D C l}_{3}$): δ 14.83]. ca 2 mg were removed for the synthesis of the selenide 4a (GP5, Section S10) and the remainder was subjected to GP6. [(2-Biphenyl)di-tert-amylphosphine]gold(I) chloride 5 a ($0.146 \mathrm{~g}, 0.262 \mathrm{mmol}, 52 \%$) was obtained as an off-white solid.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.87(\mathrm{td}, J=7.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.53-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.44-$ $7.40(\mathrm{~m}, 2 \mathrm{H}), 7.29$ (ddd, $J=7.5,4.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.10(\mathrm{~m}, 2 \mathrm{H}), 1.86(\mathrm{dt}, J=13.3,7.5 \mathrm{~Hz}, 2 \mathrm{H}) 1.78$ (dt, J = 13.5, 7.6 Hz, 2H), 1.41 (d, J = $16.8 \mathrm{~Hz}, 6 \mathrm{H}$), $1.36(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 6 \mathrm{H}), 0.87(\mathrm{t}, J=7.4 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 150.5(\mathrm{~d}, \mathrm{~J}=13.1 \mathrm{~Hz}), 142.4(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}), 134.1(\mathrm{~d}, \mathrm{~J}=2.7 \mathrm{~Hz}), 133.5$ ($d, J=7.3 \mathrm{~Hz}$), 130.6 ($d, J=2.3 \mathrm{~Hz}), 129.3,128.8,128.4,126.7(d, J=6.8 \mathrm{~Hz}), 126.0(\mathrm{~d}, J=43.4 \mathrm{~Hz}), 41.8$ (d, J=25.3 Hz), $34.4(\mathrm{~d}, J=8.2 \mathrm{~Hz}), 26.5(\mathrm{~d}, J=6.5 \mathrm{~Hz}), 25.5(\mathrm{~d}, J=4.0 \mathrm{~Hz}), 7.6(\mathrm{~d}, J=11.8 \mathrm{~Hz})$.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (202 MHz, CDCl_{3}): $\delta 65.35$ (s).
$\mathbf{V}_{\max }($ neat $) / \mathrm{cm}^{-1}: 3048,2964,2920,2876,1462,1437,1421,1411,1386,1364,1140,1031,993,953$, $910,773,753,699,676,635,617,534,508,484$.

HRMS: calcd. for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{AuClP}+\mathrm{Na}^{+}$: $581.1410[\mathrm{M}+\mathrm{Na}]^{+}$; found (ESI ${ }^{+}$): 581.1404, calcd. for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{AuClP}+\mathrm{NH}_{4}^{+}: 576.1856\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$; found (ESI ${ }^{+}$): 576.1852 .
m.p. $/{ }^{\circ} \mathrm{C}$: decomposes ca $120^{\circ} \mathrm{C}$.

[(2-Biphenyl)di-(3-methyl-3-pentyl)phosphine]gold(I) chloride (5b)

GP4 was performed using di-(3-methyl-3-pentyl)phosphonium trifluoromethanesulfonate (0.176 g , $0.500 \mathrm{mmol}), 2$-bromobiphenyl ($104 \mu \mathrm{~L}, 0.600 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(207 \mathrm{mg}, 1.50 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(17.3$ mg , $15.0 \mu \mathrm{~mol}, 3 \mathrm{~mol} \%$) in degassed xylenes $(1.0 \mathrm{~mL})$. Crude 2 -(di-3-methyl-3pentylphosphino) biphenyl 3b was obtained as a viscous yellow liquid [${ }^{31} \mathbf{P}\left\{{ }^{1} \mathrm{H}\right\} \mathbf{N M R}\left(\mathbf{2 0 2} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$: $\delta 0.05$]. ca 2 mg were removed for the synthesis of the selenide 4b (GP5, Section S10) and the remainder was subjected to GP6. [(2-Biphenyl)di-(3-methyl-3-pentyl)phosphine]gold(I) chloride 5b ($0.257 \mathrm{~g}, 0.437 \mathrm{mmol}, 87 \%$) was obtained as an off-white solid.

Note: the signal in the ${ }^{1} \mathrm{H}$ NMR spectrum at 7.88-7.92 ppm appears as a poorly resolved td (cf. other Au complexes), the resolution is not sufficient to assign coupling constants.
${ }^{1} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.92-7.88 (m, 1H), 7.58-7.54 (m, 1H), 7.52-7.44 (m, 2H), 7.44-7.39 (m, $2 H$), 7.28 (ddd, $J=7.7,4.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}$), $7.17-7.14(\mathrm{~m}, 2 \mathrm{H}), 2.17(\mathrm{ddq}, J=14.8,11.1,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.87-$ $1.73(\mathrm{~m}, 4 \mathrm{H}), 1.72-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.48(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 6 \mathrm{H}), 0.95(\mathrm{t}, J=7.4 \mathrm{~Hz}, 6 \mathrm{H}), 0.89(\mathrm{t}, J=7.4 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 150.0(\mathrm{~d}, \mathrm{~J}=13.4 \mathrm{~Hz}$), $142.5(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}), 135.1(\mathrm{~d}, \mathrm{~J}=2.7 \mathrm{~Hz}), 134.0$ (d, J = 7.5 Hz), $130.5(\mathrm{~d}, J=2.6 \mathrm{~Hz}), 129.3,128.7,128.4,126.6(\mathrm{~d}, J=41.0 \mathrm{~Hz}), 126.5(\mathrm{~d}, J=6.7 \mathrm{~Hz}), 45.5$ (d, $J=23.6), 32.8(d, J=10.3 \mathrm{~Hz}), 31.3(\mathrm{~d}, J=5.2 \mathrm{~Hz}), 24.1(\mathrm{~d}, J=1.9 \mathrm{~Hz}), 9.5(\mathrm{~d}, J=10.4 \mathrm{~Hz}), 9.3(\mathrm{~d}, J=$ 8.7 Hz).
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (202 MHz, CDCl ${ }_{3}$): $\delta 58.34$ (s).
$v_{\text {max }}$ (neat)/cm ${ }^{-1}: 2967,2936,2876,1460,1441,1384,1121,1062,1033,1006,779,750,698,615,532$, 506, 495, 457.

HRMS: calcd. for $\mathrm{C}_{24} \mathrm{H}_{35} \mathrm{AuClP}+\mathrm{Na}^{+}$: $609.1723[\mathrm{M}+\mathrm{Na}]^{+}$; found (ESI ${ }^{+}$: 609.1718, calcd. for $\mathrm{C}_{24} \mathrm{H}_{35} \mathrm{AuClP}+\mathrm{NH}_{4}{ }^{+}: 604.2169\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$; found (ESI ${ }^{+}$): 604.2162.
m.p. $/{ }^{\circ} \mathrm{C}$: decomposes ca $130^{\circ} \mathrm{C}$.

[(2-Biphenyl)di-(3-ethyl-3-pentyl)phosphine]gold(I) chloride (5c)

GP4 was performed using di-(3-ethyl-3-pentyl)phosphonium trifluoromethanesulfonate 1c (0.190 g, 0.500 mmol), 2-bromobiphenyl ($104 \mu \mathrm{~L}, 0.600 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(207 \mathrm{mg}, 1.50 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(17.3$ $\mathrm{mg}, 15.0 \mu \mathrm{~mol}, 3 \mathrm{~mol} \%$) in degassed xylenes (1.0 mL). Crude 2-(di-3-ethyl-3-pentylphosphino)biphenyl was obtained as a viscous yellow liquid $\left[{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.16\right]$. ca 2 mg were removed for the synthesis of the selenide $\mathbf{4 c}$ (GP5, Section S10) and the remainder was subjected to GP6. [(2-Biphenyl)di-(3-ethyl-3-pentyl)phosphine]gold(I) chloride 5 c ($0.166 \mathrm{~g}, 0.270 \mathrm{mmol}, 54 \%$) was obtained as an off-white solid.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.94$ (app. $\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.56 (app. $\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$), $7.51-7.38(\mathrm{~m}, 4 \mathrm{H})$, 7.28-7.24 (m, 1H, overlap with residual CHCl_{3} peak), 7.18 (app. d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 2.12 (ddq, $J=14.8$, $14.8,7.4 \mathrm{~Hz}, 6 \mathrm{H}$), 1.97 (ddq, $J=14.8,14.8,7.4 \mathrm{~Hz}, 6 \mathrm{H}), 0.99(\mathrm{t}, J=7.4 \mathrm{~Hz}, 18 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, CDCl ${ }_{3}$): $\delta 149.5(\mathrm{~d}, \mathrm{~J}=13.2 \mathrm{~Hz}), 142.8(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}), 135.6(\mathrm{~d}, \mathrm{~J}=2.7 \mathrm{~Hz}), 134.3$ (d, J = 7.4 Hz), 130.4 ($d, J=2.4 \mathrm{~Hz}$), 129.3, 128.7, 128.4, 127.8 ($d, J=37.2 \mathrm{~Hz}$), 126.4 ($d, J=6.4 \mathrm{~Hz}$), 50.7 (d, $J=19.7 \mathrm{~Hz}$), $30.3(\mathrm{~d}, J=6.0 \mathrm{~Hz}), 10.5(\mathrm{~d}, J=8.2 \mathrm{~Hz})$.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (202 MHz, CDCl_{3}): $\delta 59.91$ (s).
$v_{\max }($ neat $) / \mathrm{cm}^{-1}: 2966,2939,2879,1583,1457,1439,1383,1335,1154,1122,1069,1033,1006,909$, $839,777,750,699,671,615,547,526,507,493,465$.

HRMS: calcd. for $\mathrm{C}_{26} \mathrm{H}_{39} \mathrm{AuClP}+\mathrm{Na}^{+}$: $637.2036[\mathrm{M}+\mathrm{Na}]^{+}$; found (ESI ${ }^{+}$: 637.2022, calcd. for $\mathrm{C}_{26} \mathrm{H}_{39} \mathrm{AuClP}+\mathrm{NH}_{4}{ }^{+}: 632.2482\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$; found (ESI ${ }^{+}$): 632.2465 .
m.p. ${ }^{\circ} \mathrm{C}: ~ 167-169$.

[(2-Biphenyl)bis-(2,3-dimethyl-2-butyl)phosphine]gold(I) chloride (5d)

GP6 was performed using 2-(bis-(2,3-dimethyl-2-butyl)phosphino)biphenyl 3d (17.7 mg, $50.0 \mu \mathrm{~mol})$. [(2-Biphenyl)bis-(2,3-dimethyl-2-butyl)phosphine]gold(I) chloride 5d (19.7 mg, $33.6 \mu \mathrm{~mol}, 67 \%$) was obtained as an off-white solid.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.81(\mathrm{~d}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.51(\mathrm{tt}, J=7.4 .1 .6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.46(\mathrm{tt}, J=7.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.29(\mathrm{ddd}, J=7.6,4.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.17(\mathrm{~m}, 2 \mathrm{H})$, $2.17(\mathrm{dh}, J=10.7,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.47(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 6 \mathrm{H}), 1.45(\mathrm{~d}, J=18.4 \mathrm{~Hz}, 6 \mathrm{H}) 0.97(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H})$, 0.89 (d, $J=6.8 \mathrm{~Hz}, 6 \mathrm{H}$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 149.6(\mathrm{~d}, \mathrm{~J}=13.1 \mathrm{~Hz}), 142.2(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}), 135.3(\mathrm{~d}, \mathrm{~J}=2.6 \mathrm{~Hz}), 134.2$ ($\mathrm{d}, \mathrm{J}=7.4 \mathrm{~Hz}$), 130.6 ($\mathrm{d}, \mathrm{J}=2.5 \mathrm{~Hz}$), 129.3, $128.7,128.4,127.0(\mathrm{~d}, J=40.1 \mathrm{~Hz}), 126.5(\mathrm{~d}, J=6.7 \mathrm{~Hz}), 45.7$ (d, $J=23.2 \mathrm{~Hz}), 35.1(\mathrm{~d}, J=4.9 \mathrm{~Hz}), 26.4(\mathrm{~d}, J=9.4 \mathrm{~Hz}), 23.9,19.5(\mathrm{~d}, J=7.8 \mathrm{~Hz}), 19.1(\mathrm{~d}, J=5.1 \mathrm{~Hz})$. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (202 MHz, CDCl_{3}): $\delta 58.33$ (s).
$\mathbf{v}_{\max }($ neat $) / \mathrm{cm}^{-1}: \mathbf{2 9 6 0}, 2874,1462,1442,1392,1367,1237,1156,1125,1083,1007,908,780,756$, 699, 678, 616, 541, 511, 465, 416.

HRMS: calcd. for $\mathrm{C}_{24} \mathrm{H}_{35} \mathrm{AuClP}+\mathrm{Na}^{+}$: $609.1723[\mathrm{M}+\mathrm{Na}]^{+}$; found (ESI ${ }^{+}$): 609.1717, calcd. for $\mathrm{C}_{24} \mathrm{H}_{35} \mathrm{AuClP}+\mathrm{NH}_{4}^{+}: 604.2169\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$; found (ESI ${ }^{+}$): 604.2164.
m.p. ${ }^{\circ} \mathrm{C}: 172-174$.

[(2-Biphenyl)di-(2-methyl-4-phenyl-2-butyl)phosphine]gold(I) chloride (5f)

GP6 was performed using 2-(di-(2-methyl-4-phenyl-2-butyl)phosphino)biphenyl $\mathbf{3 f}$ ($23.9 \mathrm{mg}, 50.0$ $\mu \mathrm{mol})$. [(2-Biphenyl)di-(2-methyl-4-phenyl-2-butyl)phosphine]gold(I) chloride $\mathbf{5 f}$ ($24.3 \mathrm{mg}, 34.2 \mu \mathrm{~mol}$, 68%) was obtained as an off-white solid.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.87$ (td, $\left.J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.57-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.48(\mathrm{tt}, J=7.4,1.5 \mathrm{~Hz}$, 1H), 7.38-7.33 (m, 2H), 7.31-7.24 ($\mathrm{m}, 5 \mathrm{H}$, overlap with residual CHCl_{3} peak), 7.20-7.16 ($\mathrm{m}, 2 \mathrm{H}$), 7.04 (dd, $J=7.7,1.5 \mathrm{~Hz}, 6 \mathrm{H}$), 2.69-2.56 (m, 4H), 2.14-1.97 (m, 4H), 1.55 (d, J = 16.9 Hz, 6H), $1.54(\mathrm{~d}, \mathrm{~J}=15.3$ $\mathrm{Hz}, 6 \mathrm{H})$.
${ }^{13}{ }^{1}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, CDCl $_{3}$): $\delta 150.5(\mathrm{~d}, J=13.4 \mathrm{~Hz}), 142.1(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}), 141.5,134.2(\mathrm{~d}, J=2.5$ $\mathrm{Hz}), 133.8(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}), 130.9(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}), 129.3,128.8,128.7,128.5,128.4,126.9(\mathrm{~d}, J=6.7 \mathrm{~Hz})$, $126.3,125.5(\mathrm{~d}, \mathrm{~J}=43.3 \mathrm{~Hz}), 43.8(\mathrm{~d}, J=6.7 \mathrm{~Hz}), 41.9(\mathrm{~d}, J=24.2 \mathrm{~Hz}), 29.8(\mathrm{~d}, J=10.4 \mathrm{~Hz}), 28.1(\mathrm{~d}, J=$ 7.6 Hz), 26.9 ($\mathrm{d}, \mathrm{J}=3.7 \mathrm{~Hz}$).
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 63.55$ (s).
$\mathbf{V}_{\text {max }}($ neat $) / \mathrm{cm}^{-1}: 3060,3024,2965,2926,2853,1601,1496,1453,1386,1365,1200,1130,1071,1008$, $906,776,745,717,697,617,573,531,511,414$.

HRMS: calcd. for $\mathrm{C}_{34} \mathrm{H}_{39} \mathrm{AuClP}+\mathrm{Na}^{+}$: $733.2036\left[\mathrm{M}+\mathrm{Na}^{+}\right.$; found (ESI ${ }^{+}$): 733.2015, calcd. for $\mathrm{C}_{34} \mathrm{H}_{39} \mathrm{AuClP}+\mathrm{NH}_{4}{ }^{+}$: $728.2482\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$; found (ESI ${ }^{+}$): 728.2467.
m.p./${ }^{\circ}$ C: 130-132.

[(2-Biphenyl)di-(1-methylcyclopentyl)phosphine]gold(I) chloride (5h)

GP6 was performed using 2-(di-(1-methylcyclopentyl)phosphino)biphenyl 3 h ($17.5 \mathrm{mg}, 50.0 \mu \mathrm{~mol}$). [(2-Biphenyl)di-(1-methylcyclopentyl)phosphine]gold(I) chloride 5 h ($21.9 \mathrm{mg}, 37.6 \mu \mathrm{~mol}, 75 \%$) was obtained as an off-white solid.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.90(\mathrm{td}, \mathrm{J}=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.52-7.40(\mathrm{~m}, 4 \mathrm{H}), 7.29$ (ddd, J = 7.5, 4.3, 1.7 Hz, 1H), 7.18-7.15 (m, 2H), 2.30-2.20 (m, 2H), 2.09-1.99 (m, 2H), 1.83-1.70 (m, $6 \mathrm{H}), 1.69-1.56(\mathrm{~m}, 6 \mathrm{H}), 1.37(\mathrm{~d}, \mathrm{~J}=14.9 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13}{ }^{1}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 150.0(\mathrm{~d}, J=13.5 \mathrm{~Hz}), 142.3(\mathrm{~d}, J=6.3 \mathrm{~Hz}), 134.2(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 133.3$ (d, $J=7.4 \mathrm{~Hz}$), 130.5 ($\mathrm{d}, J=2.4 \mathrm{~Hz}$), $129.5,128.9,128.3,126.8(\mathrm{~d}, J=6.9 \mathrm{~Hz}), 126.8(\mathrm{~d}, J=46.5 \mathrm{~Hz}), 45.9$ (d, $J=28.6 \mathrm{~Hz}$), 40.6 ($\mathrm{d}, J=9.3 \mathrm{~Hz}$), $40.4(\mathrm{~d}, J=8.4 \mathrm{~Hz}), 25.9(\mathrm{~d}, J=4.9 \mathrm{~Hz}), 24.3(\mathrm{~d}, J=9.8 \mathrm{~Hz}), 23.4(\mathrm{~d}$, $J=10.2 \mathrm{~Hz}$).
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (202 MHz, CDCI 3): $\delta 58.89$ (s).
$v_{\max }($ neat $) / \mathrm{cm}^{-1}: 2954,2867,1463,1441,1424,1376,778,754,702,679,616,537,523,511$.
HRMS: calcd. for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{AuClP}+\mathrm{Na}^{+}$: $605.1410[\mathrm{M}+\mathrm{Na}]^{+}$; found (ESI ${ }^{+}$): 605.1406, calcd. for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{AuClP}+\mathrm{NH}_{4}{ }^{+}: 600.1856\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$; found (ESI ${ }^{+}$): 600.1852 .
m.p. ${ }^{\circ} \mathrm{C}$: 160-163.

[(2-Biphenyl)di-(1-methylcyclohexyl)phosphine]gold(I) chloride (5i)

GP6 was performed using 2-(di-(1-methylcyclohexyl)phosphino)biphenyl 3i (18.9 mg, $50.0 \mu \mathrm{~mol})$. [(2-Biphenyl)di-(1-methylcyclohexyl)phosphine]gold(I) chloride 5 ($24.8 \mathrm{mg}, 40.6 \mu \mathrm{~mol}, 81 \%$) was obtained as an off-white solid.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.90(\mathrm{td}, \mathrm{J}=7.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.52-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.44-$ $7.40(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.27(\mathrm{ddd}, J=7.4,2.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.10(\mathrm{~m}, 2 \mathrm{H}), 2.13-2.04(\mathrm{~m}, 2 \mathrm{H}), 2.03-1.88$ $(\mathrm{m}, 4 \mathrm{H}), 1.79-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.43(\mathrm{~m}, 16 \mathrm{H}), 1.18-1.08(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 150.8(\mathrm{~d}, J=13.0 \mathrm{~Hz}), 142.5(\mathrm{~d}, J=6.5 \mathrm{~Hz}), 134.5(\mathrm{~d}, J=2.4 \mathrm{~Hz}), 133.6$ (d, J = 7.2 Hz), 130.4 ($d, J=2.3 \mathrm{~Hz}), 129.4,128.8,128.3,126.5(\mathrm{~d}, J=6.4 \mathrm{~Hz}), 125.2(\mathrm{~d}, J=42.2 \mathrm{~Hz}), 43.2$ (d, J = 24.2 Hz), 37.6, 37.5 (d, J=1.8 Hz), 25.5 (d, J=1.3 Hz), 21.7 (d, J=4.0 Hz), 21.3 (d, J=7.8 Hz), $21.3(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz})$.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (202 MHz, CDCl ${ }_{3}$): $\delta 71.19$ (s).
$\mathbf{v}_{\max }$ (neat)/ $\mathrm{cm}^{-1}: \mathbf{2 9 3 4}, 2866,2844,1463,1441,1427,1374,1345,1333,1272,1255,1239,1159,1146$, $1131,1081,1030,1007,972,933,899,851,775,752,693,648,616,552,528,513,497,462,436$.

HRMS: calcd. for $\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{AuClP}+\mathrm{Na}^{+}$: $633.1723\left[\mathrm{M}+\mathrm{Na}^{+}\right]$; found (ESI ${ }^{+}$): 633.1717, calcd. for $\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{AuClP}+\mathrm{NH}_{4}^{+}: 628.2169\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$; found (ESI ${ }^{+}$): 628.2159.
m.p. $/{ }^{\circ} \mathrm{C}$: decomposes ca $220^{\circ} \mathrm{C}$.

[(2-Biphenyl)di-(1-adamantyl)phosphine]gold(I) chloride (5k)

GP6 was performed using 2-(di-(1-adamantyl)phosphino)biphenyl 3k ($22.7 \mathrm{mg}, 50.0 \mu \mathrm{~mol}$). [(2-Biphenyl)di-(1-adamantyl)phosphine]gold(I) chloride 5k ($23.7 \mathrm{mg}, 34.5 \mu \mathrm{~mol}, 69 \%$) was obtained as an off-white solid. The synthesis ${ }^{24}$ and crystal structure ${ }^{25}$ for $\mathbf{5 k}$ have been reported previously by Stradiotto and co-workers.
${ }^{1} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.86$ (td, J=7.0, $2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.59-7.55 (m, 1H), 7.53-7.47 (m, 2H), 7.45$7.41(\mathrm{~m}, 2 \mathrm{H}), 7.30(\mathrm{ddd}, J=7.0,4.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.09(\mathrm{~m}, 2 \mathrm{H}), 2.22-2.08(\mathrm{~m}, 12 \mathrm{H}), 2.01-1.97(\mathrm{~m}$, $6 \mathrm{H}), 1.70-1.65(\mathrm{~m}, 12 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, CDCl $)_{3}$: $\delta 150.9(\mathrm{~d}, \mathrm{~J}=13.1 \mathrm{~Hz}), 142.5(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}), 134.5(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}), 133.6$ (d, J = 7.3 Hz), 130.5 (d, J = 2.3 Hz), 129.4, 128.7, 128.3, 126.4 (d, J = 6.5 Hz), 124.0 (d, J = 43.7 Hz), 42.7 ($\mathrm{d}, \mathrm{J}=23.6 \mathrm{~Hz}$), $42.3(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 36.4(\mathrm{~d}, J=1.6 \mathrm{~Hz}), 28.7(\mathrm{~d}, J=9.9 \mathrm{~Hz})$.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (202 MHz, CDCl ${ }_{3}$): $\delta 61.57$ (s).
$\mathbf{v}_{\max }$ (neat)/cm ${ }^{-1}: 3046,2901,2848,1465,1449,1343,1301,1275,1259,1127,1044,969,905,773$, 752, 730, 694, 547, 531, 517, 488, 453, 433.

HRMS: calcd. for $\mathrm{C}_{32} \mathrm{H}_{39} \mathrm{AuClP}+\mathrm{Na}^{+}$: $709.2036[\mathrm{M}+\mathrm{Na}]^{+}$; found (ESI ${ }^{+}$): 709.2029, calcd. for $\mathrm{C}_{32} \mathrm{H}_{39} \mathrm{AuClP}+\mathrm{NH}_{4}^{+}: 704.2482\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$; found (ESI ${ }^{+}$): 704.2448.
m.p. $/{ }^{\circ} \mathrm{C}: ~>270$.

[(2-Biphenyl)di-(2-methyl-2-adamantyl)phosphine]gold(I) chloride (5I)

GP6 was followed using 2-(di-(2-methyl-2-adamantyl)phosphino)biphenyl 31 ($12.1 \mathrm{mg}, 25.0 \mu \mathrm{~mol}$) and dimethylsulfide gold(I) chloride complex (7.4 mg, $25 \mu \mathrm{~mol}$). [(2-Biphenyl)di-(2-methyl-2adamantyl)phosphine]gold(I) chloride $5 \mathrm{I}(6.0 \mathrm{mg}, 8.4 \mu \mathrm{~mol}, 34 \%)$ was obtained as an off-white solid.

The ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR spectra of this compound are complicated by restricted rotation. Variable temperature ${ }^{31}$ P NMR spectra (DMSO- $d_{6}, 298-368 \mathrm{~K}$) showed four different signals for the complex which tended towards coalescence at higher temperatures (Figure S9).

HRMS: calcd. for $\mathrm{C}_{34} \mathrm{H}_{43} \mathrm{AuClP}+\mathrm{Na}^{+}: 737.2349[\mathrm{M}+\mathrm{Na}]^{+}$; found (ESI ${ }^{+}$): 737.2344.
\qquad
358 K

Figure S9. Variable temperature ${ }^{31} \mathrm{P}$ NMR spectra of $5 \mathbf{5}$ in DMSO- d_{6}.

12. Suzuki-Miyaura Chemoselectivity Study (Manuscript Scheme 7)

Bromotoluene stock solution: 4-bromotoluene ($3.42 \mathrm{~g}, 20.0 \mathrm{mmol}$) and 2-bromotoluene ($3.42 \mathrm{~g}, 20.0$ $\mathrm{mmol})$ were added to a dry Schlenk tube that had previously been evacuated and backfilled with anhydrous dinitrogen ($3 \times$), and the mixture was made up to 20.0 mL total volume with anhydrous degassed toluene.

Competition reactions: 4-fluorophenylboronic acid ($28.0 \mathrm{mg}, 0.200 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(0.276 \mathrm{~g}, 2.00 \mathrm{mmol})$ $\mathrm{Pd}(\mathrm{OAc})_{2}(2.25 \mathrm{mg}, 10.0 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%)$ and ligand (3d, 3f, 3h, 3i, 3k, 3I, or $\mathbf{3 o} ; 20.0 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%$) were added to microwave tubes. The tubes were capped, then evacuated and backfilled with anhydrous dinitrogen ($3 \times$). Bromotoluene stock solution (2.0 mL) was added to each tube, and the mixtures were stirred at r.t. for 16 h . An aliquot of each reaction was removed, diluted with CDCl_{3}, and the ratio of products was measured by ${ }^{19}$ F NMR spectroscopy. Four peaks were observed in all cases, the identity of which were confirmed by comparison to authentic samples (Figure S10).

$\delta_{\mathrm{F}}=-115.8 \mathrm{ppm}$

$\delta_{\mathrm{F}}=-115.6 \mathrm{ppm}$

$\delta_{\mathrm{F}}=-115.2 \mathrm{ppm}$

$$
\delta_{\mathrm{F}}=-112.5 \mathrm{ppm}
$$

Figure S10. ${ }^{19} \mathrm{~F}$ NMR chemical shifts (/ppm, CDCl_{3}) of species observed in Suzuki-Miyaura crosscouplings.

13. X-ray Crystallography Data Tables

Table S2. Crystal data and structure refinement for 1a (CCDC 1990404; triflate anion and H atoms on C omitted for clarity).

Empirical formula	$\mathrm{C}_{11} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{~F}_{3} \mathrm{PS}$
Formula weight	324.33
Temperature/K	120(2)
Crystal system	monoclinic
Space group	$\mathrm{P} 2_{1} / \mathrm{n}$
a/Å	17.4780(3)
b/Å	10.4898(2)
c/Å	17.7113(4)
$\alpha /{ }^{\circ}$	90.0
$\beta /{ }^{\circ}$	99.9348(18)
$\gamma /{ }^{\circ}$	90.0
Volume/Å ${ }^{3}$	3198.51(11)
Z	8
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.347
μ / mm^{-1}	3.067
F(000)	1376.0
Crystal size/mm ${ }^{3}$	$0.232 \times 0.166 \times 0.077$
Radiation	CuK α ($\lambda=1.54184$)
2Θ range for data collection/ ${ }^{\circ}$	6.562 to 147.572
Index ranges	$-21 \leq h \leq 18,-12 \leq k \leq 9,-19 \leq \mathrm{l}$ < 21
Reflections collected	11217
Independent reflections	$6130\left[\mathrm{R}_{\text {int }}=0.0244, \mathrm{R}_{\text {sigma }}=0.0319\right]$
Data/restraints/parameters	6130/0/371
Goodness-of-fit on F^{2}	1.020
Final R indexes [l>=2 $\sigma(1)$]	$\mathrm{R}_{1}=0.0326, \mathrm{wR}_{2}=0.0852$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0388, w R_{2}=0.0902$
Largest diff. peak/hole / e \AA^{-3}	0.39/-0.28

Table S3. Crystal data and structure refinement for 1d (CCDC 1990405; triflate anion and H atoms on C omitted for clarity).

Empirical formula	$\mathrm{C}_{13} \mathrm{H}_{28} \mathrm{~F}_{3} \mathrm{O}_{3} \mathrm{PS}$
Formula weight	352.38
Temperature/K	120(2)
Crystal system	monoclinic
Space group	$\mathrm{P} 2_{1} / \mathrm{n}$
a/Å	8.8317(4)
b/Å	22.6453(9)
$c / A ̊$	9.2451(6)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	106.967(6)
$\mathrm{V} /{ }^{\circ}$	90
Volume/A ${ }^{3}$	1768.51(17)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.323
μ / mm^{-1}	2.814
F(000)	752.0
Crystal size/mm ${ }^{3}$	$0.326 \times 0.242 \times 0.142$
Radiation	CuK $\alpha(\lambda=1.54184)$
2Θ range for data collection/ ${ }^{\circ}$	10.74 to 147.248
Index ranges	$-7 \leq h \leq 10,-26 \leq k \leq 27,-11 \leq 1 \leq 7$
Reflections collected	6294
Independent reflections	3407 [$\mathrm{R}_{\text {int }}=0.0431, \mathrm{R}_{\text {sigma }}=0.0363$]
Data/restraints/parameters	3407/1050/333
Goodness-of-fit on F^{2}	1.046
Final R indexes [l>=2 $\sigma(1)]$	$\mathrm{R}_{1}=0.0823, \mathrm{wR}_{2}=0.2221$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0866, w \mathrm{R}_{2}=0.2282$
Largest diff. peak/hole / e \AA^{-3}	0.93/-0.47

Table S4. Crystal data and structure refinement for $\mathbf{1 i}$ (CCDC 1990406; triflate anion and H atoms on C omitted for clarity).

Empirical formula	$\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{~F}_{3} \mathrm{O}_{3} \mathrm{PS}$
Formula weight	376.40
Temperature/K	120(2)
Crystal system	monoclinic
Space group	$\mathrm{P} 2_{1} / \mathrm{n}$
a/Å	9.5000(2)
b/Å	10.6274(2)
c / \AA	18.6029(4)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	100.595(2)
$\gamma /{ }^{\circ}$	90
Volume/ ${ }^{3}$	1846.13(7)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.354
μ / mm^{-1}	2.735
F(000)	800
Crystal size/mm ${ }^{3}$	$0.210 \times 0.183 \times 0.118$
Radiation	CuK α ($\lambda=1.54184$)
2Θ range for data collection/ ${ }^{\circ}$	9.6260 to 147.5540
Index ranges	$-11 \leq h \leq 7,-12 \leq k \leq 11,-22 \leq 1 \leq 23$
Reflections collected	6454
Independent reflections	6454 [$\left.\mathrm{R}_{\text {int }}=0.0389, \mathrm{R}_{\text {sigma }}=0.0461\right]$
Data/restraints/parameters	3553/1/216
Goodness-of-fit on F^{2}	1.040
Final R indexes [$1>=2 \sigma(1)]$	$\mathrm{R}_{1}=0.0533 ; \mathrm{wR}_{2}=0.1293$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0574 ; \mathrm{wR}_{2}=0.1341$
Largest diff. peak/hole / e \AA^{-3}	1.044/-0.673

Table S5. Crystal data and structure refinement for $\mathbf{1 k}$ (CCDC 1990407; triflate anion and H atoms on C omitted for clarity).

Empirical formula	$\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{~F}_{3} \mathrm{O}_{3} \mathrm{PS}$
Formula weight	452.49
Temperature/K	120(2)
Crystal system	monoclinic
Space group	$\mathrm{P} 21 / \mathrm{c}$
a/Å	11.1508(2)
b/Å	18.5177(4)
c/Å	21.1099(5)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	100.488(2)
$\mathrm{V} /{ }^{\circ}$	90
Volume/A ${ }^{3}$	4286.10(16)
Z	8
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.402
μ / mm^{-1}	2.457
F(000)	1920
Crystal size/mm ${ }^{3}$	$0.158 \times 0.077 \times 0.043$
Radiation	CuK α ($\lambda=1.54184$)
2Θ range for data collection/ ${ }^{\circ}$	6.396 to 147.522
Index ranges	$-12 \leq h \leq 13,-23 \leq k \leq 20,-26 \leq 1 \leq 17$
Reflections collected	28854
Independent reflections	8144 [$\left.\mathrm{init}=0.0676, \mathrm{R}_{\text {sigma }}=0.0408\right]$
Data/restraints/parameters	8144/6/539
Goodness-of-fit on F^{2}	1.039
Final R indexes [$1>=2 \sigma(1)]$	$\mathrm{R}_{1}=0.0642 ; \mathrm{wR}_{2}=0.1644$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0746 ; w \mathrm{R}_{2}=0.1749$
Largest diff. peak/hole / e \AA^{-3}	1.836/-0.706

Table S6. Crystal data and structure refinement for 1m (CCDC 1990408; triflate anion and H atoms on C omitted for clarity).

Empirical formula	$\mathrm{C}_{31} \mathrm{H}_{52} \mathrm{~F}_{3} \mathrm{O}_{3} \mathrm{PS}$
Formula weight	592.75
Temperature/K	120(2)
Crystal system	orthorhombic
Space group	$\mathrm{P} 2{ }_{1} 2_{1} 2_{1}$
a/Å	7.3620(2)
b/Å	16.8285(3)
$c / A ̊$	25.1572(5)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	90
$\mathrm{V} /{ }^{\circ}$	90
Volume/Å ${ }^{3}$	3116.76(12)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.263
μ / mm^{-1}	1.807
F(000)	1280.0
Crystal size/mm ${ }^{3}$	$0.45 \times 0.098 \times 0.033$
Radiation	CuK $\alpha(\lambda=1.54184)$
2Θ range for data collection/ ${ }^{\circ}$	7.028 to 145.772
Index ranges	$-8 \leq h \leq 7,-20 \leq k \leq 20,-31 \leq 1 \leq 29$
Reflections collected	18408
Independent reflections	$6075\left[\mathrm{R}_{\text {int }}=0.0897, \mathrm{R}_{\text {sigma }}=0.0594\right]$
Data/restraints/parameters	6075/1/366
Goodness-of-fit on F^{2}	1.041
Final R indexes [$1>=2 \sigma(\mathrm{I})$]	$\mathrm{R}_{1}=0.0666, w \mathrm{R}_{2}=0.1796$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0692, w \mathrm{R}_{2}=0.1837$
Largest diff. peak/hole / e \AA^{-3}	0.67/-0.40
Flack parameter	-0.013(13)

Table S7. Crystal data and structure refinement for $\mathbf{1 n}$ (CCDC 1990409; triflate anion, H atoms on C and one molecule of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ omitted for clarity).

Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
a/Å
b/Å
$c / A ̊$
$\alpha /{ }^{\circ}$
$\beta /{ }^{\circ}$
$\gamma /{ }^{\circ}$
Volume/ ${ }^{3}$
Z
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$
μ / mm^{-1}
F(000)
Crystal size/mm ${ }^{3}$
Radiation
$\mathrm{C}_{40.9} \mathrm{H}_{35.8} \mathrm{Cl}_{1.8} \mathrm{~F}_{3} \mathrm{O}_{3} \mathrm{PS}$
759.13

120(2)
monoclinic
P2 ${ }_{1} / \mathrm{c}$
11.5515(2)
18.5889(2)
17.7571(2)

90
99.9070(10)

90
3756.12(9)

4
1.342
2.789
1575.0
$0.574 \times 0.213 \times 0.052$
CuK $\alpha(\lambda=1.54184)$
2Θ range for data collection/ ${ }^{\circ} 7.77$ to 147.506
Index ranges
$-14 \leq h \leq 14,-23 \leq k \leq 23,-16 \leq \mathrm{l} \leq 22$
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes $[I>=2 \sigma(I)]$
Final R indexes [all data]
61659
$7546\left[R_{\text {int }}=0.0651, R_{\text {sigma }}=0.0278\right]$
7546/496/555
1.026
$R_{1}=0.0701, w R_{2}=0.1794$
$R_{1}=0.0726, w R_{2}=0.1818$
1.10/-0.63

Table S8. Crystal data and structure refinement for 3 (CCDC 1990410; H atoms omitted for clarity).

Empirical formula	$\mathrm{C}_{34} \mathrm{H}_{39} \mathrm{P}$
Formula weight	478.62
Temperature/K	120(2)
Crystal system	triclinic
Space group	P-1
a/Å	10.1139(2)
b/Å	12.6246(3)
c/Å	13.5249(3)
$\alpha /{ }^{\circ}$	111.882(2)
$\beta /{ }^{\circ}$	109.918(2)
$\mathrm{V} /{ }^{\circ}$	96.579(2)
Volume/A ${ }^{3}$	1447.74(6)
Z	2
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.098
μ / mm^{-1}	0.962
F(000)	516.0
Crystal size/mm ${ }^{3}$	$0.158 \times 0.149 \times 0.071$
Radiation	CuK $\alpha(\lambda=1.54184)$
2Θ range for data collection/ ${ }^{\circ} 7.746$ to 144.51	
Index ranges	$-12 \leq h \leq 12,-15 \leq k \leq 15,-16 \leq 1 \leq 16$
Reflections collected	23255
Independent reflections	5573 [$\mathrm{R}_{\text {int }}=0.0280, \mathrm{R}_{\text {sigma }}=0.0188$]
Data/restraints/parameters	5573/401/375
Goodness-of-fit on F^{2}	1.043
Final R indexes [$1>=2 \sigma(1)]$	$\mathrm{R}_{1}=0.0381, \mathrm{wR}_{2}=0.1005$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0435, w \mathrm{R}_{2}=0.1057$
Largest diff. peak/hole / e \AA^{-3}	0.21/-0.16

Table S9. Crystal data and structure refinement for 5a (CCDC 1990411; H atoms and one molecule of cyclohexane omitted for clarity).

Empirical formula	$\mathrm{C}_{47} \mathrm{H}_{68} \mathrm{Au}_{2} \mathrm{Cl}_{2} \mathrm{P}_{2}$
Formula weight	1159.78
Temperature/K	120(2)
Crystal system	triclinic
Space group	P-1
a/Å	10.0872(3)
b/Å	14.0744(6)
c / \AA	16.7016(5)
$\alpha /{ }^{\circ}$	78.850(3)
$\beta /{ }^{\circ}$	81.860(2)
$\gamma /{ }^{\circ}$	78.924(3)
Volume/A ${ }^{3}$	2269.59(14)
Z	2
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.697
μ / mm^{-1}	6.676
F(000)	1144.0
Crystal size/mm ${ }^{3}$	$0.178 \times 0.143 \times 0.036$
Radiation	MoK $\alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ} 5.988$ to 70.126	
Index ranges	$-16 \leq h \leq 15,-22 \leq k \leq 22,-26 \leq \mathrm{l} \leq 26$
Reflections collected	64649
Independent reflections	18791 [$\mathrm{l}_{\text {int }}=0.0359, \mathrm{R}_{\text {sigma }}=0.0395$]
Data/restraints/parameters	18791/656/631
Goodness-of-fit on F^{2}	1.034
Final R indexes [$1>=2 \sigma(\mathrm{I})$]	$\mathrm{R}_{1}=0.0285, \mathrm{wR}_{2}=0.0483$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0462, w \mathrm{R}_{2}=0.0539$
Largest diff. peak/hole / e \AA^{-3}	1.23/-1.66

Table S10. Crystal data and structure refinement for 5b (CCDC 1990412; H atoms omitted for clarity).

Empirical formula	$\mathrm{C}_{24} \mathrm{H}_{35} \mathrm{AuClP}$
Formula weight	586.90
Temperature/K	120(2)
Crystal system	monoclinic
Space group	$\mathrm{P} 21 / \mathrm{n}$
a/Å	10.0134(2)
b/Å	14.7285(3)
c / \AA	15.0955(3)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	92.029(2)
$\gamma /{ }^{\circ}$	90
Volume/A ${ }^{3}$	2224.92(8)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.752
μ / mm^{-1}	6.811
F(000)	1160.0
Crystal size/mm ${ }^{3}$	$0.261 \times 0.23 \times 0.095$
Radiation	MoKa ($\lambda=0.71073$)
2Θ range for data collection/ ${ }^{\circ} 6.068$ to 75.594	
Index ranges	$-17 \leq h \leq 16,-24 \leq k \leq 25,-25 \leq 1 \leq 25$
Reflections collected	44846
Independent reflections	11484 [$\mathrm{intr}=0.0414, \mathrm{R}_{\text {sigma }}=0.0390$]
Data/restraints/parameters	11484/0/251
Goodness-of-fit on F^{2}	1.054
Final R indexes [$1>=2 \sigma(1)]$	$\mathrm{R}_{1}=0.0249, w \mathrm{R}_{2}=0.0467$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0355, w \mathrm{R}_{2}=0.0506$
Largest diff. peak/hole / e \AA^{-3}	1.73/-1.56

Table S11. Crystal data and structure refinement for 5c (CCDC 1990413; H atoms omitted for clarity).

Empirical formula
$\mathrm{C}_{26} \mathrm{H}_{39} \mathrm{AuClP}$
Formula weight
614.96

Temperature/K
120(2)
Crystal system
monoclinic
Space group
P2 ${ }_{1} / \mathrm{n}$
a/Å
10.0412(4)
b/Å
15.8623(6)
c/Å
15.2487(5)
$\alpha /{ }^{\circ}$
90
$\beta /{ }^{\circ}$
91.963(4)
$\mathrm{V} /{ }^{\circ}$
90
Volume/ ${ }^{3}$
2427.33(16)

Z
$\rho_{\text {calc }} g / \mathrm{cm}^{3}$
1.683
μ / mm^{-1}
6.247

F(000)
1224.0

Crystal size/mm ${ }^{3}$
$0.099 \times 0.089 \times 0.052$
Radiation
$\operatorname{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ} 5.79$ to 57.374
Index ranges
$-13 \leq h \leq 11,-20 \leq k \leq 20,-18 \leq \mathrm{l} \leq 20$
Reflections collected
24176
Independent reflections
$5556\left[R_{\text {int }}=0.0264, R_{\text {sigma }}=0.0232\right]$
Data/restraints/parameters
5556/0/268
Goodness-of-fit on F^{2}
1.045

Final R indexes $[l>=2 \sigma(I)] \quad R_{1}=0.0185, w R_{2}=0.0387$
Final R indexes [all data] $\quad R_{1}=0.0223, w R_{2}=0.0399$
Largest diff. peak/hole / e $\AA^{-3} 0.70 /-0.72$

Table S12. Crystal data and structure refinement for 5d (CCDC 1990414; H atoms and two molecules of cyclohexane omitted for clarity).

Empirical formula	$\mathrm{C}_{30} \mathrm{H}_{47} \mathrm{AuClP}$
Formula weight	671.06
Temperature/K	120(2)
Crystal system	monoclinic
Space group	P2 $1^{\prime} \mathrm{c}$
a/Å	10.6600(3)
b/Å	11.3550(3)
c / \AA	23.7632(7)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	100.803(3)
$\mathrm{V} /{ }^{\circ}$	90
Volume/Å ${ }^{3}$	2825.42(14)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.578
μ / mm^{-1}	5.374
F(000)	1352.0
Crystal size/mm ${ }^{3}$	$0.153 \times 0.05 \times 0.017$
Radiation	MoKa ($\lambda=0.71073$)
2Θ range for data collection/ ${ }^{\circ} 5.796$ to 65.982	
Index ranges	$-16 \leq h \leq 15,-16 \leq k \leq 17,-34 \leq 1 \leq 35$
Reflections collected	64955
Independent reflections	$9978\left[\mathrm{R}_{\text {int }}=0.0651, \mathrm{R}_{\text {sigma }}=0.0530\right]$
Data/restraints/parameters	9978/102/325
Goodness-of-fit on F^{2}	1.116
Final R indexes [$1>=2 \sigma(1)]$	$\mathrm{R}_{1}=0.0371, \mathrm{wR}_{2}=0.0566$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0619, w \mathrm{R}_{2}=0.0626$
Largest diff. peak/hole / e \AA^{-3}	1.97/-1.15

Table S13. Crystal data and structure refinement for 5h (CCDC 1990415; H atoms and one molecule of water omitted for clarity).

Empirical formula	$\mathrm{C}_{24} \mathrm{H}_{31.22} \mathrm{AuClO}_{0.11} \mathrm{P}$
Formula weight	584.85
Temperature/K	120(2)
Crystal system	monoclinic
Space group	$\mathrm{P} 2_{1} / \mathrm{n}$
a/Å	8.7107(2)
b/Å	9.9662(3)
c/Å	25.5485(6)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	96.659(2)
$\gamma /{ }^{\circ}$	90
Volume/Å ${ }^{3}$	2202.97(10)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.763
μ / mm^{-1}	6.879
F(000)	1148.0
Crystal size/mm ${ }^{3}$	$0.113 \times 0.094 \times 0.051$
Radiation	MoKa ($\lambda=0.71073$)
2Θ range for data collection/ ${ }^{\circ} 6.236$ to 57.416	
Index ranges	$-11 \leq h \leq 10,-13 \leq k \leq 13,-33 \leq 1 \leq 33$
Reflections collected	55140
Independent reflections	5357 [$\left.\mathrm{R}_{\text {int }}=0.0357, \mathrm{R}_{\text {sigma }}=0.0192\right]$
Data/restraints/parameters	5357/105/275
Goodness-of-fit on F^{2}	1.033
Final R indexes [$1>=2 \sigma(1)]$	$\mathrm{R}_{1}=0.0168, w \mathrm{R}_{2}=0.0322$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0208, w \mathrm{R}_{2}=0.0336$
Largest diff. peak/hole / e \AA^{-3}	0.79/-0.73

Table S14. Crystal data and structure refinement for 5i (CCDC 1990416; H atoms omitted for clarity).

Empirical formula	$\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{AuClP}$
Formula weight	610.92
Temperature/K	120(2)
Crystal system	monoclinic
Space group	$\mathrm{P} 2_{1} / \mathrm{n}$
a/Å	10.7821(3)
b/Å	20.3690(4)
c/Å	11.1066(3)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	106.794(3)
$\mathrm{V} /{ }^{\circ}$	90
Volume/ ${ }^{3}$	2335.20(11)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.738
μ / mm^{-1}	13.597
F(000)	1208
Crystal size/mm ${ }^{3}$	$0.23 \times 0.138 \times 0.05$
Radiation	CuK α ($\lambda=1.54184$)
2Θ range for data collection/ ${ }^{\circ}$	9.382 to 148.956
Index ranges	$-12 \leq h \leq 13,-25 \leq k \leq 25,-13 \leq \mathrm{l} \leq 13$
Reflections collected	19303
Independent reflections	$4705\left[\mathrm{R}_{\text {int }}=0.0256, \mathrm{R}_{\text {sigma }}=0.200\right]$
Data/restraints/parameters	4705/0/265
Goodness-of-fit on F^{2}	1.081
Final R indexes [l>=2 $\sigma(\mathrm{I})$]	$\mathrm{R}_{1}=0.0177 ; \mathrm{R}_{2}=0.0428$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0188 ; w \mathrm{R}_{2}=0.0433$
Largest diff. peak/hole / e \AA^{-3}	0.728/-0.966

Table S15. Crystal data and structure refinement for 5k (CCDC 1990417; H atoms omitted for clarity).

Empirical formula	$\mathrm{C}_{32} \mathrm{H}_{39} \mathrm{AuClP}$
Formula weight	687.02
Temperature/K	120(2)
Crystal system	monoclinic
Space group	$\mathrm{P} 2_{1} / \mathrm{c}$
a/Å	11.9313(2)
b/Å	15.6446(2)
c / A	15.2881(2)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	109.268(2)
$\mathrm{V} /{ }^{\circ}$	90
Volume/A ${ }^{3}$	2693.83(7)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.694
μ / mm^{-1}	5.640
F(000)	1368.0
Crystal size/mm ${ }^{3}$	$0.276 \times 0.09 \times 0.046$
Radiation	MoK $\alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ} 5.61$ to 75.426	
Index ranges	$-20 \leq h \leq 20,-26 \leq k \leq 26,-25 \leq 1 \leq 26$
Reflections collected	51837
Independent reflections	13779 [$\mathrm{R}_{\text {int }}=0.0649, \mathrm{R}_{\text {sigma }}=0.0720$]
Data/restraints/parameters	13779/0/316
Goodness-of-fit on F^{2}	0.923
Final R indexes [l>=2 $\sigma(\mathrm{I})$]	$\mathrm{R}_{1}=0.0344, \mathrm{wR}_{2}=0.0687$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0587, \mathrm{wR}_{2}=0.0717$
Largest diff. peak/hole / e \AA^{-3}	3.37/-1.89

14. NMR Spectra

3-Methyl-3-pentyl acetate - ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3-Ethyl-3-pentyl acetate - ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3-Ethyl-3-pentyl acetate - ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

势

2,3-Dimethyl-2-butyl acetate - ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

2,3-Dimethyl-2-butyl acetate - ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

[^1]
2,3,3-Trimethyl-2-butanol - ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\stackrel{\infty}{\infty} \stackrel{\text { d }}{\substack{\circ \\ j}}$

2,3,3-Trimethyl-2-butanol - ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, CDCl ${ }_{3}$)

$\stackrel{\text { Mn }}{\substack{n \\ i}} \stackrel{\substack{n \\ \sim \\ \sim}}{\sim}$

[^2]
2,3,3-Trimethyl-2-butyl acetate - ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

2,3,3-Trimethyl-2-butyl acetate - ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

2-Methyl-4-(4-bromophenyl)-2-butanol - ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

2-Methyl-4-(4-bromophenyl)-2-butanol $-{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

2-Methyl-4-(4-bromophenyl)-2-butyl acetate - ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

2-Methyl-4-(4-bromophenyl)-2-butyl acetate - ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, CDCl_{3})

1-Methylcyclopentyl acetate - ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

1-Methylcyclopentyl acetate - ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

N
$\stackrel{2}{\infty}$
M
$\stackrel{0}{0}$
$\stackrel{0}{7}$
$\stackrel{1}{1}$

Abstract

~~~~




1-Methylcyclohexyl acetate $-{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


1-Methylcyclohexyl acetate $-{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


1-Phenylcyclohexyl acetate - ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


1-Phenylcyclohexyl acetate $-{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


1-Adamantyl acetate - ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | TW |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10.0 | 9.5 | 9.0 | 8.5 | 8.0 | 7.5 | 7.0 | 6.5 | 6.0 | 5.5 | 5.0 | 4.5 | 4.0 | 3.5 | 3.0 | 2.5 | 2.0 | 1.5 | 1.0 | 0.5 | 0.0 |
|  |  |  |  |  |  |  |  |  |  | $\delta$ (pp | 4.5 | 4.0 | 3.5 | 3.0 | 2.5 | 2.0 | 1.5 | 1.0 | 0.5 | 0.0 |

1-Adamantyl acetate - ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )



$\stackrel{\text { ® }}{\text { N }}$


1-Adamantyl pivalate - ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

$-7.26 \mathrm{CDC13}$



1-Adamantyl pivalate - ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


1-Adamantyl benzoate - ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


1-Adamantyl benzoate $-{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


## 2-Methyl-2-adamantanol - ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )



テัส


2-Methyl-2-adamantanol - ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )




2-Methyl-2-adamantyl acetate - ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


2-Methyl-2-adamantyl acetate - ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


## 㬛





|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | - | Hid | Hix |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10.0 | 9.5 | 9.0 | 8.5 | 8.0 | 7.5 | 7.0 | 6.5 | 6.0 | 5.5 | 5.0 | 4.5 | 4.0 | 3.5 | 3.0 | 2.5 | 2.0 | 1.5 | 1.0 | 0.5 | 0.0 |
|  |  |  |  |  |  |  |  |  |  | (p) |  |  |  |  |  |  |  |  |  |  |

(+)-Cedryl acetate - ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


2-Methyl-4-phenyl-2-butanol - ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )



2-Methyl-4-phenyl-2-butanol - ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


2-Methyl-4-phenyl-2-butyl acetate $\left(d_{0}-2\right)-{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


2-Methyl-4-phenyl-2-butyl acetate $\left(d_{0}-2\right)-{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right)$


2-Methyl-4-phenyl-2-butanol- $\boldsymbol{d}_{6}-{ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


2-Methyl-4-phenyl-2-butanol- $\mathrm{d}_{6}-{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


2-Methyl-4-phenyl-2-butyl acetate- $d_{6}\left(d_{6}-2\right)-{ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


2-Methyl-4-phenyl-2-butyl acetate- $d_{6}\left(d_{6}-2\right)-{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right)$


Di-tert-amylphosphonium triflate (1a) - ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


Di-tert-amylphosphonium triflate (1a)- ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, CDCl ${ }_{3}$ )


## Di-tert-amylphosphonium triflate (1a) ${ }^{19} \mathrm{~F}$ NMR ( $470 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )



Di-tert-amylphosphonium triflate (1a) ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (202 MHz, $\mathrm{CDCl}_{3}$ )


Di-tert-amylphosphonium triflate (1a) ${ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


Di-(3-methyl-3-pentyl)phosphonium triflate (1b) - ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


Di-(3-methyl-3-pentyl)phosphonium triflate (1b) - ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, $\mathrm{CDCl}_{3}$ )


Di-(3-methyl-3-pentyl)phosphonium triflate (1b) ${ }^{19} \mathrm{~F}$ NMR ( $470 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

$--78.43$


Di-(3-methyl-3-pentyl)phosphonium triflate (1b) ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (202 MHz, $\mathrm{CDCl}_{3}$ )


$\stackrel{7}{i}$
$\qquad$

Di-(3-methyl-3-pentyl)phosphonium triflate (1b) ${ }^{31} \mathrm{P}$ NMR (202 MHz, $\mathrm{CDCl}_{3}$ )


$\begin{array}{llllllllllllllllllllllllllllll}9.0 & 8.5 & 8.0 & 7.5 & 7.0 & 6.5 & 6.0 & 5.5 & 5.0 & 4.5 & 4.0 & 3.5 & 3.0 & 2.5 & 2.0 & 1.5 & 1.0 & 0.5 & 0.0 & -0.5 & -1.0 & -1.5 & -2.0\end{array}$

Di-(3-ethyl-3-pentyl)phosphonium triflate (1c) - ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )




Di-(3-ethyl-3-pentyl)phosphonium triflate (1c) - ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$




[^3]Di-(3-ethyl-3-pentyl)phosphonium triflate (1c) ${ }^{19} \mathrm{~F}$ NMR (470 MHz, $\mathrm{CDCl}_{3}$ )



Di-(3-ethyl-3-pentyl)phosphonium triflate (1c) ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


Di-(3-ethyl-3-pentyl)phosphonium triflate (1c) ${ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


Bis-(2,3-dimethyl-2-butyl)phosphonium triflate (1d) - ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


Bis-(2,3-dimethyl-2-butyl)phosphonium triflate (1d) - ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, $\mathrm{CDCl}_{3}$ )


Bis-(2,3-dimethyl-2-butyl)phosphonium triflate (1d) ${ }^{19} \mathrm{~F}$ NMR ( $470 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )



Bis-(2,3-dimethyl-2-butyl)phosphonium triflate (1d) ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


Bis-(2,3-dimethyl-2-butyl)phosphonium triflate (1d) ${ }^{31}$ P NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


Bis-(2,3,3-trimethyl-2-butyl)phosphonium triflate (1e) - ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


Bis-(2,3,3-trimethyl-2-butyl)phosphonium triflate (1e) - ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


Bis-(2,3,3-trimethyl-2-butyl)phosphonium triflate (1e) ${ }^{19} \mathrm{~F}$ NMR ( $470 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

$\stackrel{\sim}{\infty}$


Bis-(2,3,3-trimethyl-2-butyl)phosphonium triflate (1e) ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (202 MHz, CDCl ${ }_{3}$ )


Bis-(2,3,3-trimethyl-2-butyl)phosphonium triflate (1e) ${ }^{31}$ P NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


|  |  |  |  |  |  |  |  | 1. |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -3.0 | -3.5 | -4.0 | -4.5 | -5.0 | -5.5 | -6.0 | -6.5 | -7.0 | -7.5 | -8.0 | -8.5 | -9.0 | -9.5 | -10.0 | -10.5 | -11.0 |

Di-(2-methyl-4-phenyl-2-butyl)phosphonium triflate (1f) - ${ }^{1} \mathrm{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$




Di-(2-methyl-4-phenyl-2-butyl)phosphonium triflate (1f) - ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


Di-(2-methyl-4-phenyl-2-butyl)phosphonium triflate (1f) ${ }^{19} \mathrm{~F}$ NMR ( $470 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

$\square$


Di-(2-methyl-4-phenyl-2-butyl)phosphonium triflate (1f) ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (202 MHz, $\mathrm{CDCl}_{3}$ )

$\stackrel{\text { ñ }}{\stackrel{\text { ñ }}{\text { | }}}$
$\qquad$


Di-(2-methyl-4-phenyl-2-butyl)phosphonium triflate (1f) ${ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )



| 9.0 | 18.5 | 18.0 | 17.5 | 17.0 | 16.5 | 16.0 | 15.5 | 15.0 | 14.5 | 14.0 | 13.5 | 13.0 | 12.5 | 12.0 | 11.5 | 11.0 | 10.5 | 10 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Di-(2-Methyl-4-(4-bromophenyl)-2-butyl)phosphonium triflate (1g)- ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$







|  |  |  |  |  | $\begin{aligned} & \text { TT } \\ & \stackrel{\circ}{\sigma} \end{aligned}$ |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & T \\ & 8 \\ & \dot{\sigma} \end{aligned}$ | $\begin{aligned} & \text { W్, } \\ & \text { Nun } \end{aligned}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10.0 | 9.5 | 9.0 | 8.5 | 8.0 | 7.5 | 7.0 | 6.5 | 6.0 | 5.5 | 5.0 | 4.5 | 4.0 | 3.5 | 3.0 | 2.5 | 2.0 | 1.5 | 1.0 | 0.5 | 0.0 |
|  |  |  |  |  |  |  |  |  |  | $\delta$ (p |  |  |  |  |  |  |  |  |  |  |

Di-(2-Methyl-4-(4-bromophenyl)-2-butyl)phosphonium triflate (1g)- ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


[^4]Di-(2-Methyl-4-(4-bromophenyl)-2-butyl)phosphonium triflate (1g) ${ }^{19} \mathrm{~F}$ NMR (470 MHz, CDCl $)^{\text {) }}$


Di-(2-Methyl-4-(4-bromophenyl)-2-butyl)phosphonium triflate (1g) ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$220 \quad 200 \quad 180 \quad 160$

Di-(2-Methyl-4-(4-bromophenyl)-2-butyl)phosphonium triflate (1g) ${ }^{31}$ P NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


| 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 19.0 | 18.5 | 18.0 | 17.5 | 17.0 | 16.5 | 16.0 | 15.5 | 15.0 | 14.5 | 14.0 | 13.5 | 13.0 | 12.5 | 12.0 | 11.5 | 11.0 | 10.5 | 10.0 |

Di-(1-methylcyclopentyl)phosphonium triflate (1h) - ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


Di-(1-methylcyclopentyl)phosphonium triflate (1h) - ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


1111



Di-(1-methylcyclopentyl)phosphonium triflate (1h) ${ }^{19} \mathrm{~F}$ NMR ( $470 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


苞

Di-(1-methylcyclopentyl)phosphonium triflate (1h) ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )
+

Di-(1-methylcyclopentyl)phosphonium triflate (1h) ${ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


Di-(1-methylcyclohexyl)phosphonium triflate (1i) - ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


$\stackrel{\circ}{0}$
$\stackrel{\sim}{\infty}$



Di-(1-methylcyclohexyl)phosphonium triflate (1i) - ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, $\mathrm{CDCl}_{3}$ )

no
1111



Di-(1-methylcyclohexyl)phosphonium triflate (1i) ${ }^{19} \mathrm{~F}$ NMR ( $470 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

$-78.41$

Di-(1-methylcyclohexyl)phosphonium triflate (1i) ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (202 MHz, $\mathrm{CDCl}_{3}$ )


Di-(1-methylcyclohexyl)phosphonium triflate (1i) ${ }^{31}$ P NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )



[^5]Di-(1-phenylcyclohexyl)phosphonium triflate (1j) - ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


Di-(1-phenylcyclohexyl)phosphonium triflate (1j) - ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


Di-(1-phenylcyclohexyl)phosphonium triflate (1j) ${ }^{19} \mathrm{~F}$ NMR ( $470 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

$--78.26$

Di-(1-phenylcyclohexyl)phosphonium triflate (1j) ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


Di-(1-phenylcyclohexyl)phosphonium triflate (1j) ${ }^{31}$ P NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


Di-(1-Adamantyl)phosphonium triflate (1k) - ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


Di-(1-Adamantyl)phosphonium triflate (1k)- ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


111


120
${ }^{13 \mathrm{C}} \delta(\mathrm{ppm})$

Di-(1-Adamantyl)phosphonium triflate (1k) ${ }^{19} \mathrm{~F}$ NMR ( $470 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


Di-(1-Adamantyl)phosphonium triflate (1k) ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathbf{2 0 2} \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\stackrel{\stackrel{\text { M }}{9}}{\stackrel{1}{m}}$

Di-(1-Adamantyl)phosphonium triflate (1k) ${ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )



[^6]Di-(2-methyl-2-adamantyl)phosphonium triflate (1I) - ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

荡




Di-(2-methyl-2-adamantyl)phosphonium triflate (1I) - ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, $\mathrm{CDCl}_{3}$ )

 $\underbrace{\text { I }}$ $\underbrace{\text { I }}$
 (1.5 1.0

Di-(2-methyl-2-adamantyl)phosphonium triflate (1I) ${ }^{19} \mathrm{~F}$ NMR ( $470 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

$\stackrel{\substack{\infty \\ i}}{\stackrel{\infty}{i}}$

Di-(2-methyl-2-adamantyl)phosphonium triflate (1I) ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


Di-(2-methyl-2-adamantyl)phosphonium triflate (1I) ${ }^{31} \mathrm{P}$ NMR (202 MHz, $\mathrm{CDCl}_{3}$ )




Dicedrylphosphonium triflate (1m) - ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


Dicedrylphosphonium triflate (1m) - ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )





Dicedrylphosphonium triflate (1m) ${ }^{19} \mathrm{~F}$ NMR ( $470 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


Dicedrylphosphonium triflate (1m) ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


Dicedrylphosphonium triflate (1m) ${ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


Tribenzhydrylphosphonium triflate (1n) - ${ }^{1} \mathrm{H} N \mathrm{NR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


Tribenzhydrylphosphonium triflate (1n) - ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


Tribenzhydrylphosphonium triflate (1n) ${ }^{19} \mathrm{~F}$ NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )




Tribenzhydrylphosphonium triflate (1n) ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $162 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


Tribenzhydrylphosphonium triflate (1n) ${ }^{31} \mathrm{P}$ NMR ( $162 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


Bis-(2,4,4-trimethyl-2-pentyl)phosphonium triflate (1q) - ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


范


Bis-(2,4,4-trimethyl-2-pentyl)phosphonium triflate (1q) - ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )




Bis-(2,4,4-trimethyl-2-pentyl)phosphonium triflate (1q) ${ }^{19} \mathrm{~F}$ NMR ( $470 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

$--78.31$


Bis-(2,4,4-trimethyl-2-pentyl)phosphonium triflate (1q) ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (202 MHz, $\mathrm{CDCl}_{3}$ )


Bis-(2,4,4-trimethyl-2-pentyl)phosphonium triflate (1q) ${ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


Di-(3-ethyl-3-pentyl)phosphine borane complex - ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )



Di-(3-ethyl-3-pentyl)phosphine borane complex ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(160 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


Di-(3-ethyl-3-pentyl)phosphine borane complex - ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )




Di-(3-ethyl-3-pentyl)phosphine borane complex ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\underbrace{\text { A. }}_{1}$

Di-(3-ethyl-3-pentyl)phosphine borane complex ${ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


Di-(3-ethyl-3-pentyl)chlorophosphine - ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

ఇロ
ఇロ


Di-(3-ethyl-3-pentyl)chlorophosphine - ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, CDCl ${ }_{3}$ )


- 77.16 CDCl 3



Di-(3-ethyl-3-pentyl)chlorophosphine ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (202 MHz, $\mathrm{CDCl}_{3}$ )



Di-(3-ethyl-3-pentyl)chlorophosphine ${ }^{31}$ P NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


Di-(3-ethyl-3-pentyl)phosphine oxide - ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$



Di-(3-ethyl-3-pentyl)phosphine oxide - ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, $\mathrm{CDCl}_{3}$ )




## Di-(3-ethyl-3-pentyl)phosphine oxide ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


$\stackrel{\infty}{\infty}$


Di-(3-ethyl-3-pentyl)phosphine oxide ${ }^{31} \mathrm{P}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )



Di-(3-ethyl-3-pentyl)benzylphosphine borane complex - ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$




Di-(3-ethyl-3-pentyl)benzylphosphine borane complex ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(128 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


Di-(3-ethyl-3-pentyl)benzylphosphine borane complex - ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


Di-(3-ethyl-3-pentyl)benzylphosphine borane complex ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $162 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )




## 2-Biphenyl triflate - ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )



2-Biphenyl triflate $-{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


2-Biphenyl triflate ${ }^{19} \mathrm{~F}$ NMR ( $470 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

. 74.08


2-(Bis-(2,3-dimethyl-2-butyl)phosphino)biphenyl (3d) - ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


2-(Bis-(2,3-dimethyl-2-butyl)phosphino)biphenyl (3d) - ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ )


2-(Bis-(2,3-dimethyl-2-butyl)phosphino)biphenyl (3d) ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (202 MHz, CDCl ${ }^{2}$ )

$-3.14$


## 2-(Di-(2-methyl-4-phenyl-2-butyl)phosphino)biphenyl (3f) - ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )



2-(Di-(2-methyl-4-phenyl-2-butyl)phosphino)biphenyl (3f) - ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


2-(Di-(2-methyl-4-phenyl-2-butyl)phosphino)biphenyl (3f) ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$




2-(Di-(1-methylcyclopentyl)phosphino)biphenyl (3h) - ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


2-(Di-(1-methylcyclopentyl)phosphino)biphenyl (3h) ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


2-(Di-(1-methylcyclohexyl)phosphino)biphenyl (3i) - ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


2-(Di-(1-methylcyclohexyl)phosphino)biphenyl (3i) - ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


2-(Di-(1-methylcyclohexyl)phosphino)biphenyl (3i) + 2\% XPhos ( $\left.\delta_{p}-12.31 \mathrm{ppm}\right){ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (202 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ )


2-(Di-(1-adamantyl)phosphino)biphenyl (3k) - ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )



2-(Di-(1-adamantyl)phosphino)biphenyl (3k) - ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


2-(Di-(1-adamantyl)phosphino)biphenyl (3k) ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\stackrel{\circ}{\stackrel{3}{1}}$


2-(Di-(2-methyl-2-adamantyl)phosphino)biphenyl (3I) - ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )




2-(Di-(2-methyl-2-adamantyl)phosphino)biphenyl (3I) - ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$



2-(Di-(2-methyl-2-adamantyl)phosphino)biphenyl (3I) ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (202 MHz, CDCl ${ }_{3}$ )



Crude 2-(di-(tert-amyl)phosphino)biphenyl (3a) ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (202 MHz, $\mathrm{CDCl}_{3}$ )

(2-Biphenyl)di-tert-amylphosphine selenide (4a) reaction mixture ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\mathrm{R}=\frac{3}{3}$


Crude 2-(Di-(3-methyl-3-pentyl)phosphino)biphenyl (3b) ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\stackrel{\text { ®. }}{0}$

(2-Biphenyl)di-(3-methyl-3-pentyl)phosphine selenide (4b) reaction mixture ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


Crude 2-(Di-(3-ethyl-3-pentyl)phosphino)biphenyl (3c) ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (202 MHz, CDCl ${ }_{3}$ )

(2-Biphenyl)bis-(2,3-dimethyl-2-butyl)phosphine selenide (4d) reaction mixture ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (202 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ )



(2-Biphenyl)di-(2-methyl-4-phenyl-2-butyl)phosphine selenide (4f) reaction mixture ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $202 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

(2-Biphenyl)di-(1-methylcyclopentyl)phosphine selenide (4h) reaction mixture ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (202 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ )




[^7](2-Biphenyl)di-(1-methylcyclohexyl)phosphine selenide (4i) reaction mixture ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(202 \mathrm{MHz}$, $\mathrm{CDCl}_{3}$ )

$R=3$

(2-Biphenyl)di-(1-adamantyl)phosphine selenide (4k) reaction mixture ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(202 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right)$

$\mathrm{R}=3$
$$
8
$$


(2-Biphenyl)di-(2-methyl-2-adamantyl)phosphine selenide (4I) reaction mixture ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (202 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ )

[(2-Biphenyl)di-tert-amylphosphine]gold(I) chloride (5a) - ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$




[(2-Biphenyl)di-tert-amylphosphine]gold(I) chloride (5a) - ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$



$\stackrel{\substack{0 \\ \sim}}{\substack{\mathrm{~N}}}$

## [(2-Biphenyl)di-tert-amylphosphine]gold(I) chloride (5a) ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (202 MHz, $\mathrm{CDCl}_{3}$ )


$\mathrm{R}=\frac{3}{3}$
 $31 \mathrm{P} \delta(\mathrm{ppm})$

$R=$


## 

[(2-Biphenyl)di-(3-methyl-3-pentyl)phosphine]gold(I) chloride (5b) - ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, CDCl ${ }_{3}$ )

[(2-Biphenyl)di-(3-methyl-3-pentyl)phosphine]gold(I) chloride (5b) ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$



[(2-Biphenyl)di-(3-ethyl-3-pentyl)phosphine]gold(I) chloride (5c) - ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, CDCl ${ }_{3}$ )



$R=$


| 50.79 |
| :--- |
| 50.64 |




[^8][(2-Biphenyl)di-(3-ethyl-3-pentyl)phosphine]gold(I) chloride (5c) ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$R=3$
-



$R=$

[(2-Biphenyl)bis-(2,3-dimethyl-2-butyl)phosphine]gold(I) chloride (5d) - ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )




[(2-Biphenyl)bis-(2,3-dimethyl-2-butyl)phosphine]gold(I) chloride (5d) ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(202 \mathrm{MHz}$, $\mathrm{CDCl}_{3}$ )

$R=$

$\stackrel{\substack{m \\ i}}{\stackrel{\infty}{i}}$


[(2-Biphenyl)di-(2-methyl-4-phenyl-2-butyl)phosphine]gold(I) chloride (5f) - ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


[(2-Biphenyl)di-(2-methyl-4-phenyl-2-butyl)phosphine]gold(I) chloride (5f) ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(202 \mathrm{MHz}$, $\mathrm{CDCl}_{3}$ )

$R=3$


[(2-Biphenyl)di-(1-methylcyclopentyl)phosphine]gold(I) chloride (5h) - ${ }^{13} C\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


[(2-Biphenyl)di-(1-methylcyclopentyl)phosphine]gold(I) chloride (5h) ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$






[(2-Biphenyl)di-(1-methylcyclohexyl)phosphine]gold(I) chloride (5i) - ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )



[(2-Biphenyl)di-(1-methylcyclohexyl)phosphine]gold(I) chloride (5i) ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (202 MHz, CDCl ${ }_{3}$ )

$\mathrm{R}=\mathrm{s}^{3}$

[(2-Biphenyl)di-(1-adamantyl)phosphine]gold(I) chloride (5k) - ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

[(2-Biphenyl)di-(1-adamantyl)phosphine]gold(I) chloride (5k) - ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$






[^9][(2-Biphenyl)di-(1-adamantyl)phosphine]gold(I) chloride (5k) ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$R=$
$-61.57$

## 

## 15. References

(1) Jin, M.; Adak, L.; Nakamura, M. Iron-Catalyzed Enantioselective Cross-Coupling Reactions of $\alpha$-Chloroesters with Aryl Grignard Reagents. J. Am. Chem. Soc. 2015, 137, 7128-7134
(2) Saito, T.; Nishimoto, Y.; Yasuda, M.; Baba, A. $\mathrm{InCl}_{3}$-Catalyzed Cross-Coupling of Alkyl Trimethylsilyl Ethers and Allylsilanes via an in Situ Derived Combined Lewis Acid of $\mathrm{InCl}_{3}$ and $\mathrm{Me}_{3} \mathrm{Sil}$. J. Org. Chem. 2007, 72, 8588-8590.
(3) Vuluga, D.; Legros, J.; Crousse, B.; Bonnet-Delpon, D. Fluorous 4-N,N -Dimethylaminopyridine (DMAP) Salts as Simple Recyclable Acylation Catalysts. Chem. Eur. J. 2010, 16, 1776-1779.
(4) Ishihara, K.; Kubota, M.; Kurihara, H.; Yamamoto, H. Scandium Trifluoromethanesulfonate as an Extremely Active Lewis Acid Catalyst in Acylation of Alcohols with Acid Anhydrides and Mixed Anhydrides .J. Org. Chem. 1996, 61, 4560-4567.
(5) Strazzolini, P.; Giumanini, A. G.; Verardo, G. The Reaction between Acyl Halides and Alcohols: Alkyl Halide vs. Ester Formation. Tetrahedron 1994, 50, 217-254.
(6) Fujita, S.; Hayashi, Y.; Nômi, T.; Nozaki, H. Photochemical Addition of Protic Solvents to 1Phenylcycloalkenes. Tetrahedron 1971, 27, 1607-1613.
(7) Liu, Z.; Ma, Q.; Liu, Y.; Wang, Q. 4-(N,N-Dimethylamino)Pyridine Hydrochloride as a Recyclable Catalyst for Acylation of Inert Alcohols: Substrate Scope and Reaction Mechanism. Org. Lett. 2014, 16, 236-239.
(8) Baldwin, S. W.; Haut, S. A. Reductive Deoxygenation of Esters with Trichlorosilane. J. Org. Chem. 1975, 40, 3885-3887.
(9) Xin, Z.; Gøgsig, T. M.; Lindhardt, A. T.; Skrydstrup, T. An Efficient Method for the Preparation of Tertiary Esters by Palladium-Catalyzed Alkoxycarbonylation of Aryl Bromides. Org. Lett. 2012, 14, 284-287.
(10) Mukaiyama, T.; Shintou, T.; Fukumoto, K. A Convenient Method for the Preparation of Inverted Tert -Alkyl Carboxylates from Chiral Tert -Alcohols by a New Type of Oxidation-Reduction Condensation Using 2,6-Dimethyl-1,4-Benzoquinone. J. Am. Chem. Soc. 2003, 125, 10538-10539.
(11) Brown, L.; Koreeda, M. Benzoyl Trifluoromethanesulfonate. A Mild Reagent for the Benzoylation of Sterically Hindered Hydroxyls. J. Org. Chem. 1984, 49, 3875-3880.
(12) Gopalan, B.; Ponpandian, T.; Kachhadia, V.; Bharathimohan, K.; Vignesh, R.; Sivasudar, V.; Narayanan, S.; Mandar, B.; Praveen, R.; Saranya, N.; Rajagopal, S.; Rajagopal, S. Discovery of Adamantane Based Highly Potent HDAC Inhibitors. Bioorganic Med. Chem. Lett. 2013, 23, 2532-2537.
(13) Alder, R. W.; Carta, F.; Reed, C. A.; Stoyanova, I.; Willis, C. L. Searching for Intermediates in Prins Cyclisations: The 2-Oxa-5-Adamantyl Carbocation. Org. Biomol. Chem. 2010, 8, 1551-1559.
(14) Kolocouris, A.; Koch, A.; Kleinpeter, E.; Stylianakis, I. 2-Substituted and 2,2-Disubstituted Adamantane Derivatives as Models for Studying Substituent Chemical Shifts and $\mathrm{C}-\mathrm{H}_{\mathrm{ax}} \cdots \mathrm{Y}_{\mathrm{ax}}$ Cyclohexane Contacts - Results from Experimental and Theoretical NMR Spectroscopic Chemical Shifts and DFT Structures. Tetrahedron 2015, 71, 2463-2481.
(15) Park, T.-S.; Kim, H.-W. USES OF SESQUITERPENE DERIVATIVES. EP2331089 (A2), 2011.
(16) Murray, J. I.; Spivey, A. C. Amines vs. N -Oxides as Organocatalysts for Acylation, Sulfonylation and Silylation of Alcohols: 1-Methylimidazole N -Oxide as an Efficient Catalyst for Silylation of Tertiary Alcohols. Adv. Synth. Catal. 2015, 357, 3825-3830.
(17) Nishimoto, Y.; Okita, A.; Yasuda, M.; Baba, A. Synthesis of a Wide Range of Thioethers by Indium Triiodide Catalyzed Direct Coupling between Alkyl Acetates and Thiosilanes. Org. Lett. 2012, 14, 1846-1849.
(18) Álvarez-Calero, J. M.; Jorge, Z. D.; Massanet, G. M. TiCl ${ }_{4} / \mathrm{Et}_{3} \mathrm{~N}-\mathrm{Mediated}$ Condensation of Acetate and Formate Esters: Direct Access to $\beta$-Alkoxy- and $\beta$-Aryloxyacrylates. Org. Lett. 2016, 18, 6344-6347.
(19) Dornhaus, F.; Scholz, S.; Sänger, I.; Bolte, M.; Wagner, M.; Lerner, H.-W. A Comparative Study on the Structural and Chemical Properties of Group 13-15 Element Addition Compounds t-Bu2 $\mathrm{PH} \cdot \mathrm{EX}_{3}$ ( $\mathrm{E}=\mathrm{B}, \mathrm{Al}, \mathrm{Ga}, \mathrm{In} ; \mathrm{X}=\mathrm{Cl}, \mathrm{Br}$ ). Z. Anorg. Allg. Chem. 2009, 635, 2263-2272.
(20) Montgomery, T. P.; Grandner, J. M.; Houk, K. N.; Grubbs, R. H. Synthesis and Evaluation of Sterically Demanding Ruthenium Dithiolate Catalysts for Stereoretentive Olefin Metathesis. Organometallics 2017, 36, 3940-3953.
(21) Bruno, N. C.; Tudge, M. T.; Buchwald, S. L. Design and Preparation of New Palladium Precatalysts for C-C and C-N Cross-Coupling Reactions. Chem. Sci. 2013, 4, 916-920.
(22) Aranyos, A.; Old, D. W.; Kiyomori, A.; Wolfe, J. P.; Sadighi, J. P.; Buchwald, S. L. Novel ElectronRich Bulky Phosphine Ligands Facilitate the Palladium- Catalyzed Preparation of Diaryl Ethers. J. Am. Chem. Soc. 1999, 121, 4369-4378.
(23) Grim, S. O.; McFarlane, W.; Davidoff, E. F. Group Contributions to Phosphorus-31 Chemical Shifts of Tertiary Phosphines. J. Org. Chem. 1967, 32, 781-784.
(24) Hesp, K. D.; Stradiotto, M. Stereo- and Regioselective Gold-Catalyzed Hydroamination of Internal Alkynes with Dialkylamines. J. Am. Chem. Soc. 2010, 132, 18026-18029.
(25) Rotta-Loria, N. L.; Chisholm, A. J.; MacQueen, P. M.; McDonald, R.; Ferguson, M. J.; Stradiotto, M. Exploring the Influence of Phosphine Ligation on the Gold-Catalyzed Hydrohydrazination of Terminal Alkynes at Room Temperature. Organometallics 2017, 36, 2470-2475.


[^0]:    * Correspondence to: liam.ball@nottingham.ac.uk

[^1]:    $\begin{array}{lllllllllllll}220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ & & 13 C & \delta(\mathrm{ppm})\end{array}$

[^2]:    $\begin{array}{llllllllllll}220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 \\ 13 \mathrm{C} \delta(\mathrm{ppm})\end{array}$

[^3]:    

[^4]:    $\begin{array}{llllllllllll}220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 \\ & & & & & & & & & & \\ 13 \mathrm{C} \delta(\mathrm{ppm})\end{array}$

[^5]:    

[^6]:    | 7.5 | 17.0 | 16.5 | 16.0 | 15.5 | 15.0 | 14.5 | 14.0 | 13.5 | $\begin{array}{c}13.0 \\ 31 \mathrm{P} \delta(\mathrm{ppm})\end{array}$ | 12.5 | 12.0 | 11.5 | 11.0 | 10.5 | 10.0 | 9.5 |
    | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

[^7]:    

[^8]:    220
    210
    200
    190
    01
    015
    $13 \mathrm{C} \delta(\mathrm{ppm}){ }^{10}$

[^9]:    

