Supporting Information

Excited State Turn-On of Aurophilicity and Tunability of Relativistic Effects in a Series of Digold Triazolates Synthesized via iClick

Charles J. Zeman IV,^{a,b} Yu-Hsuan Shen,^a Jessica K. Heller,^a Khalil A. Abboud,^a Kirk S. Schanze,^{*b} Adam S. Veige,^{*a}

- ^a University of Florida, Department of Chemistry, Center for Catalysis, P.O. Box 117200, Gainesville, FL, 32611.
- ^b University of Texas at San Antonio, Department of Chemistry, One UTSA Circle, San Antonio, TX 78249.

Corresponding Author

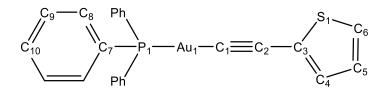

* E-mail: <u>veige@chem.ufl.edu</u> E-mail: <u>kirk.schanze@utsa.edu</u>

Table of Contents

1. Syntheses, NM	R, X-Ray Crystallography Data
PPh ₃ .	AuC=CTh
Au ₂ -7	Γh
PPh ₃ .	$AuC \equiv CPhNMe_2S11$
Au ₂ -J	PhNMe ₂
Au ₂ -ł	oiTh
4,5-A	
2. Fluorescence o	f Au ₂ -Th and 4,5-Au ₁ -ThS29
3. Computational	Results
Valid	lation of Trimethyl Phosphine Ligands
Calcu	lated Absorption Spectra
Full I	Disclosure
Orbit	al Analysis
Tripl	et States
4. References	

1. Syntheses, NMR and X-ray Crystallography Data

Synthesis of PPh₃AuC≡CTh.

74.4 % Yield (0.37 mmol, 209.6 mg). ¹H NMR (500 MHz, CDCl₃): δ 6.89 (dd, ³J_{HH} = 3.5, 5.1 Hz, 1H, C₅-H), 7.08 (dd, ³J_{HH} = 5.2 Hz, ⁴J_{HH} = 1.2 Hz, 1H, C₄-H), 7.15 (dd, ³J_{HH} = 3.7 Hz, ³J_{HH} = 1.3 Hz, 1H, C₆-H), 7.43-7.56 (m, 15H, aromatic). ¹³C{¹H} NMR (indirect detection through ¹H-¹³C gHMBC and ¹H-¹³C gHSQC (126 MHz, CDCl₃)): δ 125.1 (C₄), 125.2 (C₃), 126.5 (C₅), 129.1 (d, ⁴J_{CP} = 11 Hz, C₁₀), 129.6 (d, ¹J_{CP} = 56 Hz, C₇), 131.1 (C₆), 131.5 (d, ³J_{CP} = 3 Hz, C₉), 134.3 (d, ²J_{CP} = 14 Hz, C₈). ³¹P{¹H} NMR (121 MHz, CDCl₃): δ 42.52. ESI-MS: m/z calculated for C₂₄H₁₈AuPS [M+Na]⁺ 589.0430, found 589.0408. Anal. Calcd. for C₂₄H₁₈AuPS: C, 50.89; H, 3.20. Found: C, 50.60; H, 3.11; N, - 0.23.

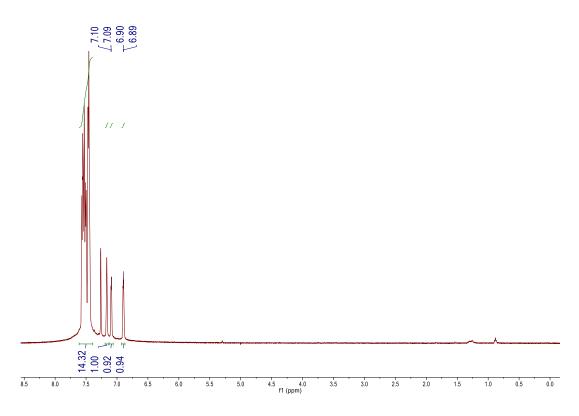


Figure S1. ¹H NMR spectrum of PPh₃AuC≡CTh (CDCl₃, 500 MHz, 25 °C).

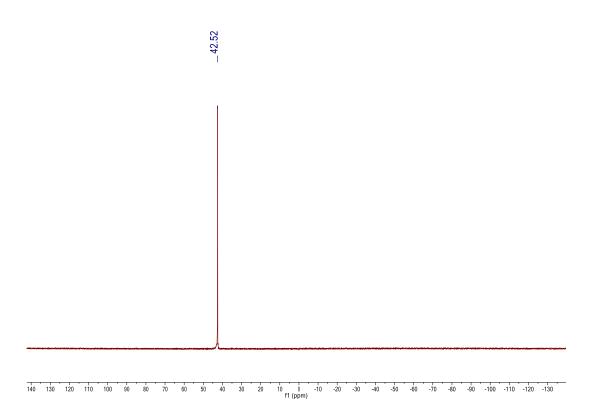


Figure S2. ³¹P{¹H} NMR spectrum of **PPh₃AuC≡CTh** (CDCl₃, 121 MHz, 25 °C).

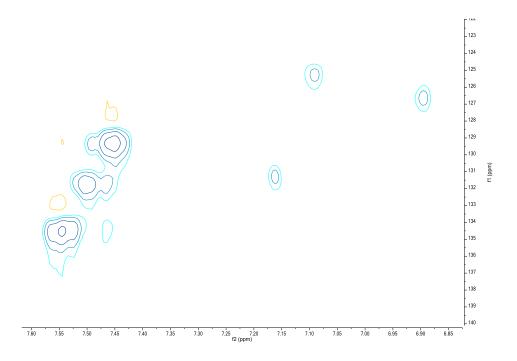


Figure S3. ¹H-¹³C gHSQC spectrum of PPh₃AuC≡CTh (CDCl₃, 500 MHz, 25 °C).

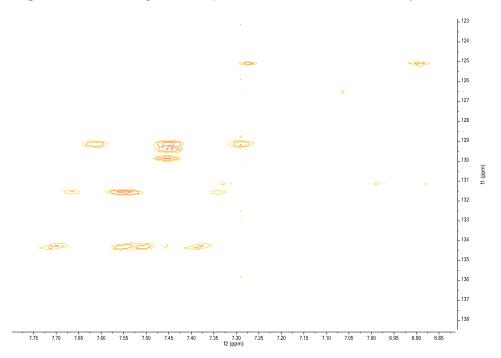
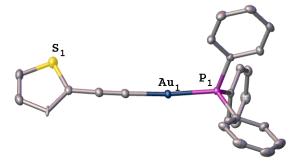



Figure S4. ¹H-¹³C gHMBC spectrum of PPh₃AuC≡CTh (CDCl₃, 500 MHz, 25 °C).

X-Ray Crystallography of **PPh₃AuC=CTh**.

X-Ray Intensity data were collected at 100 K on a Bruker D8 Venture diffractometer using MoK α radiation ($\lambda = 0.71073$ Å) and a Photon III area detector. Raw data frames were read by program SAINT⁶ and integrated using 3D profiling algorithms. The resulting data were reduced to produce hkl reflections and their intensities and estimated standard deviations. The data were corrected for Lorentz and polarization effects and numerical absorption corrections were applied based on indexed and measured faces. The structure was solved and refined in *SHELXTL2014*, using full-matrix least-squares refinement. The non-H atoms were refined with anisotropic thermal parameters and all of the H atoms were calculated in idealized positions and refined riding on their parent atoms. One of the thiophene rings is disordered and refined in two parts. In the final cycle of refinement, 14010 reflections (of which 13274 are observed with I > 2 σ (I)) were used to refine 488 parameters and the resulting R₁, wR₂ and S (goodness of fit) were 1.79%, 4.18% and 1.049, respectively. The refinement was carried out by minimizing the wR₂ function using F² rather than F values. R₁ is calculated to provide a reference to the conventional R value but its function is not minimized.

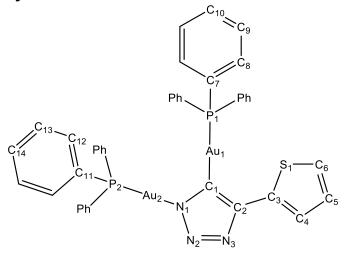

Figure S5. Molecular structure of **PPh₃AuC≡CTh** (All hydrogen atoms removed for clarity).

 Table S1. Crystal data and structure refinement for shen3.

Identification code Empirical formula Formula weight Temperature Wavelength Crystal system	shen3 C ₄₈ H ₃₆ Au ₂ P ₂ S ₂ 1132.76 100(2) K 0.71073 Å Triclinic	
Space group	P-1	
Unit cell dimensions	a = 11.4948(4) Å b = 12.7123(5) Å c = 13.9821(6) Å	a= 96.6190(10)°. b= 93.3830(10)°. c= 92.2090(10)°.
Volume	2023.86(14) Å ³	
Z	2	
Density (calculated)	1.859 Mg/m ³	
Absorption coefficient F(000)	7.457 mm ⁻¹ 1088	

Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 25.000° Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F² Final R indices [I>2sigma(I)] R indices (all data) Extinction coefficient Largest diff. peak and hole 0.223 x 0.205 x 0.126 mm³ 2.701 to 33.108°. -17 \leq h \leq 17, -18 \leq k \leq 19, -20 \leq l \leq 21 117239 14010 [R(int) = 0.0226] 99.0 % Semi-empirical from equivalents 0.5628 and 0.3433 Full-matrix least-squares on F² 14010 / 18 / 488 1.049 R1 = 0.0179, wR2 = 0.0418 [13274] R1 = 0.0198, wR2 = 0.0427 n/a 1.406 and -1.449 e.Å⁻³

Synthesis of Au₂-Th.

93.8% Yield (0.047 mmol, 50.1 mg). ¹H NMR (500 MHz, CDCl₃): δ 6.85-6.90 (m, 2H, C₅-H and C₆-H), 7.12-7.21 (m, 12H, C₉-H and C₁₃-H), 7.28-7.30 (m, 6H, C₁₀-H and C₁₄-H), 7.38-7.43 (m, 12H, C₈-H and C₁₂-H), 7.60-7.62 (m, 1H, C₄-H). ¹³C{¹H} NMR (indirect detection through ¹H-¹³C gHMBC and ¹H-¹³C gHSQC (126 MHz, CDCl₃)): δ 120.7 (C₄), 121.1 (C₅), 127.1 (C₆), 129.1 (d, ³JCP = 11 Hz, C₉ and C₁₃), 131.5 (d, ⁴JCP = 12 Hz, C₁₀ and C₁₄), 134.3 (d, ²JCP = 14 Hz, C₈ and C₁₂), 140.2 (C₃). ³¹P{¹H} NMR (121 MHz, CDCl₃): δ 44.59 (s, P1), 31.50 (s, P2). ESI-MS: m/z calculated for C₄₂H₃₃Au₂N₃P₂S [M+H]⁺ 1068.1280, found 1068.1252.

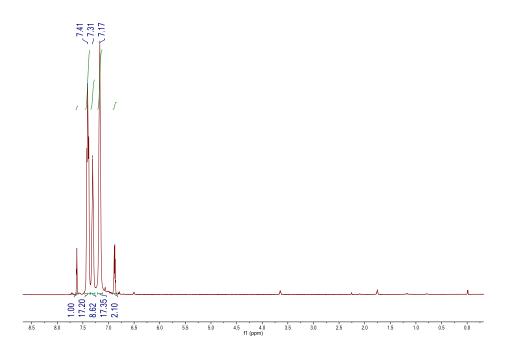


Figure S6. ¹H NMR spectrum of Au₂-Th (CDCl₃, 500 MHz, 25 °C).

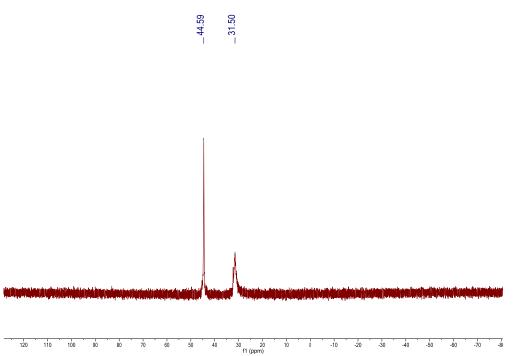


Figure S7. ${}^{31}P{}^{1}H$ NMR spectrum of Au₂-Th (CDCl₃, 121 MHz, 25 °C).

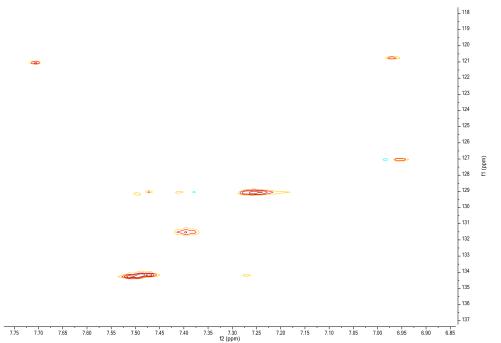


Figure S8. ¹H-¹³C gHSQC spectrum of Au₂-Th (CDCl₃, 500 MHz, 25 °C).

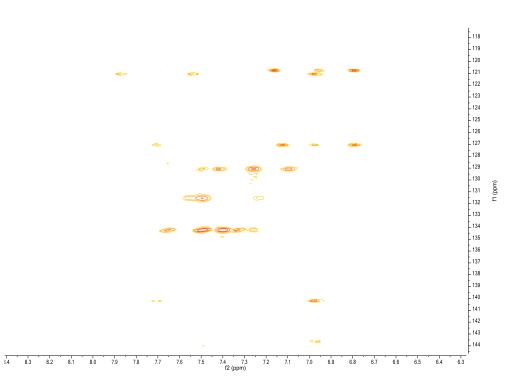


Figure S9. ¹H-¹³C gHMBC spectrum of Au₂-Th (CDCl₃, 500 MHz, 25 °C).

X-Ray Crystallography of Au₂-Th.

X-Ray Intensity data were collected at 100 K on a Bruker D8 Venture diffractometer using MoK α radiation (λ = 0.71073 Å) and a Photon III area detector. Raw data frames were read by program SAINT⁶ and integrated using 3D profiling algorithms. The resulting data were reduced to produce hkl reflections and their intensities and estimated standard deviations. The data were corrected for Lorentz and polarization effects and numerical absorption corrections were applied based on indexed and measured faces. The structure was solved and refined in SHELXTL2014, using full-matrix least-squares refinement. The non-H atoms were refined with anisotropic thermal parameters and all of the H atoms were calculated in idealized positions and refined riding on their parent atoms. The asymmetric unit consists of the digold complex and two dichloromethane solvent molecules. Each of the solvent molecules were disordered and refined in two parts. In the final cycle of refinement, 11561 reflections (of which 10035 are observed with $I > 2\sigma(I)$) were used to refine 491 parameters and the resulting R_1 , wR_2 and S (goodness of fit) were 3.77%, 9.33% and 1.067, respectively. The refinement was carried out by minimizing the wR₂ function using F² rather than F values. R₁ is calculated to provide a reference to the conventional R value but its function is not minimized.

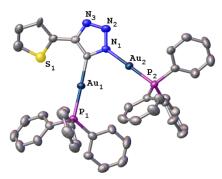
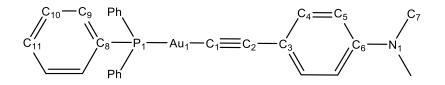



Figure S10. Molecular structure of Au₂-Th (All hydrogen atoms removed for clarity).

 Table S2. Crystal data and structure refinement for shen4.

Identification code Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions	$\begin{array}{llllllllllllllllllllllllllllllllllll$
Volume	4686.6(8) Å ³
Z	4
Density (calculated)	1.694 Mg/m ³
Absorption coefficient	6.569 mm ⁻¹
F(000)	2292
Crystal size	0.11 x 0.03 x 0.02 mm ³
Theta range for data collection	2.267 to 28.309°.
Index ranges	-23 \leq h \leq 23, -30 \leq k \leq 30, -15 \leq l \leq 15
Reflections collected	55101
Independent reflections	11561 [R(int) = 0.0587]
Completeness to theta = 25.242°	99.9 %
Absorption correction	"multi-scan"
Max. and min. transmission	0.2907 and 0.2004
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	11561 / 391 / 491
Goodness-of-fit on F ²	1.067
Final R indices [I>2sigma(I)]	R1 = 0.0377, wR2 = 0.0933 [10035]
R indices (all data)	R1 = 0.0488, wR2 = 0.0989
Absolute structure parameter	0.020(4)
Extinction coefficient	n/a
Largest diff. peak and hole	1.945 and -1.046 e.Å ⁻³

Synthesis of PPh₃AuC≡CPhNMe₂.

62.3 % Yield (0.31 mmol, 187.9 mg). ¹H NMR (500 MHz, CDCl₃): δ 2.91 (s, 6H, C₇-H), 6.57 (d, ³*J*_{HH} = 8.4 Hz, 2H, C₅-H), 7.35-7.55 (m, 17H, C₄-H and aromatic). ¹³C{¹H} NMR (indirect detection through ¹H-¹³C gHMBC and ¹H-¹³C gHSQC (126 MHz, CDCl₃)): δ 40.3 (C₇), 111.8 (C₅), 112.1 (C₃), 129.1 (d, ⁴*J*_{CP} = 11 Hz, C₁₁), 130.0 (d, ¹*J*_{CP} = 55 Hz, C₈), 131.4 (d, ³*J*_{CP} = 2 Hz, C₁₀), 133.4 (C₄), 134.3 (d, ²*J*_{CP} = 14 Hz, C₉), 149.2 (C₆). ³¹P{¹H} NMR (121 MHz, CDCl₃): δ 42.52. ESI-MS: m/z calculated for C₂₈H₂₅AuNP [M+H]⁺ 604.1468, found 604.1438.

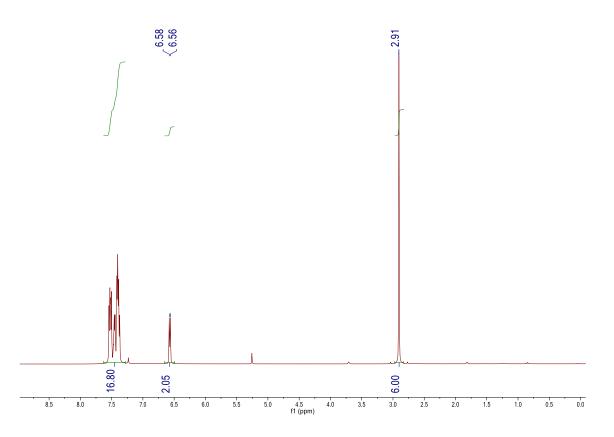


Figure S11. ¹H NMR spectrum of PPh₃AuC=CPhNMe₂ (CDCl₃, 500 MHz, 25 °C).

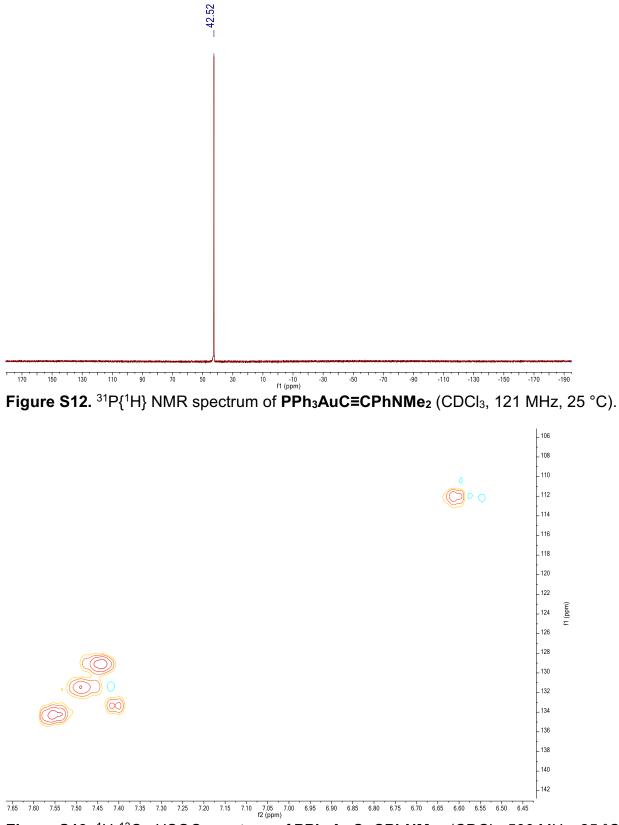


Figure S13. ¹H-¹³C gHSQC spectrum of PPh₃AuC≡CPhNMe₂ (CDCl₃, 500 MHz, 25 °C).

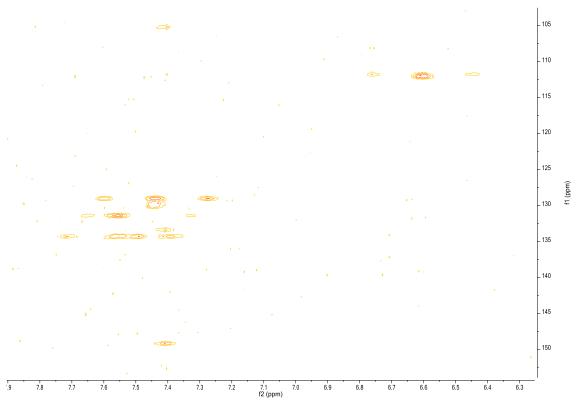
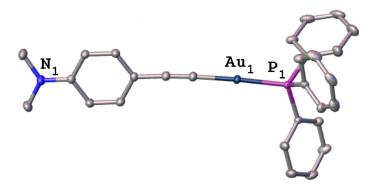



Figure S14. ¹H-¹³C gHMBC spectrum of PPh₃AuC≡CPhNMe₂ (CDCl₃, 500 MHz, 25 °C).

X-Ray Crystallography of **PPh₃AuC=CPhNMe₂**.

X-Ray Intensity data were collected at 100 K on a Bruker DV8 Venture diffractometer using MoK α radiation (λ = 0.71073 Å) and a Photon III area detector. Raw data frames were read by program SAINT⁶ and integrated using 3D profiling algorithms. The resulting data were reduced to produce hkl reflections and their intensities and estimated standard deviations. The data were corrected for Lorentz and polarization effects and numerical absorption corrections were applied based on indexed and measured faces. The structure was solved and refined in *SHELXTL2014*, using full-matrix least-squares refinement. The non-H atoms were refined with anisotropic thermal parameters and all of the H atoms were calculated in idealized positions and refined riding on their parent atoms. The asymmetric unit consists of the Au complex and a THF solvent molecule refined at 50% occupancy. In the final cycle of refinement, 8961 reflections (of which 8821 are observed with I > 2 σ (I)) were used to refine 327 parameters and the resulting R₁, wR₂ and S (goodness of fit) were 1.49%, 3.43% and 1.132, respectively. The refinement was carried out by minimizing the wR₂ function using F² rather than F values. R₁ is calculated to provide a reference to the conventional R value but its function is not minimized.

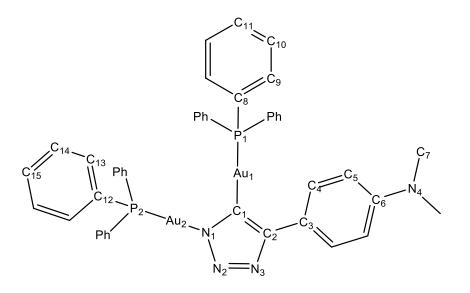


Figure S15. Molecular structure of **PPh₃AuC≡CPhNMe₂** (All hydrogen atoms removed for clarity).

 Table S3. Crystal data and structure refinement for shen1.

Identification code Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions	shen1 C ₃₀ H ₂₉ Au ₁ N ₁ O _{0.5} P ₁ 1278.95 100(2) K 0.71073 Å Triclinic P -1	o − 69.9690/10\°
	a = 9.1947(4) Å b = 12.5315(5) Å c = 12.6998(5) Å 1268.24(9) Å ³	a = 68.8680(10)°. b = 72.2030(10)°. c = 72.2960(10)°.
Volume Z	2	
Density (calculated)	1.675 Mg/m ³	
Absorption coefficient F(000)	5.884 mm ⁻¹ 628	
Crystal size Theta range for data collection Index ranges	0.106 x 0.096 x 0.091 mm ³ 2.384 to 33.403°. -14≤h≤13, -18≤k≤19, -19≤l≤19	
Reflections collected Independent reflections	76385 8961 [R(int) = 0.0276]	
Completeness to theta = 25.000° Absorption correction Max. and min. transmission	97.1 % Integration 0.6119 and 0.4821	
Refinement method Data / restraints / parameters	Full-matrix least-squares on F ² 8961 / 0 / 327	
Goodness-of-fit on F ² Final R indices [I>2sigma(I)] R indices (all data) Extinction coefficient	1.132 R1 = 0.0149, wR2 = 0. R1 = 0.0153, wR2 = 0. n/a	0344
Largest diff. peak and hole	0.980 and -0.857 e.Å ⁻³	3

Synthesis of Au₂-PhNMe₂.

92.5 % Yield (0.046 mmol, 51.1 mg). ¹H NMR (500 MHz, CDCl₃): δ 2.89 (s, 6H, C₇-H), 6.69 (d, ³J_{HH} = 8.3 Hz, 2H, C₅-H), 7.18-7.21 (m, 12H, C₁₀-H and C₁₄-H), 7.33-7.35 (m, 6H, C₁₁-H and C₁₅-H), 7.43-7.47 (m, 12H, C₉-H and C₁₃-H), 8.24 (d, ³J_{HH} = 8.2 Hz, 2H, C₄-H). ¹C{¹H} NMR (indirect detection through ¹H-¹³C gHMBC and ¹H-¹³C gHSQC (126 MHz, CDCl₃)): δ 41.0 (C₇), 112.8 (C₅), 126.1 (C₃), 127.3 (C₄), 129.0 (d, ³J_{CP} = 11 Hz, C₁₀ and C₁₄), 131.4 (C₁₁ and C₁₅), 134.2 (d, ²J_{CP} = 14 Hz, C₉ and C₁₃), 136.5 (C₈ and C₁₂), 149.2 (C₆), 151.7 (C₂). ³¹P{¹H} NMR (121 MHz, CDCl₃): δ 44.61 (s, P1), 31.17 (s, P2). ESI-MS: m/z calculated for C₄₆H₄₀Au₂N₄P₂ [M+H]⁺ 1105.2138, found 1105.2104.

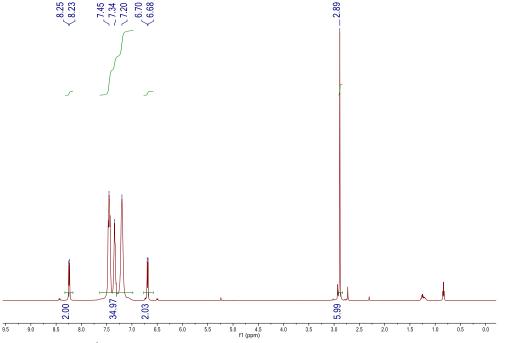


Figure S16. ¹H NMR spectrum of Au₂-PhNMe₂ (CDCl₃, 500 MHz, 25 °C).

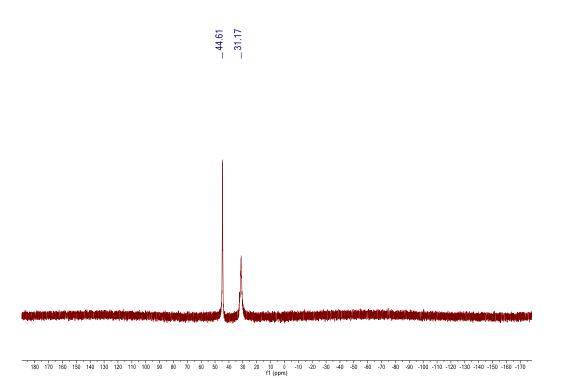


Figure S17. ³¹P{¹H} NMR spectrum of Au_2 -PhNMe₂ (CDCl₃,121 MHz, 25 °C).

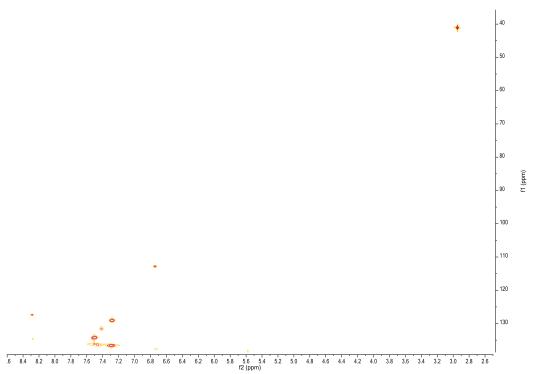


Figure S18. ¹H-¹³C gHSQC spectrum of Au₂-PhNMe₂ (CDCl₃, 500 MHz, 25 °C).

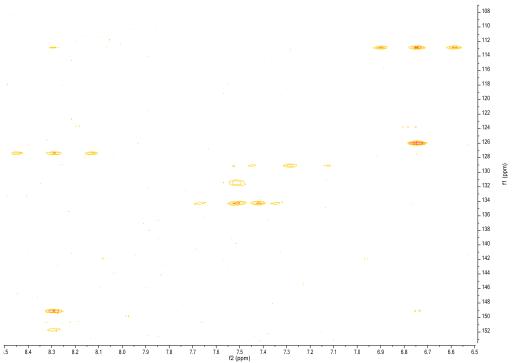
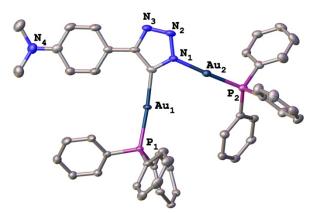



Figure S19. ¹H-¹³C gHMBC spectrum of Au₂-PhNMe₂ (CDCl₃, 500 MHz, 25 °C).

X-Ray Crystallography of Au₂-PhNMe₂.

X-Ray Intensity data were collected at 100 K on a Bruker DV8 Venture diffractometer using MoK α radiation (λ = 0.71073 Å) and a Photon III area detector. Raw data frames were read by program SAINT⁶ and integrated using 3D profiling algorithms. The resulting data were reduced to produce hkl reflections and their intensities and estimated standard deviations. The data were corrected for Lorentz and polarization effects and numerical absorption corrections were applied based on indexed and measured faces. The structure was solved and refined in SHELXTL2014, using full-matrix least-squares refinement. The non-H atoms were refined with anisotropic thermal parameters and all of the H atoms were calculated in idealized positions and refined riding on their parent atoms. The asymmetric unit consists of the gold complex and three dichloromethane molecules. The solvent molecules were disordered and could not be modeled properly, thus program SQUEEZE, a part of the PLATON package of crystallographic software, was used to calculate the solvent disorder area and remove its contribution to the overall intensity data. In the final cycle of refinement, 10827 reflections (of which 10235 are observed with I > $2\sigma(I)$) were used to refine 489 parameters and the resulting R₁, wR₂ and S (goodness of fit) were 2.69%, 6.51% and 1.080, respectively. The refinement was carried out by minimizing the wR₂ function using F² rather than F values. R₁ is calculated to provide a reference to the conventional R value but its function is not minimized. The structure was solved and refined in SHELXTL6.1, using full-matrix least-squares refinement.

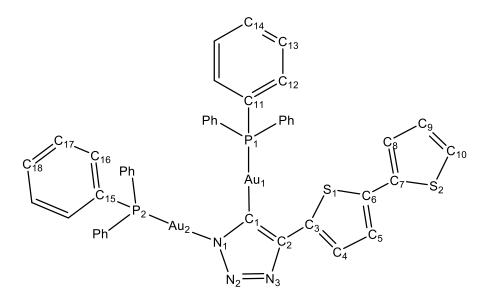


Figure S20. Molecular structure of **PPh₃AuC≡CPhNMe₂** (All hydrogen atoms removed for clarity).

Table S4. Crystal data and structure refinement for shen2.

Identification code Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions	shen2 $C_{49}H_{46}Au_2Cl_6N_4P_2$ 1359.47 293(2) K 0.71073 Å Triclinic P -1 a = 11.3232(5) Å b = 14.8436(6) Å c = 15.9362(7) Å	a= 108.3241(13)°. b= 110.0928(11)°. c= 91.3270(13)°.
Volume	2361.95(18) Å ³	
Z Density (calculated)	2 1.912 Mg/m ³	
Absorption coefficient F(000)	6.652 mm ⁻¹ 1316	
Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 25.000° Absorption correction	0.319 x 0.193 x 0.103 mm ³ 2.300 to 27.499°. -14≤h≤14, -19≤k≤19, -20≤l≤20 138984 10827 [R(int) = 0.0276] 99.6 % None	
Refinement method Data / restraints / parameters	Full-matrix least-squares on F ² 10827 / 0 / 489	
Goodness-of-fit on F ² Final R indices [I>2sigma(I)] R indices (all data) Extinction coefficient Largest diff. peak and hole	1.080 R1 = 0.0269, wR2 = 0.0651 [10235] R1 = 0.0290, wR2 = 0.0673 n/a 4.799 and -1.861 e.Å ⁻³	

Synthesis of Au₂-biTh.

95.3% Yield (0.089 mmol, 102 mg). ¹H-NMR (600MHz, CDCl₃), δ (ppm): 6.91 (dd, ³J_{HH} = 3.5 Hz, ⁴J_{HH} = 1.0 Hz, 1H, C₈-*H*), 6.95 (dd, ³J_{HH} = 3.6, 5.0 Hz, 1H, C₉-*H*), 7.09 (d, ³J_{HH} = 3.7 Hz, 1H, C₅-*H*), 7.12 (d, ³J_{HH} = 4.8 Hz, 1H, C₁₀-*H*), 7.24-7.38 (m, 12H, C₁₃-*H* and C₁₇-*H*), 7.40-7.49 (m, 6H, C₁₄-*H* and C₁₈-*H*), 7.48-7.60 (m, 12H, C₁₂-*H* and C₁₆-*H*), 7.61 (d, ³J_{HH} = 3.7 Hz, 1H, C₄-*H*).¹³C{¹H} NMR (indirect detection through ¹H-¹³C gHMBC and ¹H-¹³C gHSQC) (600 MHz, CDCl₃), δ (ppm): 121.78 (C₄), 122.42 (C₈), 122.94 (C₁₀), 124.25 (C₅), 127.41 (C₉), 128.48 (d, ¹J_{CP} = 12 Hz, C₁₁ and C₁₅), 129.12 (d, ³J_{CP} = 11 Hz, C₁₃ and C₁₇), 131.56 (m, C₁₄ and C₁₈), 132.07 (C₆), 134.25 (d, ²J_{CP} = 14 Hz, C₁₂ and C₁₆), 138.80 (C₇), 145.56 (C₂). ³¹P{¹H} NMR (242.9 MHz, CDCl₃), δ (ppm): 44.58 (s, P₁), 31.18 (s, P₂). ESI-MS: m/z calculated for C₄₆H₃₅Au₂N₃P₂S₂ [M+H]⁺ 1150.1157, found 1150.1122.

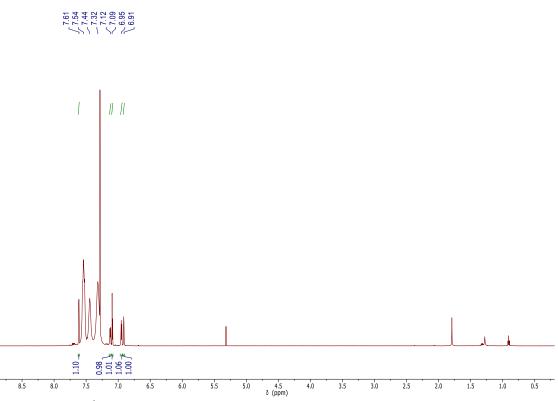


Figure S21. ¹H NMR spectrum of Au₂-biTh (CDCl₃, 600 MHz, 25 °C).

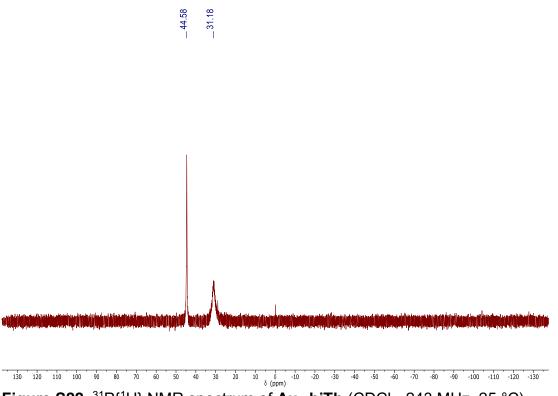


Figure S22. ${}^{31}P{}^{1}H$ NMR spectrum of Au₂-biTh (CDCl₃, 243 MHz, 25 °C).

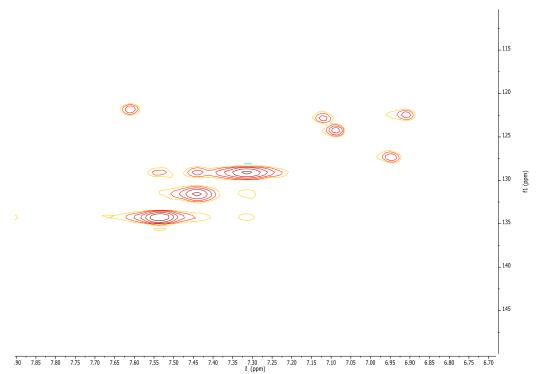


Figure S23. ¹H-¹³C gHSQC spectrum of Au₂-biTh (CDCl₃, 600 MHz, 25 °C).

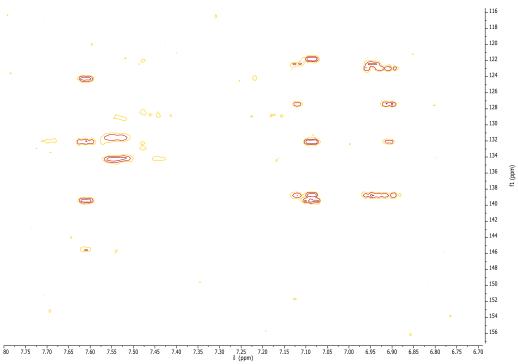


Figure S24. ¹H-¹³C gHMBC spectrum of Au₂-biTh (CDCl₃, 600 MHz, 25 °C).

X-Ray Crystallography of Au₂-biTh.

X-Ray Intensity data were collected at 100 K on a Bruker D8 Venture diffractometer using MoK α radiation (λ = 0.71073 Å) and a Photon III area detector. Raw data frames were read by program SAINT⁶ and integrated using 3D profiling algorithms. The resulting data were reduced to produce hkl reflections and their intensities and estimated standard deviations. The data were corrected for Lorentz and polarization effects and numerical absorption corrections were applied based on indexed and measured faces. The structure was solved and refined in SHELXTL2014, using full-matrix least-squares refinement. The non-H atoms were refined with anisotropic thermal parameters and all of the H atoms were calculated in idealized positions and refined riding on their parent atoms. The Au₂ complex has one thiophene ring disordered and was refined in two parts with their site occupation factors and geometries dependently refined. In the final cycle of refinement, 9551 reflections (of which 8312 are observed with $I > 2\sigma(I)$) were used to refine 497 parameters and the resulting R₁, wR₂ and S (goodness of fit) were 5.75 %, 13.81 % and 1.070, respectively. The refinement was carried out by minimizing the wR₂ function using F² rather than F values. R₁ is calculated to provide a reference to the conventional R value but its function is not minimized.

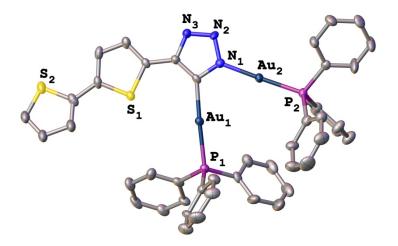
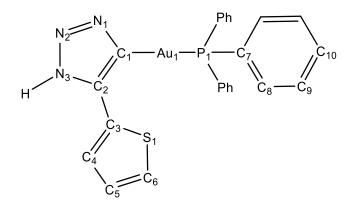



Figure S25. Molecular structure of Au₂-biTh (All hydrogen atoms removed for clarity).

 Table S5.
 Crystal data and structure refinement for jh1.

Identification code Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions	jh1 $C_{46}H_{35}Au_2N_3P_2S_2$ 1149.76 100(2) K 0.71073 Å Monoclinic $P2_1/n$ a = 12.5803(14) Å b = 13.1347(14) Å c = 25.578(3) Å	a = 90°. b = 100.260(2)°. c = 90°.
Volume Z	4158.8(8) Å ³ 4	
Density (calculated)	1.836 Mg/m ³	
Absorption coefficient F(000)	7.261 mm ⁻¹ 2208	
Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 25.000° Absorption correction Refinement method Data / restraints / parameters Goodness-of-fit on F ²	0.170 x 0.073 x 0.023 i 1.958 to 27.500°. -16≤h≤16, -17≤k≤17, -3 127998 9551 [R(int) = 0.0977] 99.9 % "multi-scan" Full-matrix least-square 9551 / 6 / 497 1.070	33≤l≤33 es on F ²
Final R indices [I>2sigma(I)] R indices (all data) Largest diff. peak and hole	R1 = 0.0575, wR2 = 0.1381 [8312] R1 = 0.0668, wR2 = 0.1442 6.033 and -2.002 e.Å ⁻³	

Synthesis of 4,5-Au₁-Th.

H-C=C-Th (0.05 mmol) and PPh₃Au-N₃ (0.05 mmol) were added into 2 mL of DCM. The solution was stirred in the dark for 5 h then solvents was removed *in vacuo*. Crystals were grown through pentane diffusion into a methylene chloride solution of the triazolate at -25 °C. 91.1% Yield (0.046 mmol, 27.77 mg). ¹H NMR (400 MHz, CDCl₃): δ 7.00 (dd, ³*J*HH = 3.5, 5.0 Hz, 1H, C₅-H), 7.06 (dd, ³*J*HH = 5.0 Hz, ⁴*J*HH = 1.2 Hz, 1H, C₄-H), 7.74 (dd, ³*J*HH = 3.6 Hz, ⁴*J*HH = 1.2 Hz, 1H, C₆-H), 7.49-7.63 (m, 15H, C₈-H, C₉-H and C₁₀-H). ¹³C{¹H} NMR (indirect detection through ¹H-¹³C gHMBC and ¹H-¹³C gHSQC (101 MHz, CDCl₃)): δ 122.1 (C₄), 122.6 (C₆), 127.4 (C₅), 129.3 (d, ³*J*CP = 11 Hz, C₉), 129.7 (d, ¹*J*CP = 55 Hz, C₇), 131.7 (d, ⁴*J*CP = 2 Hz, C₁₀), 134.3 (d, ²*J*CP = 13 Hz, C₈), 137.8 (C₈), 148.1 (C₉). ³¹P{¹H} NMR (161 MHz, CDCl₃): δ 43.50. ESI-MS: m/z calculated for C₂₄H₁₉AuN₃PS [M+H]⁺ 610.0781, found 610.0762.

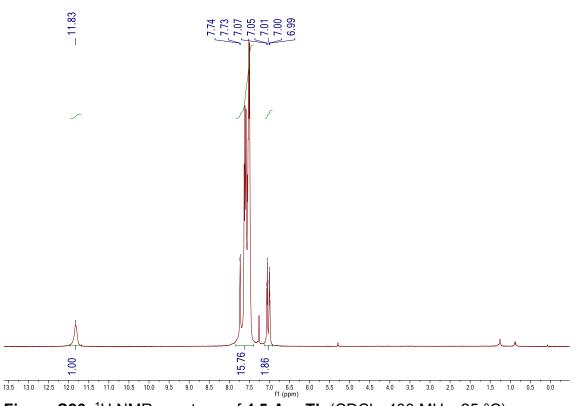
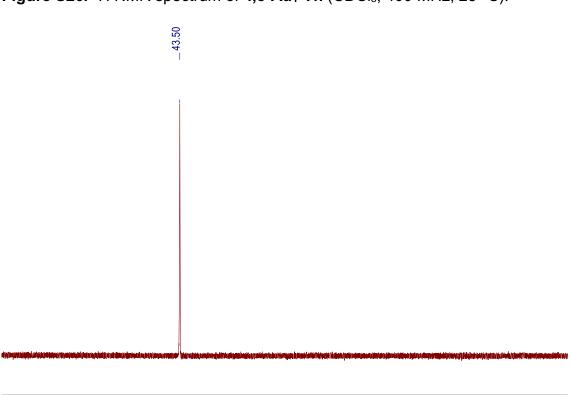



Figure S26. ¹H NMR spectrum of 4,5-Au₁-Th (CDCl₃, 400 MHz, 25 °C).

Figure S27. ³¹P{¹H} NMR spectrum of **4,5-Au**₁-**Th** (CDCl₃, 161 MHz, 25 °C).

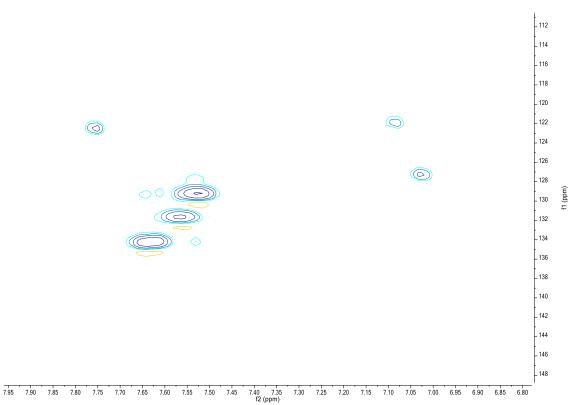
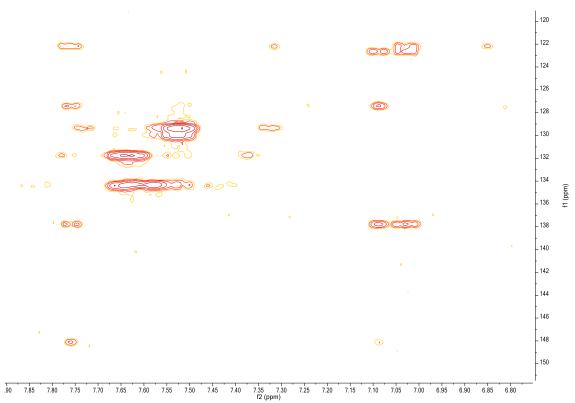



Figure S28. ¹H-¹³C gHSQC spectrum of 4,5-Au₁-Th (CDCl₃, 400 MHz, 25 °C).

Figure S29. ¹H-¹³C gHMBC spectrum of **4,5-Au₁-Th** (CDCl₃, 400 MHz, 25 °C).

X-Ray Crystallography of **4,5-Au₁-Th**.

X-Ray Intensity data were collected at 173(2) K on a Bruker DV8 Venture diffractometer using MoK α radiation (λ = 0.71073 Å) and a Photon III area detector. Raw data frames were read by program SAINT⁶ and integrated using 3D profiling algorithms. The resulting data were reduced to produce hkl reflections and their intensities and estimated standard deviations. The data were corrected for Lorentz and polarization effects and numerical absorption corrections were applied based on indexed and measured faces. The structure was solved and refined in SHELXTL2014, using full-matrix least-squares refinement. The non-H atoms were refined with anisotropic thermal parameters and all of the H atoms were calculated in idealized positions and refined riding on their parent atoms. The asymmetric unit consists of two Au complexes and three dichloromethane solvent molecules. There are three disordered regions. A phenyl ring in molecule A and part of the thiophene in molecule B where both disorders were refined in two parts in each case. Additionally, one of the dichloromethane molecules is also refined in two parts. The protons on the nitrogen atoms in both molecules were obtained from a Difference Fourier map and refined freely. In the final cycle of refinement, 19408 reflections (of which 16243 are observed with $I > 2 \sigma(I)$ were used to refine 585 parameters and the resulting R₁. wR2 and S (goodness of fit) were 3.86 %, 8.78 % and 1.044, respectively. The refinement was carried out by minimizing the wR_2 function using F^2 rather than F values. R_1 is calculated to provide a reference to the conventional R value but its function is not minimized.

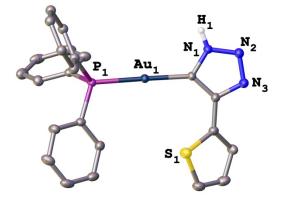
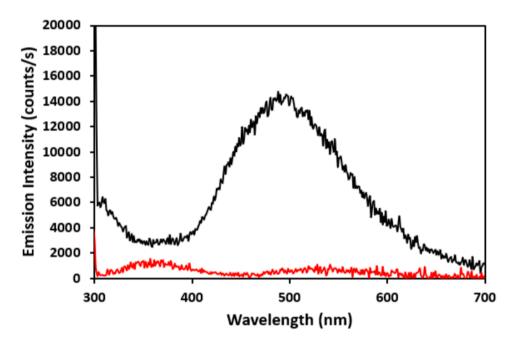



Figure S30. Molecular structure of 4,5-Au₁-Th (Hydrogen atoms removed for clarity).

Table S6. Crystal data and structure rIdentification codeEmpirical formulaFormula weightTemperatureWavelengthCrystal systemSpace groupUnit cell dimensions	shen5 $C_{25.50}H_{22}AuCI_3N_3PS$ 736.81 173(2) K 0.71073 Å Monoclinic $P2_1/c$ a = 14.4013(5) Å b = 22.8626(8) Å	
	c = 17.4326(5) Å	c = 90°.
Volume	5356.6(3) Å ³	
Z	8	
Density (calculated)	1.827 Mg/m ³	
Absorption coefficient	5.950 mm ⁻¹	
F(000)	2856	
Crystal size	0.202 x 0.084 x 0.037 mm ³	
Theta range for data collection	1.815 to 33.291°.	
Index ranges	-21≤h≤22, -35≤k≤35, -26≤l≤25	
Reflections collected	188156	_
Independent reflections	19408 [R(int) = 0.0534]	
Completeness to theta = 25.242°		
Absorption correction Max. and min. transmission	Integration 0.8588 and 0.5166	
	0	
Refinement method Data / restraints / parameters	Full-matrix least-squares on F ² 19408 / 8 / 585	
Goodness-of-fit on F^2		
Final R indices [I>2sigma(I)]	1.044 R1 = 0.0386, wR2 = 0.0878 [16243]	
R indices (all data)	R1 = 0.0507, $wR2 = 0$.	
Extinction coefficient n/a		
Largest diff. peak and hole	5.391 and -2.311 e.Å-3	3

2. Fluorescence of Au₂-Th and 4,5-Au₁-Th

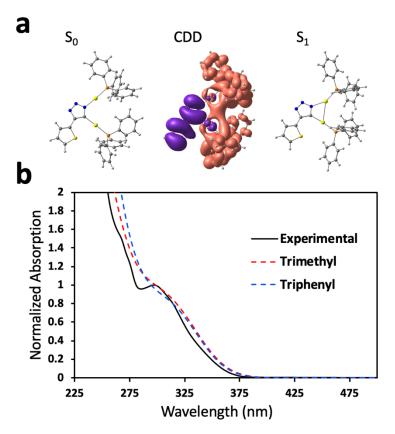
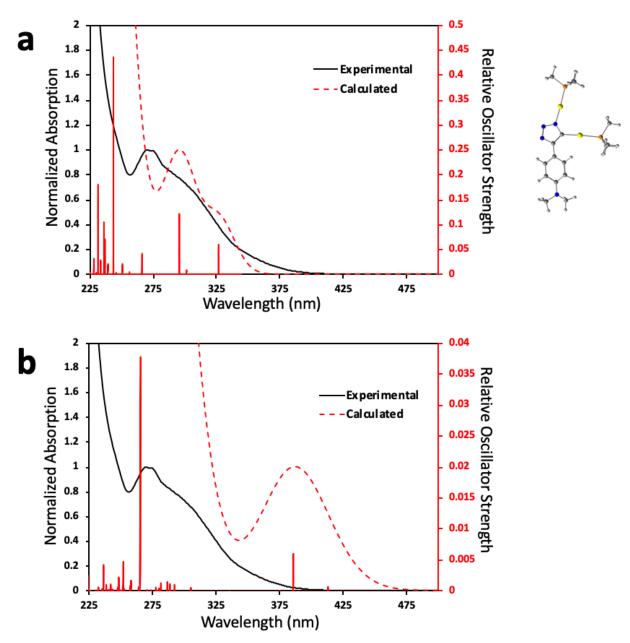


Figure S31. Photoluminescence spectra of Au_2 -Th (black line) and 4,5- Au_1 -Th (red line) at room temperature in THF under air saturated conditions, showing trace fluorescence that is indicative of an aurophilic interaction in the digold compound that is not present in the monogold triazolate.

3. Computational Results


Validation of Trimethyl Phosphine Ligands

For the modeling of all compounds, triphenyl phosphine ligands were reduced to trimethyl phosphine ligands to reduce computational costs. Considering that the aryl ligands themselves may contribute as photophysically active chromophores, it is necessary to validate that this reduction in molecular complexity does not impact the computational results described herein. For this purpose, a model compound of Au₂-Th with triphenyl phosphine ligands was subjected to the same computational interrogation as the reduced species described in the main text. The results found minimal discrepancies, with the charge difference densities (CDDs), maintaining LMCT character (albeit with a newfound contribution from the triphenyl phosphine ligands) and the calculated absorption spectrum showing no shift with respect to the trimethyl phosphine variety of **Au₂-Th**. Additionally, the bulkier triphenyl phosphine ligands do not appear to preclude aurophilic bonding in the relaxed excited state geometry.

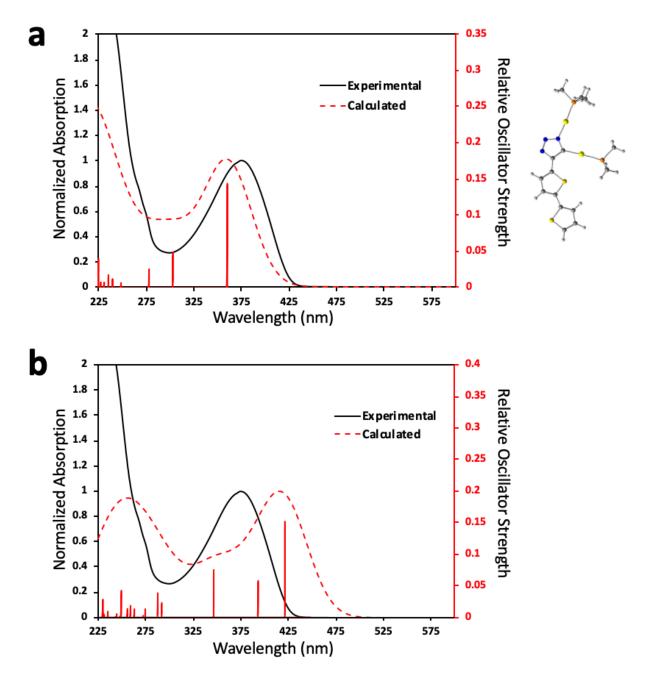
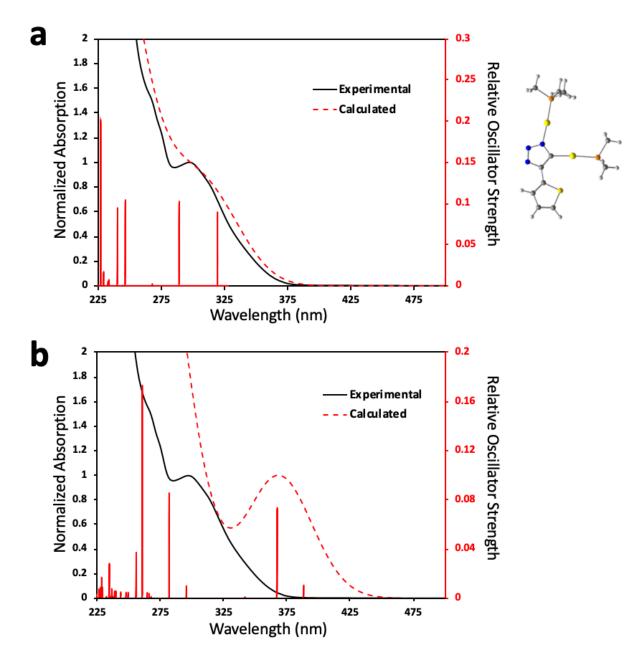
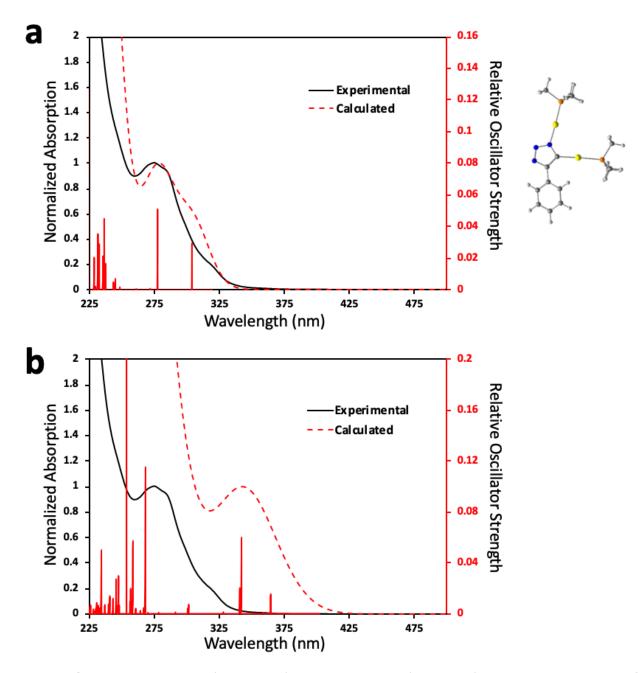


Figure S32. Shown here are the results of CAM-B3LYP calculations to produce the optimized ground state geometry, CDD, and relaxed excited state geometry (**a**) of Au_2 -**Th** with triphenyl phosphine ligands; and the calculated absorption spectrum (**b**) compared to experiment and to Au_2 -**Th** using trimethyl phosphine ligands.


Calculated Absorption Spectra


Figure S33. Experimental (black line) and calculated (red lines) absorption spectra of Au_2 -PhNMe₂ using CAM-B3LYP (a) and with B3LYP (b). The dashed line shows artificially broadened spectra using gaussian functions (FWHM = 25 nm for a and 50 nm for b).

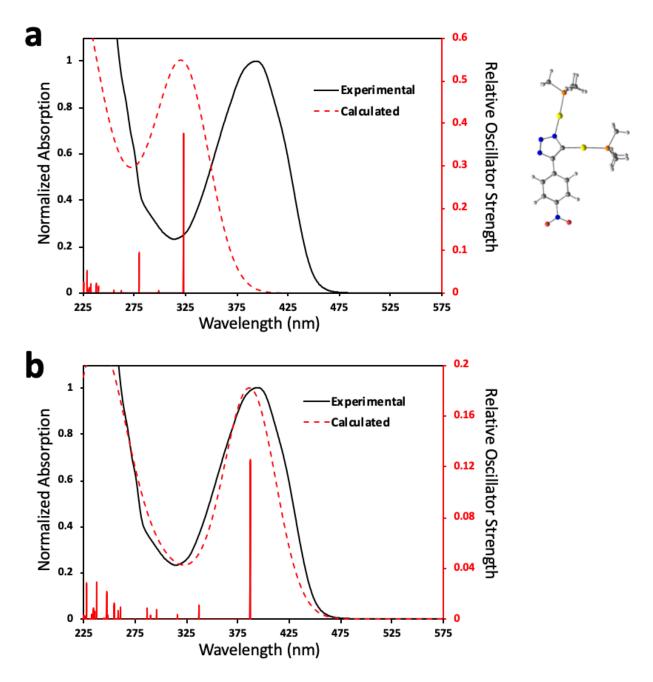

Figure S34. Experimental (black line) and calculated (red lines) absorption spectra of Au_2 -biTh using CAM-B3LYP (a) and with B3LYP (b). The dashed line shows artificially broadened spectra using gaussian functions (FWHM = 50 nm).

Figure S35. Experimental (black line) and calculated (red lines) absorption spectra of Au_2 -Th using CAM-B3LYP (a) and with B3LYP (b). The dashed line shows artificially broadened spectra using gaussian functions (FWHM = 50 nm).

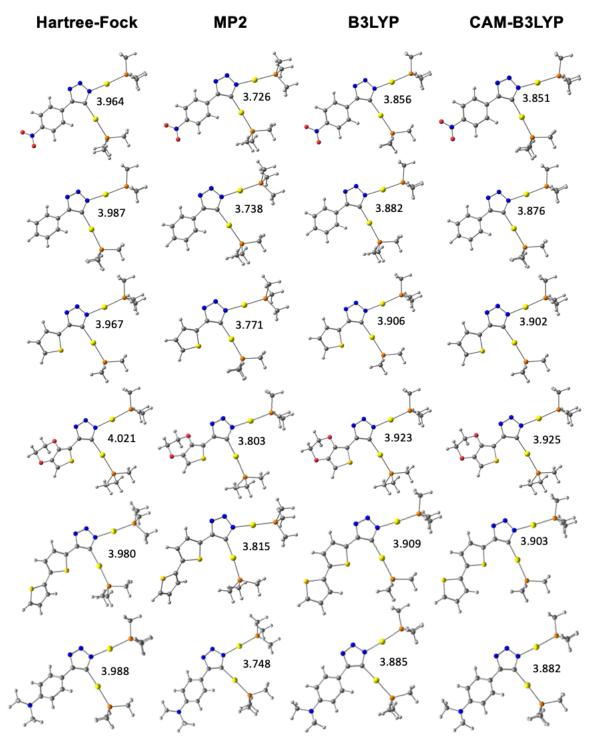


Figure S36. Experimental (black line) and calculated (red lines) absorption spectra of Au_2 -Ph using CAM-B3LYP (a) and with B3LYP (b). The dashed line shows artificially broadened spectra using gaussian functions (FWHM = 25 nm for a and 50 nm for b).

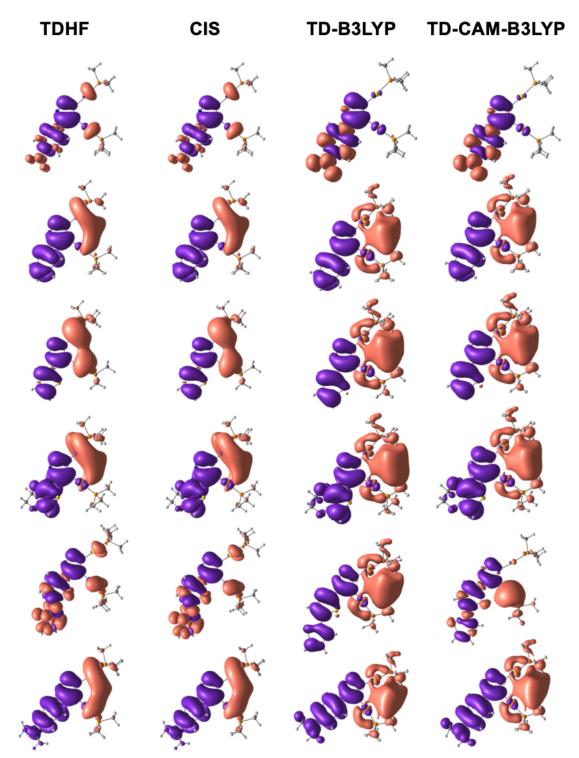


Figure S37. Experimental (black line) and calculated (red lines) absorption spectra of Au_2 -PhNO₂ using CAM-B3LYP (a) and with B3LYP (b). The dashed line shows artificially broadened spectra using gaussian functions (FWHM = 50 nm).

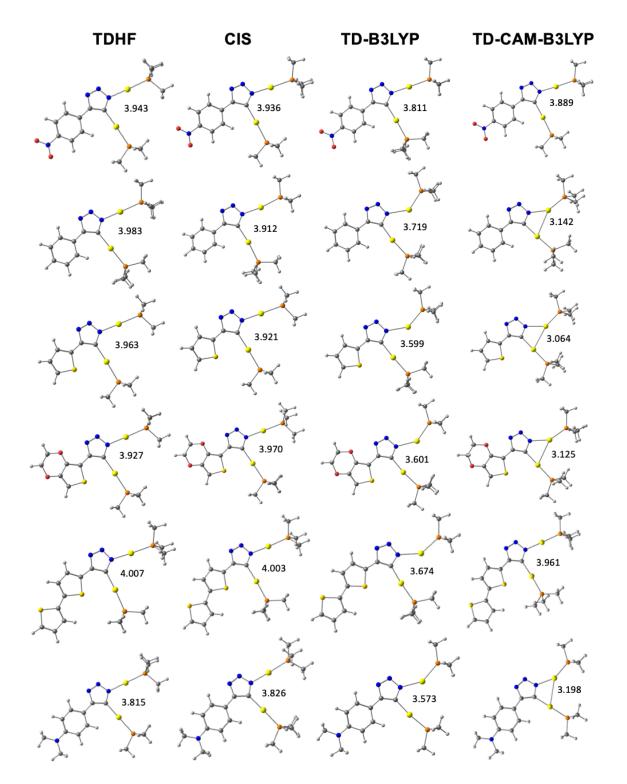

Full Disclosure

Figure S38. Optimized ground state (S_0) geometries of digold triazolates by different levels of theory. The numbers show interatomic Au(I)-Au(I) distances in Angstroms. Shown in descending order are Au₂-PhNO₂, Au₂-Ph, Au₂-Th, Au₂-EDOT, Au₂-biTh, and Au₂-PhNMe₂.

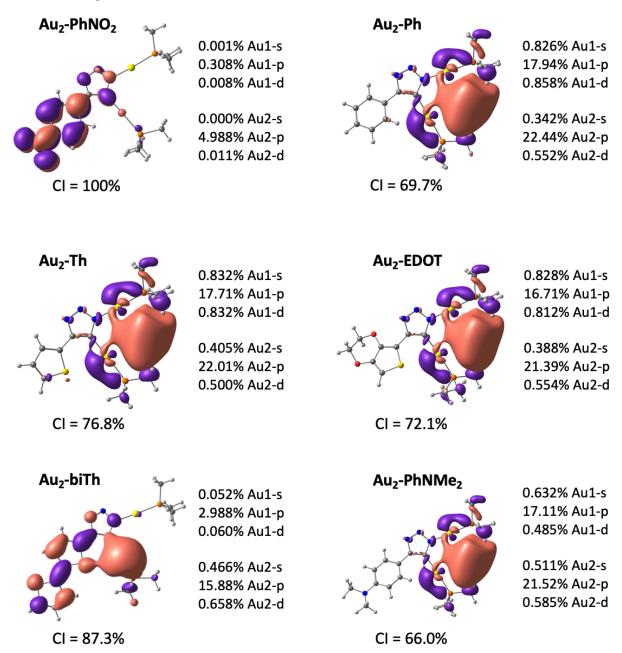
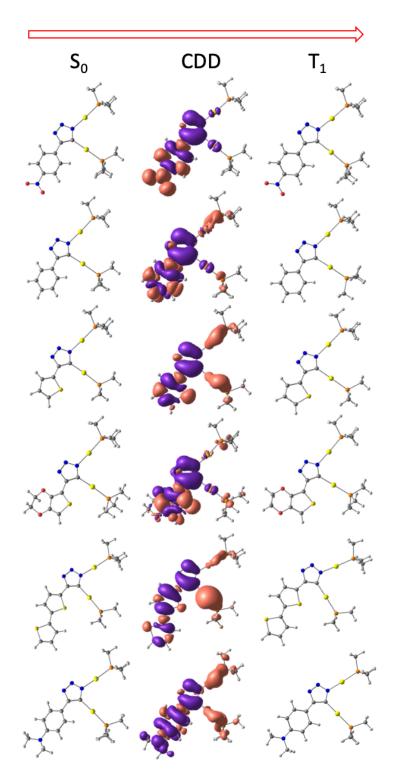


Figure S39. Charge difference densities (CDDs) of the lowest energy electronic excited state (S_1) of digold triazolates by different methods. Shown in descending order are Au_2 -PhNO₂, Au_2 -Ph, Au_2 -Th, Au_2 -EDOT, Au_2 -biTh, and Au_2 -PhNMe₂.


Figure S40. Optimized excited state (S₁) geometries of digold triazolates by different levels of theory. The numbers show interatomic Au(I)-Au(I) distances in Angstroms. Shown in descending order are Au_2 -PhNO₂, Au_2 -Ph, Au_2 -Th, Au_2 -EDOT, Au_2 -biTh, and Au_2 -PhNMe₂.

Orbital Analysis

Figure S41. Shown here are the unoccupied (virtual) molecular orbitals (MOs) from the results of CAM-B3LYP calculations that contributed most heavily to the configuration interaction (CI) of the excited state, S₁, for all compounds. Written below each MO is the percent contribution (CI = X%) of one-electron transitions to this orbital. The atomic orbital compositions from Au atoms are displayed to the right of each MO, divided into percent s, p, and d character.

Triplet States

Figure S42. The results of a geometry optimizations of the singlet multiplicity ground state (S_0) , the CDD of the lowest lying excited triplet state identified by TDDFT, and the relaxed geometry of that excited state using CAM-B3LYP.

4. References

(1) H. C. Kolb, M. G. Finn, K. B. Sharpless, Angew. Chem., Int. Ed., 2001, 40, 2004–2021.

(2) R. Huisgen, *1,3-Dipolar Cycloaddition Chemistry*, A. Padwa, Wiley, New York, **1984**, pp. 1–176.

(3) I. R. Whittall, M. G. Humphrey, S. Houbrechts, A. Persoons, D. C. R. Hockless, *Organometallics*, **1996**, *15*, 5738-5745.

(4) M. Frigoli, C. Moustrou, A. Samat, R. Guglielmetti, *Helvetica*. 2000, 83, 3043–3052.

(5) P. Li, B. Ahrens, K. Choi, M. Khan, P. R. Raithby, P. J. Wilson, W. Wong. *CrystEngComm.*, **2002**, *4*, 405-412.

(6) T. J. Del Castillo, S. Sarkar, K. A. Abboud, A. S. Veige, *Dalton Trans.*, **2011**, *40*, 8140-8144.

(7) A. R. Powers, I. Ghiviriga, K. A. Abboud, A. S. Veige. *Dalton Trans.*, **2015**, *44*, 14747-14752.

(8) SHELXTL6 (2008). Bruker-AXS, Madison, Wisconsin, USA.