Supporting Information

Visible light-mediated enantioselective photoreactions of 3alkylquinolones with 4-O-tethered alkenes and allenes

Xinyao Li, ${ }^{\text {a }}$ Christian Jandl, ${ }^{\text {a }}$ and Thorsten Bach*a
${ }^{\text {a }}$ Department Chemie and Catalysis Research Center (CRC), Technische Universität
München, Lichtenbergstraße 4, 85747 Garching, Germany

thorsten.bach@ch.tum.de

Table of Contents

1. General Information S2
2. Emission Spectrum of the Light Source S3
3. Optimization of Irradiation Conditions S4
4. Screening of Catalyst Loadings S4
5. Emission Spectra and Triplet Energy of Quinolones S5
6. Synthetic Procedures and Analytical Data S9
7. X-ray Crystallographic Details S45
8. NMR-Spectra of New Compounds S48
9. HPLC Traces S100
10. Reference S111

1. General Information

All reactions sensitive to air or moisture were carried out in flame-dried glassware under argon pressure using standard Schlenk techniques. Dry tetrahydrofuran (THF) and dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ were obtained from an MBraun MB-SPS 800 solvent purification system. Other dry solvents were obtained from Merck and Acros in the highest purity available and used without further purification. Technical solvents used for aqueous workup and for column chromatography [dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, ethyl acetate (EtOAc), nhexane (Hex), methanol (MeOH), n-pentane $(\mathrm{Pn})]$ were distilled prior to use. Photochemical experiments were performed in Duran phototubes ($\varnothing=1.0 \mathrm{~cm}$ for racemic and enantioselective reactions and $\varnothing=1.8 \mathrm{~cm}$ for 0.5 mmol scale reactions) under argon atmosphere in a positive geometry setup [cylindrical array of 16 fluorescent light tubes, $\lambda=420 \mathrm{~nm}$ (Luzchem LZC-420, 8 W)]. Reactions at $-25^{\circ} \mathrm{C}$ were performed inside a Duran cool finger which was attached to a cryostat (Huber CC410). Solvents used in the photochemical reactions were degassed under a continuous argon flow in an ultrasonication bath for 15 minutes. Flash chromatography was performed on silica 60 (Merck, 230-400 mesh) with the indicated eluent mixtures. Thin layer chromatography (TLC) was performed on silica coated glass plates (silica 60 F 254) with detection by UV ($\lambda=254$ and 366 nm) and/or by staining with a potassiumpermanganate solution $\left(\mathrm{KMnO}_{4}\right)$ followed by heat treatment. High performance liquid chromatography (HPLC) analyses were performed using a chiral stationary phase [ChiralPak AD-H ($250 \times 4.6 \mathrm{~mm}$), Chiralpak OD-H ($250 \times 4.6 \mathrm{~mm}$), Chiralpak AS-H (250 x 4.6 mm), Daicel Chemical Industries] with UVD 340 Photodiode Array Detector, P580 Pump and an ASI100 Automated Sample Injector at $20^{\circ} \mathrm{C}$. Preparative HPLC was conducted on a apparatus consiting of a HPG 3200BX pump (Thermo Fisher) and a MWD 3000-RS UV-detector (Dionex). For normal-phase HPLC a Daicel ChiralPak AD-H, ChiralPak OD-H, and a ChiralPak AS-H was used as stationary phase and a mixture of n-heptane/i-propanol was used as mobile phase. Analytical gaschromatography was performed at a HP 6890 Series GC (Agilent, achiral stationary phase: HP-5 column, poly-dimethyl/diphenyl-siloxane, 95/5) with a flame ionisation detector. IR spectra were recorded on a JASCO IR-4100 (ATR). ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{19} \mathrm{~F}$ NMR spectra were recorded at 303 K either on a Bruker AVHD300, AVHD400, or AVHD500 spectrometer. NMR spectra were calibrated to the respective residual solvent signals of $\mathrm{CDCl}_{3}\left[\delta\left({ }^{1} \mathrm{H}\right)=7.26 \mathrm{ppm}, \delta\left({ }^{13} \mathrm{C}\right)\right.$ $=77.16 \mathrm{ppm}]$. Apparent multiplets which occur as a result of coupling constant equality between magnetically non-equivalent protons are marked as virtual (virt.). The following abbreviations for single multiplicities were used: $b r$-broad, s-singlet, d-doublet, t-triplet, q-quartet, quint-quintet, sext-sextet. High resolution mass spectroscopy (HR-MS) was performed on a Thermo Scientific LTQ-FT Ultra (ESI) or a Thermo Scientific DFS-HRMS spectrometer (EI). Melting points were measured on a Büchi M-565 instrument and are not corrected. Specific rotations were determined with a ADP440+ polarimeter. Optical rotation was measured using a Perkin-Elmer 241 MC polarimeter in a 1.00 dm cuvette at 589 nm (Na D-Line) at room temperature. The specific rotation was calculated with the Drude equation. $[\alpha]_{D}^{T}$ and is given in 10^{1} $\operatorname{grad} \mathrm{cm}^{2} \mathrm{~g}^{-1}$.

2. Emission Spectrum of the Light Source

Lehrstuhl OC 1 - TUM
$1200 \mathrm{~nm} \quad 1250 \mathrm{~nm} \quad 1300 \mathrm{~nm} \quad 1350 \mathrm{~nm} \quad 1400 \mathrm{~nm} \quad 1450 \mathrm{~nm} \quad 1500 \mathrm{~nm} \quad 1550 \mathrm{~nm} \quad 1600 \mathrm{~nm} \quad 1650 \mathrm{~nm}$
Datasheet FLT022
Basic Information

Type	Fluorescent light tube
Description	Luzchem LZC-420
Manufacturer / Supplier	n/a / Luzchem
Order number / Date of purch.	n/a / 07/2017
Internal lot / serial number	2017-07 / FLT022
Specification Manufacturer	
Type / size	T5 tube, G5 socket
Mechanical specification	16 mm diameter, 288 mm length
Electrical specification	8 W
Wavelength (range, typ.)	400-440 nm
Spectral width (FWHM)	$\sim 30 \mathrm{~nm}$
Datasheet	LES-420-016

Characterization

3. Optimization of Irradiation Conditions

Table S1. Optimization of the enantioselective [2+2] photocycloaddition of 4-alkenyloxyquinolones

 5a, $\mathrm{R}=\mathrm{H}$ 5b, R = M						
Entry	Sub.	6 (x mol\%)	T [$\left.{ }^{\circ} \mathrm{C}\right]$	$t[\mathrm{~h}]$	Yield [\%]	ee [\%]
1	5 a	10	25	1	0	--
2	5b	10	25	1	98	72
3	5b	10	-25	1	97	88
4	5b	5	-25	1.5	97	86
5	5b	2.5	-25	2.5	97	86
6^{a}	5 b	1	-25	4	91	83
$7{ }^{\text {b }}$	5b	10	-25	1	98	55

${ }^{a}$ The reaction was performed at a concentration of $\mathrm{c}=5 \mathrm{mM} .{ }^{b}$ The reaction was performed in MeCN.

4. Screening of Catalyst Loadings

Table S2. [2+2] photocycloaddition of substrate $\mathbf{5 n}$ to cyclobutane 7n: Efficiency of sensitizer $\mathbf{6}$ at low catalyst loadings.
Entry
(Entry 1): 5n ($130.6 \mathrm{mg}, 0.5 \mathrm{mmol}$) and $6(21.6 \mathrm{mg}, 0.05 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ were dissolved in $\alpha, \alpha, \alpha-$ trifluorotoluene ($200 \mathrm{~mL}, c=2.5 \mathrm{mmol} / \mathrm{L}$), cooled to $-25^{\circ} \mathrm{C}$ and irradiated at $\lambda=420 \mathrm{~nm}$ for 1 h . Following flash column chromatography (silica, pentane/ethyl acetate $4: 1$), compound $\mathbf{7 n}$ was obtained as a colorless solid ($130.5 \mathrm{mg},>99 \%$, 99% ee).
(Entry 2): 5n (130.6 mg, 0.5 mmol$)$ and $\mathbf{6}(2.2 \mathrm{mg}, 5 \mu \mathrm{~mol}, 1 \mathrm{~mol} \%)$ were dissolved in α, α, α-trifluorotoluene $(100 \mathrm{~mL}, c=5 \mathrm{mmol} / \mathrm{L})$ and reacted for 2.5 h at $-25^{\circ} \mathrm{C}$. Following flash column chromatography, compound $7 \mathbf{n}$ was obtained as a colorless solid ($130.3 \mathrm{mg},>99 \%, 95 \% e e$).
(Entry 3): 5n ($130.6 \mathrm{mg}, 0.5 \mathrm{mmol}$) and $6(1.1 \mathrm{mg}, 2.5 \mu \mathrm{~mol}, 0.5 \mathrm{~mol} \%)$ were dissolved in $\alpha, \alpha, \alpha-$ trifluorotoluene ($100 \mathrm{~mL}, c=5 \mathrm{mmol} / \mathrm{L}$) and reacted for 7 h at $-25^{\circ} \mathrm{C}$. Following flash column chromatography, compound $\mathbf{7 n}$ was obtained as a colorless solid ($129.5 \mathrm{mg}, 99 \%, 93 \% e e$).

Scheme S1. [2+2] photocycloaddition of substrate 5c and $\mathbf{1 0 b}$ to cyclobutane 7c and 11b: Efficiency of sensitizer 6 at low catalyst loadings.

(Scheme S1a): 5c ($121.6 \mathrm{mg}, 0.5 \mathrm{mmol}$) and $6(2.2 \mathrm{mg}, 5 \mu \mathrm{~mol}, 1 \mathrm{~mol} \%)$ were dissolved in $\alpha, \alpha, \alpha-$ trifluorotoluene ($100 \mathrm{~mL}, c=5 \mathrm{mmol} / \mathrm{L}$), cooled to $-25^{\circ} \mathrm{C}$ and irradiated at $\lambda=420 \mathrm{~nm}$ for 2.5 h . Following flash column chromatography, compound $\mathbf{7 c}$ was obtained as a colorless solid ($120.5 \mathrm{mg}, 99 \%, 98 \%$ ee).
(Scheme S1b): 10b ($127.6 \mathrm{mg}, 0.5 \mathrm{mmol}$) and $6(2.2 \mathrm{mg}, 5 \mu \mathrm{~mol}, 1 \mathrm{~mol} \%)$ were dissolved in $\alpha, \alpha, \alpha-$ trifluorotoluene ($100 \mathrm{~mL}, c=5 \mathrm{mmol} / \mathrm{L}$), cooled to $-25^{\circ} \mathrm{C}$ and irradiated at $\lambda=420 \mathrm{~nm}$ for 4 h . Following flash column chromatography, compound 11b was obtained as a colorless solid ($122.0 \mathrm{mg}, 96 \%, 93 \% \mathrm{ee}$).

5. Emission Spectra and Triplet Energy of Quinolones

General information

UV/Vis absorption spectra were measured on a Perkin Elmer Lambda 35 UV/Vis Spectrometer in quartz cuvettes. Emission spectra where recorded on a Horiba Scientific FlouroMax-4P Spectrofluorometer equipped with a continuous Xe source for steady state spectra and a Xe flashlight source for the observation of phosphorescence spectra. Spectra were recorded in quartz tubes (4 mm internal diameter) in a small quartz Dewar vessel which was filled with liquid nitrogen for recording spectra at cryogenic temperatures (77 K). Ethanol was filtered over silica and neutral aluminium oxide and subsequently distilled over a 20 cm vacuum insulated Vigreux column and was degassed prior to use. All solutions have been handled under dry nitrogen to exclude oxygen as triplet quencher.

Quinolone characterization

Quinolone 5a was dissolved in ethanol to give a $100 \mu \mathrm{M}$ solution. The absorption spectrum $(\mathrm{d}=4 \mathrm{~mm})$ is shown in Figure S1a, normalized to the long-wavelength absorption maximum at $\lambda=315 \mathrm{~nm}\left(\varepsilon=6625 \mathrm{Lmol}^{-}\right.$ ${ }^{1} \mathrm{~cm}^{-1}$). Luminescence of a $100 \mu \mathrm{M}$ solution in ethanol after excitation at $\lambda=315 \mathrm{~nm}$ was recorded in a quartz tube (4 mm internal diameter) and is shown normalized to the emission-maximum at $\lambda=360 \mathrm{~nm}$ in Figure S1a. The emission is attributed to fluorescence and the crossing of the normalized spectra at $\lambda=336 \mathrm{~nm}$ assigned to a S_{1} energy of $356 \mathrm{~kJ} / \mathrm{mol}$.

Figure S1. a) Recorded UV/Vis of $\mathbf{5 a}$ in ethanol $(c=100 \mu \mathrm{M})$ normalized to $\mathrm{A}_{315 \mathrm{~nm}}$, recorded luminescence of $\mathbf{5 a}$ in ethanol $(\mathrm{c}=100 \mu \mathrm{M})$ at ambient conditions, normalized to $\mathrm{I}_{360 \mathrm{~nm}}$. b) Steady state spectra of $\mathbf{5 a}$ in ethanol ($\mathrm{c}=$ $100 \mu \mathrm{M}$) at ambient conditions and at 77 K given in counts per second (solid lines), time resolved spectrum of $\mathbf{5 a}$ in ethanol $(\mathrm{c}=100 \mu \mathrm{M})$ after $250 \mu \mathrm{~s}$ delay (counts, dashed line).

The solution of $\mathbf{5 a}$ in ethanol was cooled to 77 K in a quartz tube to give an amorphous or microcrystalline solid ("snowy"). Excitation at $\lambda=312 \mathrm{~nm}$ gave a spectrum, in which contributions from the previously recorded fluorescence spectrum can be qualitatively assigned together with a very broad and unstructured signature with a maximum at approx. $\lambda=430 \mathrm{~nm}$ (Figure S1b). Introducing a delay between excitation and detection led to a complete bleach of signatures assigned to fluorescence and the resulting spectrum (Figure S1b, dashed line) was attributed to phosphorescence. Tentatively assigning the most blueshifted shoulder ($\lambda_{\max } \cong 402 \mathrm{~nm}$) to the $0 \rightarrow 0$ transition of the phosphorescence allows to give an estimate for the triplet energy of $298 \pm 1 \mathrm{~kJ} / \mathrm{mol}$ for $\mathbf{5 a}$ in ethanol.

Excitation spectra were recorded under steady state at 77 K . The spectra match qualitatively the room temperature solution spectrum. The two major differences are a red shift of about 5 nm and an additional shoulder/feature at $\sim 340 \mathrm{~nm}$. Figure S 2 shows the excitation spectrum under steady state at 77 K and the room temperature solution spectra of $\mathbf{5 a}$ in ethanol normalized to the respective local maxima.

Figure S2. Recorded UV/Vis of 5a in ethanol $(c=100 \mu \mathrm{M})$ normalized to $\mathrm{A}_{315 \mathrm{~nm}}$, recorded steady state spectrum of $\mathbf{5 a}$ in ethanol $(c=100 \mu \mathrm{M})$ at 300 K and 77 K , normalized to the respective local maxima.

Quinolone $\mathbf{5 b}$ was dissolved in ethanol to give a $100 \mu \mathrm{M}$ solution. The absorption spectrum ($\mathrm{d}=4 \mathrm{~mm}$) is shown in Figure S3a, normalized to the long-wavelength absorption maximum at $\lambda=322 \mathrm{~nm}\left(\varepsilon=8847 \mathrm{Lmol}^{-}\right.$ ${ }^{1} \mathrm{~cm}^{-1}$). Luminescence of a $100 \mu \mathrm{M}$ solution in ethanol after excitation at $\lambda=322 \mathrm{~nm}$ was recorded in a quartz tube (4 mm internal diameter) and is shown normalized to the emission-maximum at $\lambda=363 \mathrm{~nm}$ in Figure S3a. The emission is attributed to fluorescence and the crossing of the normalized spectra at $\lambda=342 \mathrm{~nm}$ assigned to a S1 energy of $350 \mathrm{~kJ} / \mathrm{mol}$.

The solution of $\mathbf{5 b}$ in ethanol was cooled to 77 K in a quartz tube to give an amorphous or microcrystalline solid ("snowy"). Excitation at $\lambda=330 \mathrm{~nm}$ gave a spectrum, in which contributions from the previously recorded fluorescence spectrum can be qualitatively assigned together with a very broad and unstructured signature with a maximum at approx. $\lambda=470 \mathrm{~nm}$ (Figure S3b). Introducing a delay between excitation and detection led to a complete bleach of signatures assigned to fluorescence and the resulting spectrum (Figure S3b, dashed line) was attributed to phosphorescence. Tentatively assigning the most blueshifted shoulder ($\lambda_{\max } \cong 435-440 \mathrm{~nm}$) to the $0 \rightarrow 0$ transition of the phosphorescence allows to give an estimate for the triplet energy of $273 \pm 2 \mathrm{~kJ} / \mathrm{mol}$ for $\mathbf{5 b}$ in ethanol.

Figure S3. a) Recorded UV/Vis of $\mathbf{5 b}$ in ethanol $(c=100 \mu \mathrm{M})$ normalized to $\mathrm{A}_{322} \mathrm{~nm}$, recorded luminescence of $\mathbf{5 b}$ in ethanol $(c=100 \mu \mathrm{M})$ at ambient conditions, normalized to $\mathrm{I}_{363 \mathrm{~nm}}$. b) Steady state spectra of $\mathbf{5 b}$ in ethanol (c $=100 \mu \mathrm{M}$) at ambient conditions and at 77 K given in counts per second (solid lines), time resolved spectrum of $\mathbf{5 b}$ in ethanol $(c=100 \mu \mathrm{M})$ after 250μ s delay (counts, dashed line).

Excitation spectra were recorded under steady state at 77 K . The spectra match qualitatively the room temperature solution spectrum. The two major differences are a red shift of about 5 nm and an additional shoulder/feature at $\sim 340 \mathrm{~nm}$. Figure S 4 shows the excitation spectrum under steady state at 77 K and the room temperature solution spectra of $\mathbf{5 b}$ in ethanol normalized to the respective local maxima.

Figure S4. Recorded UV/Vis of $\mathbf{5 b}$ in ethanol $(c=100 \mu \mathrm{M})$ normalized to $\mathrm{A}_{322} \mathrm{~nm}$, recorded steady state spectrum of $\mathbf{5 b}$ in ethanol $(c=100 \mu \mathrm{M})$ at 300 K and 77 K , normalized to the respective local maxima.

6. Synthetic Procedures and Analytical Data

The ether substrate 5a was obtained following a literature procedure ${ }^{1}$ starting from 4-chloroquinoline- N oxide 2 and the commercially available alcohol. The substrates $\mathbf{5 b}$ and $\mathbf{5 c}$ for the photocycloaddition reaction was prepared as previously described ${ }^{1}$ starting from 3-methylquinoline.

General Procedure 1: Synthesis of ether substrates 5b and 5c by photochemical rearrangement of N-oxides ${ }^{3}$

A solution of 3-methylquinoline (A) $(2.86 \mathrm{~g}, 20 \mathrm{mmol})$ in 50 mL of chloroform was treated with metachloroperbenzoic acid $(5.18 \mathrm{~g}, 30 \mathrm{mmol})$. The mixture was stirred for 2 h at room temperature. Subsequently, saturated $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$ and $2 \mathrm{M} \mathrm{NaOH}(100 \mathrm{~mL})$ were added and the mixture was extracted with dichloromethane. The combined organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed at reduced pressure yielding the quinoline N-oxide $\mathbf{B}(2.87 \mathrm{~g}, 18 \mathrm{mmol}, 90 \%)$ as a bright yellow solid which was used in the following step without further purification.

To a solution of quinoline N-oxide $\mathbf{B}(2.87 \mathrm{~g}, 18 \mathrm{mmol})$ in 6.6 mL of concentrated sulfuric acid at $65^{\circ} \mathrm{C}$ in an oil bath, 1.5 mL of 65% nitric acid solution was added dropwise over an hour. The reaction solution was stirred for another 2.5 hours at $65^{\circ} \mathrm{C}$ and after cooling, carefully poured into 60 mL ice water. The solid precipitates were filtered off, washed with water until neutral and dried in a desiccator. The desired 4-nitroquinoline- N-oxide $\mathbf{C}(3.38 \mathrm{~g}, 16.6 \mathrm{mmol}, 92 \%)$ was obtained as a yellow solid, which was used in the following step without further purification.
16.0 mL acetyl chloride ($17.6 \mathrm{~g}, 224 \mathrm{mmol}$) was cooled to $0^{\circ} \mathrm{C}$ and N-oxide $\mathbf{C}(2.37 \mathrm{~g}, 11.6 \mathrm{mmol})$ was added in portions over an hour, and the temperature must not rise above $10^{\circ} \mathrm{C}$. Then the solution stirred for another 2.5 hours in an ice bath and then added dropwise with ice water, until the highly exothermic hydrolysis of the excess acetyl chloride has ended. The reaction solution was mixed with potassium carbonate with vigorous stirring until the solution is basic and then extracted with dichloromethane ($3 \times 50 \mathrm{~mL}$). The combined organic phases were washed with 50 mL saturated sodium chloride solution, dried over sodium sulfate, filtered and the solvent removed in vacuo. The crude product 4-chloro-3-methylquinoline 1-oxide (D) $(1.97 \mathrm{~g}, 10.2 \mathrm{mmol}, 88 \%)$ was obtained as a yellow solid, which can be further purified by recrystallization from acetone.

4-chloro-3-methylquinoline 1-oxide (D):

Chemical Formula: $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{CINO}$
Exact Mass: 193.0294

TLC: $\mathrm{R}_{\mathrm{f}}=0.51(\mathrm{EtOAc}: \mathrm{MeOH}, 95: 5)$ [UV].
M.p.: $164-166{ }^{\circ} \mathrm{C}$.

IR (film) $v_{\max } / \mathrm{cm}^{-1} 3098,3071,1656,1561,1534,1345,1332,1201,1088,1035,919,853,770,744,658$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.72(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.63(\mathrm{~s}, 1 \mathrm{H}), 8.27(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 140.4,137.4,131.1,130.6,130.0,129.6,128.2,124.9,120.2,18.0$.
GC-MS; EI (70 eV): $t_{\mathrm{R}}=14.42 \mathrm{Min}$ [STDHT]; $\mathrm{m} / z(\%)=195(34)[\mathrm{M}+2+], 193(100)[\mathrm{M}+], 179(17), 177$ (52), 164 (14), 151 (34), 142 (37), 130 (29), 115 (34).

HRMS (ESI) m/z: [$\left.\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{ClNO}+\mathrm{H}\right]^{+}$calcd.: 194.0367; found: 194.0367.

4-Chloroquinolin- N-oxide \mathbf{D} ($968 \mathrm{mg}, 5 \mathrm{mmol}$) and powdered potassium hydroxide ($560 \mathrm{mg}, 10 \mathrm{mmol}$) were dissolved under argon in dry tetrahydrofuran (0.3 M). The appropriate alcohol (20 mmol) was added and the solution was heated to reflux in an oil bath until the reaction was complete. After cooling to room temperature the solvent was removed in vacuo and the residue was dissolved in dichloromethane ($20 \mathrm{~mL} / \mathrm{mmol}$). The solution was washed with water $(10 \mathrm{~mL} / \mathrm{mmol})$ and brine $(10 \mathrm{~mL} / \mathrm{mmol})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated in vacuo. The crude product was purified by column chromatography.

4-(but-3-en-1-yloxy)-3-methylquinoline 1-oxide (Eb):

Chemical Formula: $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{2}$
Exact Mass: 229.1103

Following the general procedure, compound $\mathbf{E b}$ was obtained as a light yellow oil ($480 \mathrm{mg}, 42 \%$) by column chromatography (silica, DCM/MeOH 96:4).
TLC: $\mathrm{R}_{\mathrm{f}}=0.37$ (DCM:MeOH, 95:5) [UV].
IR (film) $v_{\max } / \mathrm{cm}^{-1} 3385,3075,2928,1640,1573,1400,1353,1329,1201,1085,968,916,872,765,733$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.66(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.42(\mathrm{~s}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{t}, J=$ $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{ddt}, J=17.1,10.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{dd}, J=17.2,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $5.18(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.65$ (virt. $\mathrm{q}, J \approx J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.2,140.8,138.6,133.9,129.9,128.6,125.6,122.6,120.2,118.0,74.1$, 34.7, 13.9.

GC-MS; EI (70 eV): $t_{\mathrm{R}}=16.52 \mathrm{Min}$ [STDHT]; $\mathrm{m} / z(\%)=229(21)[\mathrm{M}+], 213(74), 175(37), 172(38), 159$ (93), 158 (39), 130 (57), 115 (24), 104 (22), 77 (32), 55 (100).

HRMS (EI) $\mathrm{m} / z:\left[\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{2}+\mathrm{H}\right]^{+}$calcd.: 230.1176; found: 230.1176.

3-methyl-4-((3-methylbut-3-en-1-yl)oxy)quinoline 1-oxide (Ec):

Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{2}$
Exact Mass: 243.1259

Following the general procedure, compound Ec was obtained as a light-yellow oil ($545 \mathrm{mg}, 45 \%$) by column chromatography (silica, DCM/MeOH 96:4).

TLC: $\mathrm{R}_{\mathrm{f}}=0.39$ (DCM:MeOH, 95:5) [UV].
IR (film) $v_{\max } / \mathrm{cm}^{-1} 3385,3075,2933,1650,1573,1450,1400,1353,1329,1262,1200,1085,975,890,866$, 765, 731.
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.67(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.45(\mathrm{~s}, 1 \mathrm{H}), 8.06(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{ddd}, J$ $=8.4,7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{ddd}, J=8.2,7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{~s}, 1 \mathrm{H}), 4.87(\mathrm{~s}, 1 \mathrm{H}), 4.16(\mathrm{t}, J=6.8 \mathrm{~Hz}$, $2 \mathrm{H}), 2.62(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.8,141.5,140.8,138.9,130.1,128.7,125.7,122.7,122.6,120.2,113.0$, 73.4, 38.4, 22.9, 14.0.

GC-MS; EI $(70 \mathrm{eV}): t_{\mathrm{R}}=17.02 \mathrm{Min}$ [STDHT]; $\mathrm{m} / z(\%)=243(1)[\mathrm{M}+], 227(23), 159(100), 130(22), 115$ (10), 77 (10), 69 (28).

HRMS (EI) m/z: [$\left.\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{2}+\mathrm{H}\right]^{+}$calcd.: 244.1332; found: 244.1333.

The 4-alkenyloxyquinolin- N-oxide \mathbf{E} was dissolved in methanol ($200 \mathrm{~mL} / \mathrm{mmol}$), saturated with oxygen and run through a double coiled tubular flow reactor (Duran tube 7 mm , coil outer diameter: 75 mm , height: 200 mm , internal volume: 150 mL) placed in the middle of a Rayonet (RPR-100) photoreactor equipped with 16 lamps of the given wavelength. After passing the reactor, the product solution was collected in a septum stoppered flask which was filled with inert gas and equipped with a balloon for pressure equalization. Reaction progress was monitored by UV/VIS-spectrometry (flow-cuvette, detection of the N-oxide absorption band at $\lambda>360 \mathrm{~nm}$). The collected product solution was evaporated in vacuo. The crude product was purified by flash column chromatography and recrystallisation.

4-(but-3-en-1-yloxy)-3-methylquinolin-2(1H)-one (5b):

$$
\text { Chemical Formula: } \mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{2}
$$

Exact Mass: 229.1103

Following the general procedure, compound $\mathbf{5 b}$ was obtained as a colorless solid ($148 \mathrm{mg}, 43 \%$) by column chromatography (silica, pentane/ethyl acetate 1.5:1).

TLC: $\mathrm{R}_{\mathrm{f}}=0.44$ (Pentane:EtOAc, 1:1) [UV].
M.p.: $152-153{ }^{\circ} \mathrm{C}$.

IR (film) $v_{\max } / \mathrm{cm}^{-1} 3065,2944,2876,2852,1638,1613,1569,1497,1433,1373,1353,1271,1157,1144$, 1107, 1015, 975, 915, 871, 755, 741, 697, 667.
${ }^{1} \mathbf{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.86(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.79(\mathrm{dd}, J=8.0,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{ddd}, J=8.4,7.0,1.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.41(\mathrm{dd}, J=8.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{ddd}, J=8.2,7.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{ddt}, J=17.0,10.2,6.8 \mathrm{~Hz}$, 1 H), 5.24 (virt. dq, $J=17.2 \mathrm{~Hz}, J \approx J=1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 5.18 (virt. dq, $J=10.3 \mathrm{~Hz}, J \approx J=1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 4.09 (t, $J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.66($ virt. $\mathrm{qt}, J \approx J=6.7 \mathrm{~Hz}, J=1.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.3,161.5,137.3,134.2,130.1,122.9,122.4,118.8,117.8,117.7,116.0$, 73.2, 34.9, 10.4.

GC-MS; EI (70 eV): $t_{\mathrm{R}}=15.90 \mathrm{Min}$. [STDHT]; $\mathrm{m} / z(\%)=229(18)[\mathrm{M}+], 214$ (35), 175 (100), 146 (17), 130 (13), 120 (20), 55 (48).
HRMS (ESI) m/z: $\left[\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{2}+\mathrm{H}\right]^{+}$calcd.: 230.1176; found: 230.1177.

3-methyl-4-((3-methylbut-3-en-1-yl)oxy)quinolin-2(1H)-one (5c):

Following the general procedure, compound $\mathbf{5 c}$ was obtained as a colorless solid ($142 \mathrm{mg}, 39 \%$) by column chromatography (silica, pentane/ethyl acetate 1.5:1).
TLC: $\mathrm{R}_{\mathrm{f}}=0.36$ (Pentane:EtOAc, 1:1) [UV].
M.p.: $114-115{ }^{\circ} \mathrm{C}$.

IR (film) $v_{\max } / \mathrm{cm}^{-1} 3067,2948,2917,2870,1646,1611,1572,1434,1348,1266,1144,1103,1031,979$, 896, 837, 746, 698, 689.
${ }^{1} \mathbf{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.16(b r \mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{~s}, 1 \mathrm{H}), 4.87(\mathrm{~s}, 1 \mathrm{H}), 4.15(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.62(\mathrm{t}, J=6.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 1.85(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta 166.4,161.6,141.8,137.3,130.0,122.8,122.4,118.7,117.7,116.1,112.8$, 72.3, 38.5, 22.9, 10.4.

GC-MS; EI (70 eV): $t_{\mathrm{R}}=16.45 \mathrm{Min}$ [STDHT]; $\mathrm{m} / z(\%)=243(20)[\mathrm{M}+], 175(100), 146(10), 120(12), 69$ (25).

HRMS (ESI) $\mathrm{m} / \mathrm{z}:\left[\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{2}+\mathrm{H}\right]^{+}$calcd.: 244.1332; found: 244.1334.

General Procedure 2: Synthesis of ether substrates 5, 8, 10, 12, and 15 by Mitsunobu reactions ${ }^{4}$

A flask was charged with 4-hydroxy-2-quinolone ${ }^{5} \mathbf{F}(2.0 \mathrm{mmol})$ and triphenylphoshine ($3.0 \mathrm{mmol}, 786 \mathrm{mg}$) under an inert atmosphere. After solvation in dry THF (4 mL) alcohol $\mathbf{G}(3.0 \mathrm{mmol})$ was added and the stirred solution was cooled by an external ice/water bath. Diisopropyl azodicarboxylate ($3.2 \mathrm{mmol}, 647 \mathrm{mg}$) was added dropwise and the solution was allowed to come to room temperature and stirred for additional 24-48 h. After evaporation of the solvent under reduced pressure, the residue was purified by silica gel flash chromatography.

General Procedure 3: Synthesis of ether substrates $\mathbf{5 g}$, $\mathbf{5 h}$, and $\mathbf{5 k}$ by nucleophilic substitution ${ }^{6}$

3-Methylbut-3-en-1-yl 4-methylbenzenesulfonate $\mathbf{H}(1.25 \mathrm{eq})$ was added dropwise to a solution of 4-hydroxy-2-quinolone ${ }^{5} \mathbf{F}(1 \mathrm{eq})$ and $\operatorname{DBU}(1.56 \mathrm{eq})$ in DMSO $(0.25 \mathrm{~mol} / \mathrm{L})$ and the mixture was stirred at 100 ${ }^{\circ} \mathrm{C}$ in an oil bath for 4 h . The solvent was dissolved in dichloromethane, washed successively with 0.5 N $\mathrm{NaOH}, 0.1 \mathrm{~N} \mathrm{HCl}$ and water, and dried over sodium sulfate. After removal of the solvent, the crude product was purified by flash column chromatography.

3-methyl-4-((4-methylpent-3-en-1-yl)oxy)quinolin-2(1H)-one (5d):

$$
\text { Chemical Formula: } \mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{2}
$$

Exact Mass: 257.1416

Following the general procedure 2, compound $\mathbf{5 d}$ was obtained as a colorless solid ($260 \mathrm{mg}, 51 \%$) by column chromatography (silica, pentane/diethyl ether 1:1.5).

TLC: $\mathrm{R}_{\mathrm{f}}=0.54$ (Pentane:EtOAc, 1:2) [UV].
M.p.: $109-110{ }^{\circ} \mathrm{C}$.

IR (film) $v_{\max } / \mathrm{cm}^{-1} 3071,2961,2868,1658,1614,1574,1500,1436,1354,1265,1144,1100,1012,975$, 883, 836, 748, 737, 692, 666.
${ }^{1} \mathbf{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.10(b r \mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.59(v i r t \mathrm{q}, J \approx J$ $=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.7,137.3,135.1,130.0,122.9,122.3,119.5,117.8,116.1,73.7,29.4,25.9$, 18.1, 10.3.

GC-MS; EI (70 eV): $t_{\mathrm{R}}=17.08$ Min. [STDHT]; $\mathrm{m} / z(\%)=257(2)[\mathrm{M}+], 242(98), 175(60), 83(77), 55$ (100).

HRMS (ESI) $\mathrm{m} / \mathrm{z}:\left[\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{2}+\mathrm{H}\right]^{+}$calcd.: 258.1489; found: 258.1490 .

4-(2-(cyclopent-1-en-1-yl)ethoxy)-3-methylquinolin-2(1H)-one (5e):

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{2}$
Exact Mass: 269.1416

Following the general procedure 2, compound $\mathbf{5 e}$ was obtained as a colorless solid ($247 \mathrm{mg}, 46 \%$) by column chromatography (silica, pentane/diethyl ether 1:2).
TLC: $\mathrm{R}_{\mathrm{f}}=0.34$ (Pentane:EtOAc, 1:1) [UV].
M.p.: $141-142{ }^{\circ} \mathrm{C}$.

IR (film) $v_{\max } / \mathrm{cm}^{-1} 3158,3065,2946,2890,2846,1644,1610,1571,1498,1432,1373,1356,1316,1270$, $1262,1181,1155,1143,1032,970,946,898,858,751,689,659$.
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.25(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{ddd}, J=8.2,6.6,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.45(\mathrm{dd}, J=8.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{ddd}, J=8.2,6.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.58-5.49(\mathrm{~m}, 1 \mathrm{H}), 4.16(\mathrm{t}, J=6.9 \mathrm{~Hz}$, $2 \mathrm{H}), 2.68(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.41-2.29(\mathrm{~m}, 4 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 1.90($ virt. quint, $J \approx J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.5,161.6,140.3,137.3,130.0,126.3,122.8,122.3,118.6,117.7,116.1$, 72.5, 35.5, 32.7, 32.2, 23.5, 10.4.

GC-MS; EI (70 eV): $t_{\mathrm{R}}=18.19 \mathrm{Min}$ [STDHT]; $\mathrm{m} / z(\%)=269(11)[\mathrm{M}+], 176(100), 175(47), 146$ (8), 130 (9), 95 (57), 79 (16), 67 (24).

HRMS (ESI) m/z: [$\left.\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{2}+\mathrm{H}\right]^{+}$calcd.: 270.1489; found: 270.1490.

4-(2-(cyclohex-1-en-1-yl)ethoxy)-3-methylquinolin-2(1H)-one (5f):

Chemical Formula: $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{2}$
Exact Mass: 283.1572

Following the general procedure 2, compound $\mathbf{5 f}$ was obtained as a colorless solid ($254 \mathrm{mg}, 45 \%$) by column chromatography (silica, pentane/diethyl ether 1:2).
TLC: $\mathrm{R}_{\mathrm{f}}=0.39$ (Pentane:EtOAc, 1:1) [UV].
M.p.: $137-138{ }^{\circ} \mathrm{C}$.

IR (film) $v_{\max } / \mathrm{cm}^{-1} 3002,2912,2833,1648,1615,1574,1501,1436,1382,1356,1319,1270,1156,1142$, 1103, 1014, 986, 945, 910, 861, 748, 700, 655.
${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.64(b r \mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.60(\mathrm{~s}, 1 \mathrm{H}), 4.10(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.53(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.25$ $(\mathrm{s}, 3 \mathrm{H}), 2.03-2.02(\mathrm{~m}, 4 \mathrm{H}), 1.69-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.54(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.2,161.7,137.2,133.8,130.0,124.3,123.0,122.3,118.6,117.8,115.9$, 72.6, 38.9, 28.7, 25.5, 23.1, 22.5, 10.4.

GC-MS; EI (70 eV): $t_{\mathrm{R}}=17.03 \mathrm{Min}$ [STDHT]; $\mathrm{m} / z(\%)=283(21)[\mathrm{M}+], 176(100), 175(64), 109(48), 67$ (41).

HRMS (ESI) m/z: [$\left.\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{2}+\mathrm{H}\right]^{+}$calcd.: 284.1645; found: 284.1646.

6-methoxy-3-methyl-4-((3-methylbut-3-en-1-yl)oxy)quinolin-2(1H)-one (5g):

Following the general procedure 3, compound $\mathbf{5 g}$ was obtained as a colorless solid ($254 \mathrm{mg}, 51 \%$) by column chromatography (silica, pentane/ethyl acetate 1:1).
TLC: $\mathrm{R}_{\mathrm{f}}=0.43$ (Pentane:EtOAc, 1:1.5) [UV].
M.p.: $145-146{ }^{\circ} \mathrm{C}$.

IR (film) $\cup_{\max } / \mathrm{cm}^{-1} 2999,2916,2868,2826,1643,1621,1579,1499,1418,1370,1352,1272,1218,1172$, $1143,1105,1036,902,891,841,708$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.45(b r \mathrm{~s}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{dd}$, $J=8.9,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{~s}, 1 \mathrm{H}), 4.90(\mathrm{~s}, 1 \mathrm{H}), 4.15(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 2.61(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H})$, $2.25(\mathrm{~s}, 3 \mathrm{H}), 1.86(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.6,161.1,155.3,142.0,131.8,119.5,119.0,118.4,117.3,112.9,104.3$, $72.0,55.8,38.5,22.9,10.5$.

GC-MS; EI (70 eV): $t_{\mathrm{R}}=16.11 \mathrm{Min}$ [STDHT]; $\mathrm{m} / z(\%)=273(69)[\mathrm{M}+], 258(4), 228(8), 205(100), 190$ (25), 176 (8), 69 (19).

HRMS (ESI) m/z: [$\left.\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{3}+\mathrm{H}\right]^{+}$calcd.: 274.1438; found: 274.1439.

3,6-dimethyl-4-((3-methylbut-3-en-1-yl)oxy)quinolin-2(1H)-one (5h):

Following the general procedure 3, compound $\mathbf{5 h}$ was obtained as a colorless solid ($282 \mathrm{mg}, 55 \%$) by column chromatography (silica, pentane/ethyl acetate 1:1).
TLC: $\mathrm{R}_{\mathrm{f}}=0.48$ (Pentane:EtOAc, 1:2) [UV].
M.p.: $155-156{ }^{\circ} \mathrm{C}$.

IR (film) $v_{\max } / \mathrm{cm}^{-1} 2965,2853,1656,1579,1505,1480,1421,1378,1356,1310,1270,1257,1172,1111$, 1004, 917, 880, 810, 774, 711, 653.
${ }^{\mathbf{1}} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.24(b r \mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{~s}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{dd}, J=8.3,1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.92(\mathrm{~s}, 1 \mathrm{H}), 4.89(\mathrm{~s}, 1 \mathrm{H}), 4.13(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.62(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~s}$, $3 \mathrm{H}), 1.86(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.3,161.4,141.9,135.4,131.8,131.4,122.3,118.6,117.6,116.1,112.9$, 72.1, 38.5, 22.9, 21.3, 10.4.

GC-MS; EI $(70 \mathrm{eV}): t_{\mathrm{R}}=16.88 \mathrm{Min}$ [STDHT]; $\mathrm{m} / z(\%)=257(26)[\mathrm{M}+], 212(6), 189(100), 160(11), 134$ (9), 69 (18).

HRMS (ESI) m/z: [$\left.\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{2}+\mathrm{H}\right]^{+}$calcd.: 258.1489; found: 258.1489.

6-fluoro-3-methyl-4-((3-methylbut-3-en-1-yl)oxy)quinolin-2(1H)-one (5i):

Following the general procedure 2, compound $\mathbf{5 i}$ was obtained as a colorless solid ($292 \mathrm{mg}, 56 \%$) by column chromatography (silica, pentane/diethyl ether 1:2).

TLC: $\mathrm{R}_{\mathrm{f}}=0.28$ (Pentane:EtOAc, 1:1) [UV].
M.p.: $148-149{ }^{\circ} \mathrm{C}$.

IR (film) $v_{\max } / \mathrm{cm}^{-1} 2929,2881,2828,1651,1631,1502,1428,1353,1308,1251,1188,1168,1135,1097$, 1031, 940, 908, 893, 876, 843, 813, 790, 712.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.82(b r \mathrm{~s}, 1 \mathrm{H}), 7.52-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{td}, J=8.5,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{~s}$, $1 \mathrm{H}), 4.88(\mathrm{~s}, 1 \mathrm{H}), 4.13(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.60(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 1.85(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-119.8$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 166.4,160.9(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 158.4(\mathrm{~d}, J=240.9 \mathrm{~Hz}), 141.6,133.8,119.6$, $118.6(\mathrm{~d}, J=8.4 \mathrm{~Hz}), 118.3(\mathrm{~d}, J=24.8 \mathrm{~Hz}), 117.9(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 113.0,108.0(\mathrm{~d}, J=24.2 \mathrm{~Hz}), 72.3,38.4$, 22.8, 10.5.

GC-MS; EI $(70 \mathrm{eV}): t_{\mathrm{R}}=16.36$ Min. [STDHT]; $\mathrm{m} / z(\%)=261(28)[\mathrm{M}+], 246(4), 216(5), 193(100), 164$ (12), 138 (9), 69 (40).

HRMS (ESI) m/z: [$\left.\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{FNO}_{2}+\mathrm{H}\right]^{+}$calcd.: 262.1238; found: 262.1238.

6-chloro-3-methyl-4-((3-methylbut-3-en-1-yl)oxy)quinolin-2(1H)-one (5j):

Following the general procedure 2 , compound $\mathbf{5 j}$ was obtained as a colorless solid ($360 \mathrm{mg}, \mathbf{6 5 \%}$) by column chromatography (silica, pentane/diethyl ether 1:2).

TLC: $\mathrm{R}_{\mathrm{f}}=0.35$ (Pentane:EtOAc, 1:1) [UV].
M.p.: 172-174 ${ }^{\circ} \mathrm{C}$.

IR (film) $v_{\max } / \mathrm{cm}^{-1} 2985,2966,2922,2884,2852,2737,1656,1608,1573,1479,1445,1416,1375,1351$, 1307, 1263, 1235, 1179, 1146, 1116, 1077, 978, 967, 881, 810, 701.
${ }^{1} \mathbf{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.45(b r \mathrm{~s}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{dd}, J=8.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.38$ $(\mathrm{d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~s}, 1 \mathrm{H}), 4.89(\mathrm{~s}, 1 \mathrm{H}), 4.14(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.61(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H})$, $1.86(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta 166.4,160.6,141.6,135.7,130.3,128.0,122.3,119.6,118.9,117.6,113.2$, 72.4, 38.5, 22.8, 10.5.

GC-MS; EI (70 eV): $t_{\mathrm{R}}=17.34 \mathrm{Min} .[\mathrm{STDHT}] ; \mathrm{m} / z(\%)=279(8)[\mathrm{M}+2+], 277(26)[\mathrm{M}+], 211$ (33), 209 (100), 180 (9), 154 (9), 69 (60).

HRMS (ESI) m/z: $\left[\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{ClNO}_{2}+\mathrm{H}\right]^{+}$calcd.: 278.0942; found: 278.0944 .

3-methyl-4-((3-methylbut-3-en-1-yl)oxy)-2-oxo-1,2-dihydroquinoline-6-carbonitrile (5k):

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$
Exact Mass: 268.1212

Following the general procedure 3, compound 5k was obtained as a colorless solid ($108 \mathrm{mg}, \mathbf{2 0 \%}$) by column chromatography (silica, pentane/ethyl acetate 1:1).
TLC: $\mathrm{R}_{\mathrm{f}}=0.27$ (Pentane:EtOAc, 1:1) [UV].
M.p.: $232-235{ }^{\circ} \mathrm{C}$.

IR (film) $v_{\max } / \mathrm{cm}^{-1} 3152,2977,2920,2851,2228,1652,1624,1578,1478,1423,1377,1351,1319,1274$, $1261,1168,1111,972,890,821,763,715,652$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.25(b r \mathrm{~s}, 1 \mathrm{H}), 8.15(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{dd}, J=8.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.47$ $(\mathrm{d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{~s}, 1 \mathrm{H}), 4.89(\mathrm{~s}, 1 \mathrm{H}), 4.19(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.62(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H})$, $1.86(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta 166.5,160.6,141.4,139.5,132.5,128.5,120.2,119.0,118.1,116.9,113.4$, 106.0, 72.7, 38.4, 22.8, 10.1 .

HRMS (ESI) m/z: [$\left.\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{H}\right]^{+}$calcd.: 269.1285; found: 269.1287.

3,7-dimethyl-4-((3-methylbut-3-en-1-yl)oxy)quinolin-2(1H)-one (5l):

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{2}$
Exact Mass: 257.1416

Following the general procedure 2, compound $\mathbf{5 I}$ was obtained as a colorless solid ($231 \mathrm{mg}, 45 \%$) by column chromatography (silica, pentane/diethyl ether 1:1.5).

TLC: $\mathrm{R}_{\mathrm{f}}=0.47$ (Pentane:EtOAc, 1:1) [UV].
M.p.: $168-170{ }^{\circ} \mathrm{C}$.

IR (film) $v_{\max } / \mathrm{cm}^{-1} 2944,2892,2853,1641,1611,1566,1513,1480,1439,1394,1375,1358,1316,1256$, $1190,1176,1148,1111,1080,1038,999,981,901,849,815,786,767,741,702,669$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.90(b r \mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~s}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.90(\mathrm{~s}, 1 \mathrm{H}), 4.86(\mathrm{~s}, 1 \mathrm{H}), 4.14(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.61(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H})$, 1.84 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 166.3,162.1,141.8,140.9,137.3,124.2,122.7,117.2,116.1,115.6,112.8$, 72.3, 38.5, 22.9, 21.8, 10.3.

GC-MS; EI $(70 \mathrm{eV}): t_{\mathrm{R}}=17.04 \mathrm{Min} .[\mathrm{STDHT}] ; \mathrm{m} / z(\%)=257(14)[\mathrm{M}+], 207(12), 189(100), 160(11)$, 134 (13), 69 (20).
HRMS (ESI) m/z: $\left[\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{2}+\mathrm{H}\right]^{+}$calcd.: 258.1489; found: 258.1489 .

3-ethyl-4-((3-methylbut-3-en-1-yl)oxy)quinolin-2(1H)-one (5m):

> Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{2}$
> Exact Mass: 257.1416

Following the general procedure 2, compound $\mathbf{5 m}$ was obtained as a colorless solid ($360 \mathrm{mg}, 70 \%$) by column chromatography (silica, pentane/diethyl ether 1:1.5).

TLC: $\mathrm{R}_{\mathrm{f}}=0.60$ (Pentane:EtOAc, 1:1) [UV].
M.p.: $130-131{ }^{\circ} \mathrm{C}$.

IR (film) $v_{\max } / \mathrm{cm}^{-1} 2957,2930,2868,1651,1612,1571,1499,1433,1396,1374,1355,1321,1259,1144$, 1106, 1065, 1049, 1031, 983, 959, 891, 864, 758, 687, 665.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.67(b r \mathrm{~s}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{td}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.37$ $(\mathrm{d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{~s}, 1 \mathrm{H}), 4.88(\mathrm{~s}, 1 \mathrm{H}), 4.15(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.76(\mathrm{q}, J=$ $7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.64(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.86(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 165.9,161.2,141.8,137.5,130.0,125.0,123.0,122.3,117.7,116.0,112.8$, 73.2, 38.5, 22.9, 18.2, 13.6.

GC-MS; EI $(70 \mathrm{eV}): t_{\mathrm{R}}=16.57 \mathrm{Min}$ [STDHT]; $\mathrm{m} / z(\%)=257(27)[\mathrm{M}+], 212(24), 189(94), 188(78), 174$ (100), 161 (21), 69 (41).

HRMS (ESI) m/z: [$\left.\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{2}+\mathrm{H}\right]^{+}$calcd.: 258.1489; found: 258.1489 .

7-fluoro-3-methyl-4-((3-methylbut-3-en-1-yl)oxy)quinolin-2(1H)-one (5n):

Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{FNO}_{2}$
Exact Mass: 261.1165

Following the general procedure 2, compound 5 n was obtained as a colorless solid ($365 \mathrm{mg}, 70 \%$) by column chromatography (silica, pentane/diethyl ether 1:1.5).
TLC: $\mathrm{R}_{\mathrm{f}}=0.67$ (Pentane:EtOAc, 1:1.5) [UV].
M.p.: $138-139{ }^{\circ} \mathrm{C}$.

IR (film) $v_{\max } / \mathrm{cm}^{-1} 3066,2919,2863,1645,1612,1577,1511,1396,1373,1355,1312,1249,1194,1139$, 1104, 1027, 895, 847, 811, 795, 761, 667.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.47(b r \mathrm{~s}, 1 \mathrm{H}), 7.77(\mathrm{dd}, J=8.9,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{dd}, J=9.4,2.1 \mathrm{~Hz}, 1 \mathrm{H})$, $6.94(\mathrm{td}, J=8.7,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{~s}, 1 \mathrm{H}), 4.87(\mathrm{~s}, 1 \mathrm{H}), 4.15(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.60(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H})$, $2.23(\mathrm{~s}, 3 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-109.2.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 167.0,163.8(\mathrm{~d}, J=249.5 \mathrm{~Hz}), 161.5,141.7,138.7(\mathrm{~d}, J=12.0 \mathrm{~Hz}), 125.1$ $(\mathrm{d}, J=10.1 \mathrm{~Hz}), 117.4,114.5,112.9,110.9(\mathrm{~d}, J=23.3 \mathrm{~Hz}), 102.3(\mathrm{~d}, J=25.3 \mathrm{~Hz}), 72.4,38.5,22.9,10.3$. GC-MS; EI (70 eV): $t_{\mathrm{R}}=16.17$ Min. [STDHT]; $\mathrm{m} / z(\%)=261(19)[\mathrm{M}+], 246(4), 216$ (5), 193 (100), 164 (11), 138 (14), 69 (39).

HRMS (ESI) $\mathrm{m} / z:\left[\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{FNO}_{2}+\mathrm{H}\right]^{+}$calcd.: 262.1238; found: 262.1239 .

3-methyl-4-((3,4,4-trifluorobut-3-en-1-yl)oxy)quinolin-2(1H)-one (8):

Chemical Formula: $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{NO}_{2}$
Exact Mass: 283.0820

Following the general procedure 2, compound $\mathbf{8}$ was obtained as a colorless solid ($390 \mathrm{mg}, 69 \%$) by column chromatography (silica, pentane/diethyl ether 1:2).

TLC: $\mathrm{R}_{\mathrm{f}}=0.44$ (Pentane:EtOAc, 1:1.5) [UV].
M.p.: $125-126^{\circ} \mathrm{C}$.

IR (film) $v_{\max } / \mathrm{cm}^{-1} 3151,3103,3013,2955,2895,1803,1642,1611,1573,1498,1481,1429,1373,1359$, 1303, 1259, 1246, 1211, 1145, 1118, 1104, 1034, 1010, 991, 870, 850, 829, 783, 760, 694.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.24(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{ddd}, J=$ $8.2,6.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.90(\mathrm{tdd}, J=6.4,4.0,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{tdd}, J=6.3,4.0,2.7$ $\mathrm{Hz}, 1 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-102.7(\mathrm{dd}, J=84.4,32.9 \mathrm{~Hz}),-122.9(\mathrm{dd}, J=114.4,84.4 \mathrm{~Hz}),-175.7(\mathrm{dd}, J$ $=114.4,32.9 \mathrm{~Hz})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.2,161.1,154.0(\mathrm{ddd}, J=287.0,274.2,46.1 \mathrm{~Hz}$), 137.2, $130.4,126.1$ (ddd, $J=234.5,53.5,17.0 \mathrm{~Hz}), 122.8,122.4,118.7,117.4,116.4,68.4,27.4(\mathrm{dd}, J=21.9,2.4 \mathrm{~Hz}), 10.1$.

GC-MS; EI $(70 \mathrm{eV}): t_{\mathrm{R}}=15.54 \mathrm{Min}$. [STDHT]; $\mathrm{m} / z(\%)=283(7)[\mathrm{M}+], 269(15), 268(100), 175(23), 174$ (29), 146 (11), 130 (18), 120 (15), 109 (7), 89 (16).

HRMS (ESI) m/z: [$\left.\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{NO}_{2}+\mathrm{H}\right]^{+}$calcd.: 284.0893; found: 284.0894 .

4-((4 λ^{5}-penta-3,4-dien-1-yl)oxy)-3-methylquinolin-2(1H)-one (10a):

Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{2}$
10a
Exact Mass: 241.1103
Following the general procedure 2, compound 10a was obtained as a colorless solid ($222 \mathrm{mg}, 46 \%$) by column chromatography (silica, pentane/diethyl ether 1:2).

TLC: $\mathrm{R}_{\mathrm{f}}=0.22$ (Pentane:EtOAc, 1:1) [UV].
M.p.: $104-105^{\circ} \mathrm{C}$.

IR (film) $v_{\max } / \mathrm{cm}^{-1} 3162,3110,2955,2886,2859,2751,1952,1730,1655,1615,1572,1499,1434,1376$, $1361,1318,1269,1145,1104,1012,979,862,750,695$.
${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.14(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{td}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.44$ (d, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.22 (td, $J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 5.28 (virt. quint, $J \approx J=6.8 \mathrm{~Hz}, 1 \mathrm{H}$), $4.75(\mathrm{dt}, J=6.4,3.2$ $\mathrm{Hz}, 2 \mathrm{H}), 4.12(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.60(\mathrm{dtt}, J=6.8,6.6,3.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 209.3,166.4,161.5,137.3,130.0,122.8,122.4,118.7,117.7,116.1,86.2$, 75.8, 73.1, 29.5, 10.4.

GC-MS; EI (70 eV): $t_{\mathrm{R}}=16.83 \mathrm{Min}$. [STDHT]; $\mathrm{m} / z(\%)=241(15)[\mathrm{M}+], 240(22), 226(100), 175(95)$, 146 (23), 120 (27), 92 (16), 77 (12), 67 (30), 65 (25).
HRMS (ESI) $\mathrm{m} / z:\left[\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{2}+\mathrm{H}\right]^{+}$calcd.: 242.1176; found: 242.1179 .

3-methyl-4-((3-methyl-4 λ^{5}-penta-3,4-dien-1-yl)oxy)quinolin-2(1H)-one (10b):

Following the general procedure 2, compound $\mathbf{1 0 b}$ was obtained as a colorless solid ($260 \mathrm{mg}, 51 \%$) by column chromatography (silica, pentane/diethyl ether 1:2).
TLC: $\mathrm{R}_{\mathrm{f}}=0.16$ (Pentane:EtOAc, 2:1) [UV].
M.p.: $134-135{ }^{\circ} \mathrm{C}$.

IR (film) $v_{\max } / \mathrm{cm}^{-1} 3150,3107,3073,3051,2993,2936,2916,2899,2848,1960,1655,1640,1615,1600$, $1572,1497,1479,1426,1374,1356,1269,1253,1142,1104,1009,975,891,874,749,694$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.90(b r \mathrm{~s}, 1 \mathrm{H}), 7.81(\mathrm{dd}, J=8.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{td}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.41(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{td}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.66$ (virt. sext, $J \approx J=3.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.15(\mathrm{t}, J=6.5$ $\mathrm{Hz}, 2 \mathrm{H}), 2.53(\mathrm{tt}, J=6.5,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 1.80(\mathrm{t}, J=3.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 206.4,166.5,161.6,137.3,130.0,122.9,122.3,118.6,117.8,116.1,94.9$, 75.3, 72.1, 34.1, 19.3, 10.4.

GC-MS; EI $(70 \mathrm{eV}): t_{\mathrm{R}}=17.15 \mathrm{Min}$ [STDHT]; $\mathrm{m} / z(\%)=255(1)[\mathrm{M}+], 241(17), 240(100), 175(42), 146$ (9), 120 (10), 79 (26).

HRMS (ESI) m/z: [$\left.\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{2}+\mathrm{H}\right]^{+}$calcd.: 256.1332; found: 256.1333 .

6-chloro-3-methyl-4-((3-methyl-4 λ^{5}-penta-3,4-dien-1-yl)oxy)quinolin-2(1H)-one (10c):

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{CINO}_{2}$ Exact Mass: 289.0870

Following the general procedure 2, compound 10c was obtained as a colorless solid ($186 \mathrm{mg}, 32 \%$) by column chromatography (silica, pentane/diethyl ether 1:2).

TLC: $\mathrm{R}_{\mathrm{f}}=0.38$ (Pentane:EtOAc, 1:1) [UV].
M.p.: $126-127{ }^{\circ} \mathrm{C}$.

IR (film) $v_{\max } / \mathrm{cm}^{-1} 3147,3050,2984,2939,2913,2890,2852,1960,1661,1608,1486,1414,1373,1351$, $1305,1255,1148,1119,973,881,816,699$.
${ }^{1} \mathbf{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.28(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{dd}, J=8.7,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.36$ $(\mathrm{d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.70$ (virt. sext, $J \approx J=3.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.16(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.52(\mathrm{tt}, J=6.5,3.1 \mathrm{~Hz}$, $2 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 1.81(\mathrm{t}, J=3.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 206.4,166.3,160.7,135.7,130.3,127.9,122.5,119.5,119.0,117.5,94.9$, 75.5, 72.1, 34.2, 19.3, 10.6.

GC-MS; EI (70 eV): $t_{\mathrm{R}}=16.18 \mathrm{Min}$ [STDHT]; $\mathrm{m} / z(\%)=289(1)[\mathrm{M}+], 276$ (33), 275 (16), 274 (100), 209 (14), 79 (11).

HRMS (ESI) m/z: $\left[\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{ClNO}_{2}+\mathrm{H}\right]^{+}$calcd.: 290.0942; found: 290.0944 .

3-ethyl-4-((3-methyl-4 λ^{5}-penta-3,4-dien-1-yl)oxy)quinolin-2(1H)-one (10d):

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{2}$
10d
Exact Mass: 269.1416

Following the general procedure 2, compound 10d was obtained as a colorless solid ($215 \mathrm{mg}, 40 \%$) by column chromatography (silica, pentane/diethyl ether 1:1.5).

TLC: $\mathrm{R}_{\mathrm{f}}=0.48$ (Pentane:EtOAc, 1:1) [UV].
M.p.: $113-114{ }^{\circ} \mathrm{C}$.

IR (film) $v_{\max } / \mathrm{cm}^{-1} 3110,3009,2979,2963$, 2930, 2887, 2851, 1960, 1655, 1613, 1571, 1499, 1428, 1358, 1266, 1141, 1104, 1043, 993, 873, 854, 747, 680.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.85(b r \mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{td}, J=7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.29$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.67$ (virt. sext, $J \approx J=3.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.14(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$, $2.75(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.55(\mathrm{tt}, J=7.0,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.81(\mathrm{t}, J=3.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.25(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 206.4,166.0,161.2,137.5,130.0,124.9,123.0,122.2,117.8,116.0,95.0$, 75.3, 72.9, 34.2, 19.3, 18.2, 13.6.

GC-MS; EI (70 eV): $t_{\mathrm{R}}=17.22 \mathrm{Min}$ [STDHT]; $\mathrm{m} / z(\%)=269(1)[\mathrm{M}+], 241(17), 240(100), 189(19), 188$ (22), 174 (39), 79 (22).

HRMS (ESI) m/z: [$\left.\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{2}+\mathrm{H}\right]^{+}$calcd.: 270.1489; found: 270.1489.

4-((3 λ^{5}-buta-2,3-dien-1-yl)oxy)-6-chloro-3-methylquinolin-2(1H)-one (12a):

Chemical Formula: $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{CINO}_{2}$ Exact Mass: 261.0557

Following the general procedure 2, compound 12a was obtained as a colorless solid ($251 \mathrm{mg}, 48 \%$) by column chromatography (silica, pentane/diethyl ether 1:2).
TLC: $\mathrm{R}_{\mathrm{f}}=0.14$ (Pentane:EtOAc, 2:1) [UV].
M.p.: $174-176{ }^{\circ} \mathrm{C}$.

IR (film) $v_{\max } / \mathrm{cm}^{-1} 3156,2995,2882,2828,2744,1955,1665,1609,1486,1412,1351,1305,1263,1143$, 1114, 954, 940, 880, 843, 814, 769, 702.
${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.35(b r \mathrm{~s}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{dd}, J=8.7,2.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.37 (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}$), 5.48 (virt. quint, $J \approx J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{dt}, J=7.0,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.60(\mathrm{dt}, J=$ $7.0,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 210.1,166.2,160.1,135.7,130.3,128.0,122.5,120.2,118.9,117.6,87.0$, 77.0, 71.8, 10.7.

GC-MS; EI (70 eV): $t_{\mathrm{R}}=15.77 \mathrm{Min}$. [STDHT]; $\mathrm{m} / z(\%)=263(2)[\mathrm{M}+2+], 261(6)[\mathrm{M}+], 248(34), 246$ (100), 232 (20), 218 (10), 204 (6), 180 (7), 153 (11), 126 (10), 79 (20).

HRMS (ESI) m/z: [$\left.\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{ClNO}_{2}+\mathrm{H}\right]^{+}$calcd.: 262.0629; found: 262.0630 .

4-((3 λ^{5}-buta-2,3-dien-1-yl)oxy)-3-methylquinolin-2(1H)-one (12b):

Chemical Formula: $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{2}$
Exact Mass: 227.0946

Following the general procedure 2, compound 12b was obtained as a colorless solid ($205 \mathrm{mg}, 45 \%$) by column chromatography (silica, pentane/diethyl ether 1:2).

TLC: $\mathrm{R}_{\mathrm{f}}=0.40$ (Pentane:EtOAc, 1:1) [UV].
M.p.: $145-146{ }^{\circ} \mathrm{C}$.

IR (film) $v_{\max } / \mathrm{cm}^{-1} 3162,3107,3057,3006,2980,2953,2923,2880,2856,1961,1659,1615,1573,1499$, 1434, 1351, 1311, 1267, 1137, 1098, 1007, 969, 941, 876, 864, 856, 845, 748, 737, 697, 687, 666.
${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.84(b r \mathrm{~s}, 1 \mathrm{H}), 7.81(\mathrm{dd}, J=8.0,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{ddd}, J=8.0,7.0,1.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{ddd}, J=8.0,7.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.49$ (virt. quint, $J \approx J=6.9 \mathrm{~Hz}, 1 \mathrm{H}$), 4.87 (dt, $J=6.6,2.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.61(\mathrm{dt}, J=7.1,2.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 210.0,166.2,161.0,137.2,130.1,123.0,122.4,119.2,117.7,116.0,87.1$, 76.8, 71.7, 10.6.

GC-MS; EI (70 eV): $t_{\mathrm{R}}=14.60 \mathrm{Min}$. [STDHT]; $\mathrm{m} / z(\%)=227(5)[\mathrm{M}+], 226(13), 212(100), 198(24)$, 184 (12), 170 (10), 119 (11), 92 (16), 79 (14).

HRMS (ESI) $\mathrm{m} / z:\left[\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{2}+\mathrm{H}\right]^{+}$calcd.: 228.1019; found: 228.1020.

3-methyl-4-((4-methyl-3 ${ }^{5}$-penta-2,3-dien-1-yl)oxy)quinolin-2(1H)-one (15):

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{2}$
Exact Mass: $\mathbf{2 5 5 . 1 2 5 9}$
15

Following the general procedure 2, compound 15 was obtained as a colorless solid ($220 \mathrm{mg}, 43 \%$) by column chromatography (silica, pentane/diethyl ether 1:1.5).

TLC: $\mathrm{R}_{\mathrm{f}}=0.47$ (Pentane:EtOAc, 1:1) [UV].
M.p.: $110-111{ }^{\circ} \mathrm{C}$.

IR (film) $v_{\max } / \mathrm{cm}^{-1} 3109,3073,2946,2855,1971,1653,1614,1573,1436,1360,1269,1185,1138,1098$, 986, 967, 881, 750, 736, 690, 666.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.07(b r \mathrm{~s}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{td}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H})$,
$7.42(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{td}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.35-5.26(\mathrm{~m}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.27(\mathrm{~s}$, $3 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 204.0,166.4,161.3,137.2,130.0,123.3,122.3,119.1,118.0,116.0,97.2$, 85.5, 73.0, 20.3, 10.6.

GC-MS; EI (70 eV): $t_{\mathrm{R}}=15.56 \mathrm{Min} .[\mathrm{STDHT}] ; \mathrm{m} / z(\%)=255(1)[\mathrm{M}+], 240(100), 227(10), 212(11)$, 198 (7), 120 (15), 93 (14), 91 (14), 77 (9).

HRMS (ESI) m/z: $\left[\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{2}+\mathrm{H}\right]^{+}$calcd.: 256.1332; found: 256.1333.

General Procedure 4: Non-catalyzed [2+2] Photocycloaddition

The corresponding quinolone ($c=10.0 \mathrm{mmol} / \mathrm{L}$) was dissolved in 10 mL of acetonitrile and irradiated at $\lambda=$ 300 nm at room temperature until full conversion was achieved. The solvent was removed under reduced presure. The crude product was purified by flash column chromatography.

General Procedure 5: TXT-Catalyzed [2+2] Photocycloaddition

The corresponding quinolone ($c=10.0 \mathrm{mmol} / \mathrm{L}, 1.0 \mathrm{eq}$.) and thioxanthenone (TXT) ($4.2 \mathrm{mg}, 20 \mathrm{~mol} \%$) were dissolved in 10 mL of acetonitrile and irradiated at $\lambda=420 \mathrm{~nm}$ at room temperature until full conversion. The solvent was evaporated in vacuo. The crude product was purified by flash column chromatography.
General Procedure 6: (+)-TXT-Catalyzed [2+2] Photocycloaddition
The corresponding quinolone ($c=2.50 \mathrm{mmol} / \mathrm{L}, 1.0 \mathrm{eq}$.) and enantiomerically (+)-TXT $\mathbf{6}(1.1 \mathrm{mg}, 10 \mathrm{~mol} \%$) were dissolved in 10 mL of α, α, α-trifluorotoluene, cooled to $-25^{\circ} \mathrm{C}$ and irradiated at $\lambda=420 \mathrm{~nm}$ until full conversion. The solvent was evaporated in vacuo. The crude product was purified by flash column chromatography.
(3aS,4aR,10bS)-4a-methyl-3,3a,4,4a-tetrahydro-2H-furo[2',3':2,3]cyclobuta[1,2-c]quinolin-5(6H)-one (7b):

Non-catalyzed [2+2] Photocycloaddition
4-(but-3-en-1-yloxy)-3-methylquinolin-2(1H)-one (5b) ($22.9 \mathrm{mg}, 0.1 \mathrm{mmol}$) was dissolved in acetonitrile $(10 \mathrm{~mL}, c=10 \mathrm{mmol} / \mathrm{L})$ and reacted for 1 h , as described in General Procedure 4. Following flash column chromatography (silica, pentane/ethyl acetate $2: 1$), the racemic compound rac-7b was obtained as a colorless solid ($22.7 \mathrm{mg}, 99 \mu \mathrm{~mol}, 99 \%$).

TXT-Catalyzed [2+2] Photocycloaddition

4-(but-3-en-1-yloxy)-3-methylquinolin-2(1H)-one (5b) ($22.9 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and thioxanthenone (TXT) ($4.2 \mathrm{mg}, 20 \mathrm{~mol} \%$) were dissolved in acetonitrile ($10 \mathrm{~mL}, c=10 \mathrm{mmol} / \mathrm{L}$) and reacted for 1 h , as described in General Procedure 5. Following flash column chromatography (silica, pentane/ethyl acetate 2:1), the racemic compound rac-7b was obtained as a colorless solid ($22.7 \mathrm{mg}, 99 \mu \mathrm{~mol}, 99 \%$).

Enantioselective $[2+2]$ Photocycloaddition

4-(but-3-en-1-yloxy)-3-methylquinolin-2(1H)-one (5b) (5.8 mg, $25 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$.) and $\mathbf{6}$ ($1.1 \mathrm{mg}, 2.5 \mu \mathrm{~mol}$, $10 \mathrm{~mol} \%$) were dissolved in α, α, α-trifluorotoluene ($10 \mathrm{~mL}, c=2.5 \mathrm{mmol} / \mathrm{L}$) and reacted for 1 h at $-25^{\circ} \mathrm{C}$, as described in General Procedure 6. Following flash column chromatography (silica, pentane/ethyl acetate $2: 1$), the title compound $\mathbf{7 b}$ was obtained as a colorless solid ($5.6 \mathrm{mg}, 24.4 \mu \mathrm{~mol}, 97 \%, 88 \% \mathrm{ee}$).

TLC: $\mathrm{R}_{\mathrm{f}}=0.60$ (Pentane:EtOAc, 1:1) [UV].
M.p.: 221-224 ${ }^{\circ} \mathrm{C}$.

IR (film) $v_{\max } / \mathrm{cm}^{-1} 3187,3057,2978,2926,1666,1594,1491,1484,1376,1362,1254,1063,1026,936$, 881, 859, 764, 684.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.39(b r \mathrm{~s}, 1 \mathrm{H}), 7.28(\mathrm{dd}, J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{td}, J=7.6,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.01(\mathrm{td}, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{dd}, J=7.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{ddd}, J=11.1,8.7$, $5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.99($ virt. q, $J \approx J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{dd}, J=12.8,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.96(\mathrm{dddd}, J=12.6,11.2,8.2$, $6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.85(\mathrm{dd}, J=12.8,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.76(\mathrm{dd}, J=12.6,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.3,135.5,129.0,125.7,124.9,123.7,115.3,86.8,70.5,46.7,43.8,35.9$, 30.5, 18.0.

GC-MS; EI (70 eV): $t_{\mathrm{R}}=14.85 \mathrm{Min}$. [STDHT]; $\mathrm{m} / z(\%)=229(26)[\mathrm{M}+], 214(45), 175(100), 146$ (17), 130 (11), 120 (13), 55 (25).

HRMS (ESI) $\mathrm{m} / \mathrm{z}:\left[\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{2}+\mathrm{H}\right]^{+}$calcd.: 230.1176; found: 230.1177.
Optical Rotation: $[\alpha]_{D}^{26}:-60.0\left(\mathrm{c}=2.0, \mathrm{CHCl}_{3}\right)[88 \% \mathrm{ee}]$.
Chiral HPLC: 88% ee [Daicel Chiralpak AD-H, $250 \times 4.6, i-\mathrm{PrOH} / n$-heptane $=10 / 90,1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}, t_{\mathrm{R}}$ $=12.77 \mathrm{~min}$ (minor), 13.60 min (major)].
(3aS,4aR,10bS)-3a,4a-dimethyl-3,3a,4,4a-tetrahydro-2H-furo[2',3':2,3]cyclobuta[1,2-c]quinolin-5(6H)-one (7c):

Non-catalyzed [2+2] Photocycloaddition

3-methyl-4-((3-methylbut-3-en-1-yl)oxy)quinolin-2(1H)-one (5c) ($24.3 \mathrm{mg}, 0.1 \mathrm{mmol}$) was dissolved in acetonitrile ($10 \mathrm{~mL}, c=10 \mathrm{mmol} / \mathrm{L}$) and reacted for 1 h , as described in general procedure 4 . Following flash column chromatography (silica, pentane/ethyl acetate $2: 1$), the racemic compound rac-7c was obtained as a colorless solid ($23.5 \mathrm{mg}, 97 \mu \mathrm{~mol}, 97 \%$).
TXT-Catalyzed [2+2] Photocycloaddition
3-methyl-4-((3-methylbut-3-en-1-yl)oxy)quinolin-2(1H)-one (5c) (24.3 mg, $0.1 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and thioxanthenone (TXT) ($4.2 \mathrm{mg}, 20 \mathrm{~mol} \%$) were dissolved in acetonitrile ($10 \mathrm{~mL}, c=10 \mathrm{mmol} / \mathrm{L}$) and reacted for 1 h , as described in general procedure 5. Following flash column chromatography (silica, pentane/ethyl acetate $2: 1$), the racemic compound rac-7c was obtained as a colorless solid ($24.3 \mathrm{mg}, 100 \mu \mathrm{~mol},>99 \%$). Enantioselective [2+2] Photocycloaddition

3-methyl-4-((3-methylbut-3-en-1-yl)oxy)quinolin-2(1 H)-one ($\mathbf{5 c}$) ($6.1 \mathrm{mg}, 25 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$.$) and \mathbf{6}(1.1 \mathrm{mg}$, $2.5 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%$) were dissolved in α, α, α-trifluorotoluene ($10 \mathrm{~mL}, c=2.5 \mathrm{mmol} / \mathrm{L}$) and reacted for 1 h at $-25^{\circ} \mathrm{C}$, as described in general procedure 6. Following flash column chromatography (silica, pentane/ethyl acetate $2: 1$), the title compound $\mathbf{7 c}$ was obtained as a colorless solid ($6.1 \mathrm{mg}, 25 \mu \mathrm{~mol},>99 \%, 99 \% e e$).

TLC: $\mathrm{R}_{\mathrm{f}}=0.60$ (Pentane:EtOAc, 1:1) [UV].
M.p.: $164-165{ }^{\circ} \mathrm{C}$.

IR (film) $v_{\max } / \mathrm{cm}^{-1} 3179,3059,2953,2923,2871,1662,1596,1490,1440,1377,1254,1060,1017,893$, 873, 859, 757, 733, 685, 660.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.11(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.24(\mathrm{dd}, J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{td}, J=7.6,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.02(\mathrm{td}, J=7.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{dd}, J=7.9,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{ddd}, J=9.0,8.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.13$ (ddd, $J=11.2,9.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.77(\mathrm{dd}, J=12.3,5.1 \mathrm{~Hz}$, $1 \mathrm{H}), 1.69(\mathrm{td}, J=11.8,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 0.98(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.5,136.1,129.1,126.8,123.7,122.4,115.2,88.0,69.3,48.7,44.6,42.5$, 38.6, 21.6, 18.2.

GC-MS; EI $(70 \mathrm{eV}): t_{\mathrm{R}}=14.74 \mathrm{Min} .[S T D H T] ; \mathrm{m} / z(\%)=243(33)[\mathrm{M}+], 228(7), 198(10), 175(100), 146$ (13), 120 (10), 69 (22).

HRMS (ESI) m/z: [$\left.\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{2}+\mathrm{H}\right]^{+}$calcd.: 244.1332; found: 244.1333.
Optical Rotation: $[\alpha]_{D}^{26}:-57.0\left(\mathrm{c}=2.0, \mathrm{CHCl}_{3}\right)[99 \% \mathrm{ee}]$.
Chiral HPLC: 99\% ee [Daicel Chiralpak OD-H, $250 \times 4.6, i-\mathrm{PrOH} / n$-heptane $=10 / 90,1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}, t_{\mathrm{R}}$ $=12.13 \mathrm{~min}$ (major), 14.74 min (minor)].
(3aR,4aR,10bS)-4,4,4a-trimethyl-3,3a,4,4a-tetrahydro-2H-furo[2',3':2,3]cyclobuta[1,2-c]quinolin-5(6H)-one (7d):

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{2}$ Exact Mass: 257.1416

Non-catalyzed [2+2] Photocycloaddition
3-methyl-4-((4-methylpent-3-en-1-yl)oxy)quinolin-2($1 H$)-one ($\mathbf{5 d}$) ($25.7 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ eq.) was dissolved in acetonitrile ($10 \mathrm{~mL}, c=10 \mathrm{mmol} / \mathrm{L}$) and reacted for 1 h , as described in general procedure 4 . Following flash column chromatography (silica, pentane/ethyl acetate $2: 1$), the racemic compound rac-7d was obtained as a colorless solid ($23.9 \mathrm{mg}, 93 \mu \mathrm{~mol}, 93 \%$).

TXT-Catalyzed [2+2] Photocycloaddition

3-methyl-4-((4-methylpent-3-en-1-yl)oxy)quinolin-2($1 H$)-one ($\mathbf{5 d}$) ($25.7 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and thioxanthenone (TXT) ($4.2 \mathrm{mg}, 20 \mathrm{~mol} \%$) were dissolved in acetonitrile ($10 \mathrm{~mL}, c=10 \mathrm{mmol} / \mathrm{L}$) and reacted for 1 h , as described in general procedure 5. Following flash column chromatography (silica, pentane/ethyl acetate $2: 1$), the racemic compound rac-7d was obtained as a colorless solid ($24.1 \mathrm{mg}, 94 \mu \mathrm{~mol}, 94 \%$).

Enantioselective [2+2] Photocycloaddition

3-methyl-4-((4-methylpent-3-en-1-yl)oxy)quinolin-2(1H)-one (5d) (6.4 mg, $25 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$.$) and \mathbf{6}$ (1.1 mg , $2.5 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%$) were dissolved in α, α, α-trifluorotoluene ($10 \mathrm{~mL}, c=2.5 \mathrm{mmol} / \mathrm{L}$) and reacted for 1 h at $-25^{\circ} \mathrm{C}$, as described in general procedure 6 . Following flash column chromatography (silica, pentane/ethyl acetate $2: 1$), the title compound $\mathbf{7 d}$ was obtained as a colorless solid ($6.3 \mathrm{mg}, 24.5 \mu \mathrm{~mol}, 98 \%, 96 \% e e$).

TLC: $\mathrm{R}_{\mathrm{f}}=0.72$ (Pentane:EtOAc, 1:2) [UV].
M.p.: $176-178{ }^{\circ} \mathrm{C}$.

IR (film) $v_{\max } / \mathrm{cm}^{-1} 3188,3058,2967,2932,2880,1663,1596,1490,1372,1253,1057,991,856,758$.
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.94(b r \mathrm{~s}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{td}, J=8.3,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.26($ virt. $\mathrm{q}, J \approx J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.58$ (dd, $J=7.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{q}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.9,135.2,128.8,126.3,126.0,123.7,115.2,84.1,73.0,58.5,51.9,38.7$, 29.2, 27.4, 19.4, 14.6.

GC-MS; EI (70 eV): $t_{\mathrm{R}}=15.79 \mathrm{Min} .[\mathrm{STDHT}] ; \mathrm{m} / z(\%)=257(5)[\mathrm{M}+], 242(100), 175(45), 97(35), 83$ (46), 55 (40).

HRMS (ESI) m / z : $\left[\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{2}+\mathrm{H}\right]+$ calcd.: 258.1489; found: 258.1489 .
Optical Rotation: $[\alpha]_{D}^{26}:+102.0\left(\mathrm{c}=2.0, \mathrm{CHCl}_{3}\right)[96 \% e e]$.
Chiral HPLC: 96% ee [Daicel Chiralpak AD-H, $250 \times 4.6, i-\mathrm{PrOH} / n$-heptane $=10 / 90,1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}, t_{\mathrm{R}}$ $=9.50 \mathrm{~min}($ minor $), 11.63 \mathrm{~min}$ (major)].
($6 \mathrm{a} R, 6 \mathrm{~b} R, 9 \mathrm{a} R, 12 \mathrm{aS}$)-6a-methyl-6b,7,8,9,10,11-hexahydro-5H-cyclopenta[3,4]furo[2',3':2,3]cyclobuta-[1,2-c]quinolin-6(6aH)-one (7e):

TXT-Catalyzed [2+2] Photocycloaddition
4-(2-(cyclopent-1-en-1-yl)ethoxy)-3-methylquinolin-2(1H)-one (5e) ($26.9 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) and$ thioxanthenone (TXT) ($4.2 \mathrm{mg}, 20 \mathrm{~mol} \%$) were dissolved in acetonitrile ($10 \mathrm{~mL}, c=10 \mathrm{mmol} / \mathrm{L}$) and reacted for 1 h , as described in general procedure 5. Following flash column chromatography (silica, pentane/ethyl acetate $4: 1$), the racemic compound rac-7e was obtained as a colorless solid ($26.9 \mathrm{mg}, 100 \mu \mathrm{~mol},>99 \%$).

Enantioselective [2+2] Photocycloaddition
4-(2-(cyclopent-1-en-1-yl)ethoxy)-3-methylquinolin-2(1 H)-one ($\mathbf{5 e}$) ($6.7 \mathrm{mg}, 25 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$.) and $\mathbf{6}$ (1.1 $\mathrm{mg}, 2.5 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%$) were dissolved in $\alpha, \alpha, \alpha-$ trifluorotoluene ($10 \mathrm{~mL}, c=2.5 \mathrm{mmol} / \mathrm{L}$) and reacted for 1 h at $-25{ }^{\circ} \mathrm{C}$, as described in general procedure 6. Following flash column chromatography (silica, pentane/ethyl acetate $4: 1$), the title compound 7 e was obtained as a colorless solid $(6.7 \mathrm{mg}, 25 \mu \mathrm{~mol},>99 \%$, 98% ee).

TLC: $\mathrm{R}_{\mathrm{f}}=0.40$ (Pentane:EtOAc, 2:1) [UV].
M.p.: 193-195 ${ }^{\circ} \mathrm{C}$.

IR (film) $v_{\max } / \mathrm{cm}^{-1} 3186,3052,2982,2922,2862,1666,1597,1494,1433,1375,1249,1164,1046,999$, 908, 873, 856, 752, 730, 692, 669.
${ }^{1} \mathbf{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.08(b r \mathrm{~s}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{dd}, J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.02$ $(\mathrm{td}, J=7.5,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{t}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{ddd}, J=11.5,9.0,5.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.36(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{dd}, J=12.9,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.03(\mathrm{td}, J=12.1,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.87(\mathrm{dd}, J=$ $12.7,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.59(\mathrm{ddd}, J=15.8,11.1,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.51-1.42(\mathrm{~m}, 5 \mathrm{H}), 1.30-1.23(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 174.7,136.1,129.1,128.0,123.5,121.7,115.2,86.0,69.6,61.8,53.2,47.3$, 36.5, 32.3, 29.6, 26.4, 20.0.

GC-MS; EI (70 eV): $t_{\mathrm{R}}=16.34 \mathrm{Min}$. [STDHT]; $\mathrm{m} / z(\%)=269(17)[\mathrm{M}+], 177(12), 176(100), 175(41)$, 146 (7), 130 (7), 120 (7), 95 (36), 79 (10), 67 (14).

HRMS (ESI) m/z: [$\left.\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{2}+\mathrm{H}\right]^{+}$calcd.: 270.1489; found: 270.1490 .
Optical Rotation: $[\alpha]_{D}^{26}:-15.0\left(\mathrm{c}=2.0, \mathrm{CHCl}_{3}\right)[98 \% \mathrm{ee}]$.
Chiral HPLC: 98% ee [Daicel Chiralpak AD-H, $250 \times 4.6, i-\mathrm{PrOH} / n$-heptane $=10 / 90,1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}, t_{\mathrm{R}}$ $=9.64 \mathrm{~min}$ (major), 10.60 min (minor) $]$.
($6 \mathrm{a} R, 6 \mathrm{~b} R, 10 \mathrm{a} R, 13 \mathrm{a} S$)-6a-methyl-6a,6b,7,8,9,10,11,12-octahydrobenzo[3,4]furo[2',3':2,3]cyclobuta-
[1,2-c]quinolin-6(5H)-one (7f):

TXT-Catalyzed [2+2] Photocycloaddition
4-(2-(cyclohex-1-en-1-yl)ethoxy)-3-methylquinolin-2(1H)-one (5f) ($28.3 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and thioxanthenone (TXT) ($4.2 \mathrm{mg}, 20 \mathrm{~mol} \%$) were dissolved in acetonitrile ($10 \mathrm{~mL}, c=10 \mathrm{mmol} / \mathrm{L}$) and reacted for 1 h , as described in general procedure 5. Following flash column chromatography (silica, pentane/ethyl acetate $4: 1$), the racemic compound rac-7f was obtained as a colorless solid ($25.5 \mathrm{mg}, 90 \mu \mathrm{~mol}, 90 \%$).

Enantioselective [2+2] Photocycloaddition

4-(2-(cyclohex-1-en-1-yl)ethoxy)-3-methylquinolin-2(1H)-one (5f) ($7.1 \mathrm{mg}, 25 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$.$) and \mathbf{6}$ (1.1 mg , $2.5 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%$) were dissolved in α, α, α-trifluorotoluene ($10 \mathrm{~mL}, c=2.5 \mathrm{mmol} / \mathrm{L}$) and reacted for 1 h at $-25^{\circ} \mathrm{C}$, as described in general procedure 6 . Following flash column chromatography (silica, pentane/ethyl acetate $4: 1$), the title compound $\mathbf{7 f}$ was obtained as a colorless solid ($6.6 \mathrm{mg}, 23.3 \mu \mathrm{~mol}, 93 \%, 96 \% \mathrm{ee}$).

TLC: $\mathrm{R}_{\mathrm{f}}=0.68$ (Pentane:EtOAc, 1:1) [UV].
M.p.: $164-165{ }^{\circ} \mathrm{C}$.

IR (film) $v_{\max } / \mathrm{cm}^{-1} 3186,3060,2940,2866,1660,1595,1489,1436,1348,1222,1119,1064,1046,993$, 940, 871, 852, 785, 758, 735, 694, 678, 664.
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.35(b r \mathrm{~s}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{t}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{ddd}, J=11.1,9.1,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{dd}$, $J=7.6,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.01(\mathrm{dd}, J=12.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.91(\mathrm{dt}, J=19.7,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.63-1.50(\mathrm{~m}, 3 \mathrm{H}), 1.41-$ $1.34(\mathrm{~m}, 6 \mathrm{H}), 1.15$ (ddd, $J=18.0,10.6,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.03(\mathrm{dt}, J=13.8,2.8 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.5,136.2,128.9,126.7,123.4,122.8,115.0,87.7,70.0,51.9,48.4,45.7$, 38.2, 27.8, 21.9, 20.9, 20.7, 19.4.

GC-MS; EI (70 eV): $t_{\mathrm{R}}=17.03 \mathrm{Min} .[\mathrm{STDHT}] ; \mathrm{m} / z(\%)=283(21)[\mathrm{M}+], 176(100), 175(64), 109(48), 67$ (41).

HRMS (ESI) $\mathrm{m} / \mathrm{z}:\left[\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{2}+\mathrm{H}\right]^{+}$calcd.: 284.1645; found: 284.1645.
Optical Rotation: $[\alpha]_{D}^{26}:-87.0\left(\mathrm{c}=2.0, \mathrm{CHCl}_{3}\right)[96 \% \mathrm{ee}]$.
Chiral HPLC: 96% ee [Daicel Chiralpak AD-H, $250 \times 4.6, i-\mathrm{PrOH} / n$-heptane $=10 / 90,1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}, t_{\mathrm{R}}$ $=8.28 \mathrm{~min}$ (major), 9.81 min (minor)].
(3aS,4aR,10bS)-9-methoxy-3a,4a-dimethyl-3,3a,4,4a-tetrahydro-2H-furo[2',3':2,3]cyclobuta[1,2c]quinolin-5(6 H)-one (7 g):

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{3}$ Exact Mass: 273.1365

TXT-Catalyzed [2+2] Photocycloaddition

6-methoxy-3-methyl-4-((3-methylbut-3-en-1-yl)oxy)quinolin-2(1H)-one (5g) (27.3 mg, $0.1 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and thioxanthenone (TXT) ($4.2 \mathrm{mg}, 20 \mathrm{~mol} \%$) were dissolved in acetonitrile ($10 \mathrm{~mL}, c=10 \mathrm{mmol} / \mathrm{L}$) and reacted for 1 h , as described in general procedure 5. Following flash column chromatography (silica, pentane/ethyl acetate $2: 1$), the racemic compound rac-7g was obtained as a colorless solid ($27.3 \mathrm{mg}, 100$ $\mu \mathrm{mol},>99 \%)$.

Enantioselective $[2+2]$ Photocycloaddition

6-methoxy-3-methyl-4-((3-methylbut-3-en-1-yl)oxy)quinolin-2(1H)-one (5g) ($6.8 \mathbf{m g}, 25 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$.$) and$ $6(1.1 \mathrm{mg}, 2.5 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%)$ were dissolved in α, α, α-trifluorotoluene ($10 \mathrm{~mL}, c=2.5 \mathrm{mmol} / \mathrm{L}$) and reacted for 1 h at $-25^{\circ} \mathrm{C}$, as described in general procedure 6 . Following flash column chromatography (silica, pentane/ethyl acetate $2: 1$), the title compound $7 \mathbf{g}$ was obtained as a colorless solid ($6.8 \mathrm{mg}, 25 \mu \mathrm{~mol},>99 \%$, 93% ee).
TLC: $\mathrm{R}_{\mathrm{f}}=0.66$ (Pentane:EtOAc, 1:1.5) [UV].
M.p.: 172-174 ${ }^{\circ} \mathrm{C}$.

IR (film) $v_{\max } / \mathrm{cm}^{-1} 3185,3046,2968,2926,2872,1660,1505,1458,1444,1415,1388,1378,1284,1226$, $1195,1174,1151,1109,1056,1041,995,930,869,853,811,798,696,666$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.03(b r \mathrm{~s}, 1 \mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.43(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H})$, $4.12(\mathrm{ddd}, J=11.4,9.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.77$ $(\mathrm{dd}, J=12.3,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.68(\mathrm{td}, J=11.8,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}), 0.99(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.9,156.2,129.8,123.7,116.2,114.5,111.9,88.1,69.4,55.8,48.7,44.3$, 42.4, 38.6, 21.5, 18.1.

GC-MS; EI (70 eV): $t_{\mathrm{R}}=16.21 \mathrm{Min}$. [STDHT]; $\mathrm{m} / z(\%)=273(86)[\mathrm{M}+], 228(11), 205(100), 204(31)$, 190 (33), 176 (12), 69 (20).

HRMS (ESI) $\mathrm{m} / \mathrm{z}:\left[\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{3}+\mathrm{H}\right]^{+}$calcd.: 274.1438; found: 274.1439.
Optical Rotation: $[\alpha]_{D}^{26}:-37.0\left(\mathrm{c}=2.0, \mathrm{CHCl}_{3}\right)[93 \% e e]$.
Chiral HPLC: 93% ee [Daicel Chiralpak AD-H, $250 \times 4.6, i-\mathrm{PrOH} / n$-heptane $=10 / 90,1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}, t_{\mathrm{R}}$ $=12.44 \mathrm{~min}$ (minor), 14.92 min (major)].
(3aS,4aR,10bS)-3a,4a,9-trimethyl-3,3a,4,4a-tetrahydro-2H-furo[2',3':2,3]cyclobuta[1,2-c]quinolin-5(6H)-one (7h):

TXT-Catalyzed [2+2] Photocycloaddition
3,6-dimethyl-4-((3-methylbut-3-en-1-yl)oxy)quinolin-2(1 H)-one ($\mathbf{5 h}$) ($25.7 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and thioxanthenone (TXT) $(4.2 \mathrm{mg}, 20 \mathrm{~mol} \%)$ were dissolved in acetonitrile $(10 \mathrm{~mL}, c=10 \mathrm{mmol} / \mathrm{L})$ and reacted
for 1 h , as described in general procedure 5. Following flash column chromatography (silica, pentane/ethyl acetate 3:1), the racemic compound rac-7h was obtained as a colorless solid ($25.4 \mathrm{mg}, 99 \mu \mathrm{~mol}, 99 \%$).

Enantioselective [2+2] Photocycloaddition

3,6-dimethyl-4-((3-methylbut-3-en-1-yl)oxy)quinolin-2(1 H)-one ($\mathbf{5 h}$) ($6.4 \mathrm{mg}, 25 \mu \mathrm{~mol}, 1.0$ eq.) and $\mathbf{6}$ (1.1 $\mathrm{mg}, 2.5 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%$) were dissolved in α, α, α-trifluorotoluene ($10 \mathrm{~mL}, c=2.5 \mathrm{mmol} / \mathrm{L}$) and reacted for 1 h at $-25^{\circ} \mathrm{C}$, as described in general procedure 6. Following flash column chromatography (silica, pentane/ethyl acetate 3:1), the title compound $\mathbf{7 h}$ was obtained as a colorless solid ($6.0 \mathrm{mg}, 23.3 \mu \mathrm{~mol}, 94 \%$, 98% ee).

TLC: $\mathrm{R}_{\mathrm{f}}=0.68$ (Pentane:EtOAc, 1:1.5) [UV].
M.p.: 176-178 ${ }^{\circ} \mathrm{C}$.

IR (film) $v_{\max } / \mathrm{cm}^{-1} 3177,3043,2960,2924,2863,1655,1602,1504,1442,1387,1375,1246,1151,1054$, 885, 870, 807, 725, 696, 667.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.97(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.04(\mathrm{~s}, 1 \mathrm{H}), 6.98(\mathrm{dd}, J=8.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.44(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{ddd}, J=11.1,9.0,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{~s}$, $3 \mathrm{H}), 2.05(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.77(\mathrm{dd}, J=12.2,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.69(\mathrm{td}, J=12.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H})$, 0.99 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.1,133.6,133.0,129.5,126.9,122.1,115.0,88.0,69.2,48.5,44.4,42.3$, 38.5, 21.4, 20.9, 18.0.

GC-MS; EI $(70 \mathrm{eV}): t_{\mathrm{R}}=15.31 \mathrm{Min}$ [STDHT]; $\mathrm{m} / z(\%)=257(50)[\mathrm{M}+], 242(8), 212(13), 189(100), 160$ (15), 69 (19).

HRMS (ESI) m/z: [$\left.\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{2}+\mathrm{H}\right]^{+}$calcd.: 258.1489; found: 258.1490 .
Optical Rotation: $[\alpha]_{D}^{26}:-49.0\left(\mathrm{c}=2.0, \mathrm{CHCl}_{3}\right)[98 \% \mathrm{ee}]$.
Chiral HPLC: 98% ee [Daicel Chiralpak AD-H, $250 \times 4.6, i-\mathrm{PrOH} / n$-heptane $=10 / 90,1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}, t_{\mathrm{R}}$ $=8.74 \mathrm{~min}$ (minor), 10.31 min (major)].
(3aS,4aR,10bS)-9-fluoro-3a,4a-dimethyl-3,3a,4,4a-tetrahydro-2H-furo[2',3':2,3]cyclobuta[1,2c]quinolin-5($6 H$)-one (7i):

TXT-Catalyzed [2+2] Photocycloaddition

6-fluoro-3-methyl-4-((3-methylbut-3-en-1-yl)oxy)quinolin-2(1H)-one (5i) ($26.1 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and thioxanthenone (TXT) ($4.2 \mathrm{mg}, 20 \mathrm{~mol} \%$) were dissolved in acetonitrile ($10 \mathrm{~mL}, c=10 \mathrm{mmol} / \mathrm{L}$) and reacted for 1 h , as described in general procedure 5. Following flash column chromatography (silica, pentane/ethyl acetate $3: 1$), the racemic compound rac- 7 i was obtained as a colorless solid ($25.8 \mathrm{mg}, 99 \mu \mathrm{~mol}, 99 \%$).

Enantioselective [2+2] Photocycloaddition

6-fluoro-3-methyl-4-((3-methylbut-3-en-1-yl)oxy)quinolin-2($1 H$)-one ($\mathbf{5 i}$) ($6.5 \mathrm{mg}, 25 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$.) and $\mathbf{6}$ $(1.1 \mathrm{mg}, 2.5 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%)$ were dissolved in α, α, α-trifluorotoluene ($10 \mathrm{~mL}, c=2.5 \mathrm{mmol} / \mathrm{L}$) and reacted for 1 h at $-25^{\circ} \mathrm{C}$, as described in general procedure 6 . Following flash column chromatography (silica, pentane/ethyl acetate 3:1), the title compound $7 \mathbf{i}$ was obtained as a colorless solid ($6.4 \mathrm{mg}, 24.5 \mu \mathrm{~mol}, 98 \%$, 94% ee).

TLC: $\mathrm{R}_{\mathrm{f}}=0.60$ (Pentane:EtOAc, 1:1) [UV].
M.p.: $163-164{ }^{\circ} \mathrm{C}$.

IR (film) $v_{\max } / \mathrm{cm}^{-1} 3193,3104,3066,2963,2929,2896,1659,1491,1446,1416,1376,1364,1251,1199$, $1168,1148,1053,1034,928,885,870,851,805,750,698,669$.
${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.64(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.96(\mathrm{dd}, J=9.1,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{td}, J=8.3,2.9 \mathrm{~Hz}, 1 \mathrm{H})$, $6.80(\mathrm{dd}, J=8.6,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{ddd}, J=11.4,9.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~d}, J=12.9$ $\mathrm{Hz}, 1 \mathrm{H}), 2.06(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.78(\mathrm{dd}, J=12.4,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.68(\mathrm{td}, J=11.8,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.39(\mathrm{~s}$, $3 \mathrm{H}), 1.01(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-119.3.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.5,159.3(\mathrm{~d}, J=241.9 \mathrm{~Hz}), 132.3(\mathrm{~d}, J=2.4 \mathrm{~Hz}), 124.4(\mathrm{~d}, J=6.7 \mathrm{~Hz})$, $116.6(\mathrm{~d}, J=7.9 \mathrm{~Hz}), 115.7(\mathrm{~d}, J=23.2 \mathrm{~Hz}), 113.4(\mathrm{~d}, J=23.8 \mathrm{~Hz}), 87.8,69.5,48.9,44.1,42.4,38.5,21.5$, 18.1.

GC-MS; EI $(70 \mathrm{eV}): t_{\mathrm{R}}=14.81 \mathrm{Min} .[\mathrm{STDHT}] ; \mathrm{m} / z(\%)=261(42)[\mathrm{M}+], 246(8), 216(9), 193(100), 164$ (14), 69 (38).

HRMS (ESI) m/z: [$\left.\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{FNO}_{2}+\mathrm{H}\right]^{+}$calcd.: 262.1238; found: 262.1238 .
Optical Rotation: $[\alpha]_{D}^{26}:-103.0\left(\mathrm{c}=2.0, \mathrm{CHCl}_{3}\right)[94 \% \mathrm{ee}]$.
Chiral HPLC: 94% ee [Daicel Chiralpak AD-H, $250 \times 4.6, i-\mathrm{PrOH} / n$-heptane $=10 / 90,1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}, t_{\mathrm{R}}$ $=10.3 \mathrm{~min}(($ major $), 11.7 \mathrm{~min}($ minor $)]$.
(3aS,4aR,10bS)-9-chloro-3a,4a-dimethyl-3,3a,4,4a-tetrahydro-2H-furo[2',3' $\mathbf{2}$,3]cyclobuta[1,2c]quinolin- $5(6 \mathrm{H})$-one (7 j):

TXT-Catalyzed [2+2] Photocycloaddition
6-chloro-3-methyl-4-((3-methylbut-3-en-1-yl)oxy)quinolin-2(1H)-one (5j) (27.8 mg, $0.1 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) and$ thioxanthenone (TXT) ($4.2 \mathrm{mg}, 20 \mathrm{~mol} \%$) were dissolved in acetonitrile ($10 \mathrm{~mL}, c=10 \mathrm{mmol} / \mathrm{L}$) and reacted for 1 h , as described in general procedure 5. Following flash column chromatography (silica, pentane/ethyl acetate $3: 1$), the racemic compound rac-7j was obtained as a colorless solid ($26.4 \mathrm{mg}, 95 \mu \mathrm{~mol}, 95 \%$).

Enantioselective [2+2] Photocycloaddition
6-chloro-3-methyl-4-((3-methylbut-3-en-1-yl)oxy)quinolin-2(1H)-one (5j) ($6.9 \mathrm{mg}, 25 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$.$) and \mathbf{6}$ $(1.1 \mathrm{mg}, 2.5 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%)$ were dissolved in α, α, α-trifluorotoluene ($10 \mathrm{~mL}, c=2.5 \mathrm{mmol} / \mathrm{L}$) and reacted
for 1 h at $-25^{\circ} \mathrm{C}$, as described in general procedure 6 . Following flash column chromatography (silica, pentane/ethyl acetate $3: 1$), the title compound $\mathbf{7 j}$ was obtained as a colorless solid ($6.9 \mathrm{mg}, 25 \mu \mathrm{~mol},>99 \%$, $93 \% e e$).
TLC: $\mathrm{R}_{\mathrm{f}}=0.57$ (Pentane:EtOAc, 1:1) [UV].
М.p.: $183-185^{\circ} \mathrm{C}$.

IR (film) $v_{\max } / \mathrm{cm}^{-1} 3183,3051,2961,2925,2889,1662,1588,1487,1445,1405,1374,1363,1252,1192$, 1091, 1054, 1029, 990, 877, 810, 720, 686, 668.
${ }^{1} \mathbf{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.28(b r \mathrm{~s}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{dd}, J=8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.75$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{ddd}, J=11.4,9.1,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H})$, $2.06(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.78(\mathrm{dd}, J=12.4,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.70(\mathrm{td}, J=12.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}), 1.01$ ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.7,134.8,129.0,128.7,126.7,124.2,116.7,87.7,69.5,49.0,44.3,42.4$, 38.5, 21.5, 18.1.

GC-MS; EI $(70 \mathrm{eV}): t_{\mathrm{R}}=16.02 \mathrm{Min} .[\mathrm{STDHT}] ; \mathrm{m} / z(\%)=279(13)[\mathrm{M}+2+], 277(37)[\mathrm{M}+], 211$ (38), 209 (100), 180 (11), 69 (44).

HRMS (ESI) m/z: $\left[\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{ClNO}_{2}+\mathrm{H}\right]^{+}$calcd.: 278.0942; found: 278.0942.
Optical Rotation: $[\alpha]_{D}^{26}:-25.0\left(\mathrm{c}=2.0, \mathrm{CHCl}_{3}\right)[93 \% \mathrm{ee}]$.
Chiral HPLC: 93% ee [Daicel Chiralpak AD-H, $250 \times 4.6, i-\mathrm{PrOH} / n$-heptane $=10 / 90,1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}, t_{\mathrm{R}}$ $=9.89 \mathrm{~min}$ (major), 10.98 min (minor)].

(3aS,4aR,10bS)-3a,4a-dimethyl-5-oxo-3,3a,4,4a,5,6-hexahydro-2H-furo[2',3':2,3]cyclobuta[1,2c]quinoline-9-carbonitrile (7k):

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$
Exact Mass: 268.1212

TXT-Catalyzed [2+2] Photocycloaddition

3-methyl-4-((3-methylbut-3-en-1-yl)oxy)-2-oxo-1,2-dihydroquinoline-6-carbonitrile (5k) (26.8 mg, 0.1 $\mathrm{mmol}, 1.0 \mathrm{eq}$.$) and thioxanthenone (TXT) (4.2 \mathrm{mg}, 20 \mathrm{~mol} \%)$ were dissolved in acetonitrile ($10 \mathrm{~mL}, c=10$ $\mathrm{mmol} / \mathrm{L}$) and reacted for 1 h , as described in general procedure 5. Following flash column chromatography (silica, pentane/ethyl acetate $2: 1$), the racemic compound rac-7k was obtained as a colorless solid (26.5 mg , $99 \mu \mathrm{~mol}, 99 \%)$.

Enantioselective [2+2] Photocycloaddition

3-methyl-4-((3-methylbut-3-en-1-yl)oxy)-2-oxo-1,2-dihydroquinoline-6-carbonitrile ($\mathbf{5 k}$) ($6.7 \mathrm{mg}, 25 \mu \mathrm{~mol}$, 1.0 eq.) and $6(1.1 \mathrm{mg}, 2.5 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%)$ were dissolved in α, α, α-trifluorotoluene ($17 \mathrm{~mL}, c=1.5 \mathrm{mmol} / \mathrm{L}$) and reacted for 1.5 h at $-25^{\circ} \mathrm{C}$, as modified in general procedure 6 . Following flash column chromatography (silica, pentane/ethyl acetate $2: 1$), the title compound $7 \mathbf{k}$ was obtained as a colorless solid ($6.3 \mathrm{mg}, 23.5 \mu \mathrm{~mol}$, $94 \%, 96 \% e e)$.

TLC: $\mathrm{R}_{\mathrm{f}}=0.54$ (Pentane:EtOAc, 1:1) [UV].
M.p.: 210-213 ${ }^{\circ} \mathrm{C}$.

IR (film) $v_{\max } / \mathrm{cm}^{-1} 3185,3054,2955,2888,2227,1665,1606,1596,1499,1443,1353,1307,1255,1195$, $1140,1056,1039,902,887,822,731,700$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.52(b r \mathrm{~s}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{dd}, J=8.2,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.89$ $(\mathrm{d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{ddd}, J=11.4,9.2,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.10(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.82(\mathrm{dd}, J=12.6,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.71(\mathrm{td}, J=11.9,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.01$ ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.8,139.9,133.2,131.3,123.9,119.0,115.9,107.0,87.2,69.7,49.3,44.6$, 42.4, 38.5, 21.5, 18.2.

GC-MS; EI $(70 \mathrm{eV}): t_{\mathrm{R}}=15.42 \mathrm{Min}$ [STDHT]; $\mathrm{m} / z(\%)=268(58)[\mathrm{M}+], 253(10), 223(9), 200(100), 171$ (18), 145 (13), 69 (97).

HRMS (ESI) m/z: $\left[\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{H}\right]^{+}$calcd.: 269.1285; found: 269.1285.
Optical Rotation: $[\alpha]_{D}^{26}:+30.5\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)[96 \% e e]$.
Chiral HPLC: 96% ee [Daicel Chiralpak AD-H, $250 \times 4.6, i-\mathrm{PrOH} / n$-heptane $=10 / 90,1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}, t_{\mathrm{R}}$ $=15.02 \mathrm{~min}$ (major), 16.73 min (minor)].
(3aS,4aR,10bS)-3a,4a,8-trimethyl-3,3a,4,4a-tetrahydro-2H-furo[2',3':2,3]cyclobuta[1,2-c]quinolin$5(6 H)$-one (7l):

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{2}$
Exact Mass: 257.1416

TXT-Catalyzed [2+2] Photocycloaddition
3,7-dimethyl-4-((3-methylbut-3-en-1-yl)oxy)quinolin-2(1 H)-one ($\mathbf{5 l}$) ($25.7 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) and$ thioxanthenone (TXT) ($4.2 \mathrm{mg}, 20 \mathrm{~mol} \%$) were dissolved in acetonitrile $(10 \mathrm{~mL}, c=10 \mathrm{mmol} / \mathrm{L})$ and reacted for 1 h , as described in general procedure 5. Following flash column chromatography (silica, pentane/ethyl acetate $3: 1$), the racemic compound rac- $7 \mathbf{l}$ was obtained as a colorless solid ($25.5 \mathrm{mg}, 99 \mu \mathrm{~mol}, 99 \%$).

Enantioselective [2+2] Photocycloaddition

3,7-dimethyl-4-((3-methylbut-3-en-1-yl)oxy)quinolin-2($1 H$)-one ($\mathbf{5 1}$) ($6.4 \mathrm{mg}, 25 \mu \mathrm{~mol}, 1.0$ eq.) and 6 (1.1 $\mathrm{mg}, 2.5 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%$) were dissolved in α, α, α-trifluorotoluene ($10 \mathrm{~mL}, c=2.5 \mathrm{mmol} / \mathrm{L}$) and reacted for 1 h at $-25^{\circ} \mathrm{C}$, as described in general procedure 6. Following flash column chromatography (silica, pentane/ethyl acetate 3:1), the title compound 71 was obtained as a colorless solid ($6.4 \mathrm{mg}, 25 \mu \mathrm{~mol},>99 \%$, 98% ee).
TLC: $\mathrm{R}_{\mathrm{f}}=0.61$ (Pentane:EtOAc, 1:1) [UV].
M.p.: $178-180^{\circ} \mathrm{C}$.

IR (film) $v_{\max } / \mathrm{cm}^{-1} 3194,3083,3043,2996,2963,2920,2878,1659,1630,1588,1487,1441,1396,1372$, $1363,1265,1194,1056,1020,903,873,853,831,801,667,654$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.27(b r \mathrm{~s}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~s}$, $1 \mathrm{H}), 4.42(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{ddd}, J=11.4,9.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H})$, $2.04(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.76(\mathrm{dd}, J=11.0,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.67(\mathrm{td}, J=11.8,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}), 0.97$ ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.7,139.1,136.0,126.7,124.5,119.5,115.8,88.0,69.2,48.5,44.6,42.4$, 38.6, 21.6, 21.3, 18.2.

GC-MS; EI (70 eV): $t_{\mathrm{R}}=15.42 \mathrm{Min}$ [STDHT]; $\mathrm{m} / z(\%)=257(46)[\mathrm{M}+], 242(9), 212(14), 189(100), 160$ (18), 134 (15), 69 (19).

HRMS (ESI) m/z: [$\left.\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{2}+\mathrm{H}\right]^{+}$calcd.: 258.1489; found: 258.1490 .
Optical Rotation: $[\alpha]_{D}^{26}:-66.0\left(\mathrm{c}=2.0, \mathrm{CHCl}_{3}\right)[98 \% \mathrm{ee}]$.
Chiral HPLC: 98% ee [Daicel Chiralpak AD-H, 250×4.6, $i-\mathrm{PrOH} / n$-heptane $=10 / 90,1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}, t_{\mathrm{R}}$ $=11.74 \mathrm{~min}$ ((major), 13.05 min (minor) $]$.
(3aS,4aR,10bS)-4a-ethyl-3a-methyl-3,3a,4,4a-tetrahydro-2H-furo[2',3':2,3]cyclobuta[1,2-c]quinolin$5(6 H)$-one (7 m):

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{2}$
Exact Mass: 257.1416

TXT-Catalyzed [2+2] Photocycloaddition

3-ethyl-4-((3-methylbut-3-en-1-yl)oxy)quinolin-2(1H)-one (5m) (25.7 mg, $0.1 \mathrm{mmol}, 1.0$ eq.) and thioxanthenone (TXT) ($4.2 \mathrm{mg}, 20 \mathrm{~mol} \%$) were dissolved in acetonitrile ($10 \mathrm{~mL}, c=10 \mathrm{mmol} / \mathrm{L}$) and reacted for 1 h , as described in general procedure 5. Following flash column chromatography (silica, pentane/ethyl acetate 3:1), the racemic compound rac-7m was obtained as a colorless solid ($25.5 \mathrm{mg}, 99 \mu \mathrm{~mol}, 99 \%$).

Enantioselective [2+2] Photocycloaddition
3-ethyl-4-((3-methylbut-3-en-1-yl)oxy)quinolin-2(1H)-one (5m) $(6.4 \mathrm{mg}, 25 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$.$) and 6(1.1 \mathrm{mg}$, $2.5 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%)$ were dissolved in α, α, α-trifluorotoluene $(10 \mathrm{~mL}, c=2.5 \mathrm{mmol} / \mathrm{L})$ and reacted for 1 h at $-25^{\circ} \mathrm{C}$, as described in general procedure 6 . Following flash column chromatography (silica, pentane/ethyl acetate $3: 1$), the title compound 7 m was obtained as a colorless solid ($6.2 \mathrm{mg}, 24.5 \mu \mathrm{~mol}, 97 \%, 93 \% e e$).
TLC: $\mathrm{R}_{\mathrm{f}}=0.72$ (Pentane:EtOAc, 1:1) [UV].
M.p.: $157-158^{\circ} \mathrm{C}$.

IR (film) $v_{\max } / \mathrm{cm}^{-1} 3216,3064,2964,2928,2864,1657,1613,1594,1486,1440,1372,1249,1061,1046$, 1019, 949, 905, 895, 769, 744, 729, 672.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.09(b r \mathrm{~s}, 1 \mathrm{H}), 7.23(\mathrm{dd}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{td}, J=7.7,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.01(\mathrm{td}, J=7.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{dd}, J=7.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.14$ (ddd, $J=11.2,8.9$, $5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.03(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.89(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.75(\mathrm{dd}, J=12.3$, $5.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.68(\mathrm{td}, J=12.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.97(\mathrm{~s}, 3 \mathrm{H}), 0.81(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta 176.8,136.0,128.9,126.1,123.6,115.2,87.6,69.7,49.3,48.3,41.4,38.5$, 26.9, 21.6, 9.8.

GC-MS; EI (70 eV): $t_{\mathrm{R}}=15.04 \mathrm{Min} .[S T D H T] ; \mathrm{m} / z(\%)=257(47)[\mathrm{M}+], 212(36), 189(100), 174(89)$, 161 (25), 146 (14), 69 (27).

HRMS (ESI) $\mathrm{m} / \mathrm{z}:\left[\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{2}+\mathrm{H}\right]^{+}$calcd.: 258.1489; found: 258.1489 .
Optical Rotation: $[\alpha]_{D}^{26}:-101.0\left(\mathrm{c}=2.0, \mathrm{CHCl}_{3}\right)[93 \% \mathrm{ee}]$.
Chiral HPLC: 93% ee [Daicel Chiralpak AD-H, $250 \times 4.6, i-\mathrm{PrOH} / n$-heptane $=10 / 90,1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}, t_{\mathrm{R}}$ $=8.7 \mathrm{~min}$ (minor), 9.8 min (major)].
(3aS,4aR,10bS)-8-fluoro-3a,4a-dimethyl-3,3a,4,4a-tetrahydro-2H-furo[2',3':2,3]cyclobuta[1,2c]quinolin-5($6 H$)-one (7 n):

TXT-Catalyzed [2+2] Photocycloaddition
7-fluoro-3-methyl-4-((3-methylbut-3-en-1-yl)oxy)quinolin-2(1H)-one (5n) ($26.1 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) and$ thioxanthenone (TXT) $(4.2 \mathrm{mg}, 20 \mathrm{~mol} \%)$ were dissolved in acetonitrile $(10 \mathrm{~mL}, c=10 \mathrm{mmol} / \mathrm{L})$ and reacted for 1 h , as described in general procedure 5. Following flash column chromatography (silica, pentane/ethyl acetate $4: 1$), the racemic compound rac- $7 \mathbf{n}$ was obtained as a colorless solid ($25.9 \mathrm{mg}, 99 \mu \mathrm{~mol}, 99 \%$).

Enantioselective [2+2] Photocycloaddition

7-fluoro-3-methyl-4-((3-methylbut-3-en-1-yl)oxy)quinolin-2(1H)-one (5n) ($6.5 \mathrm{mg}, 25 \mu \mathrm{~mol}, 1.0$ eq.) and 6 $(1.1 \mathrm{mg}, 2.5 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%)$ were dissolved in α, α, α-trifluorotoluene ($10 \mathrm{~mL}, c=2.5 \mathrm{mmol} / \mathrm{L}$) and reacted for 1 h at $-25^{\circ} \mathrm{C}$, as described in general procedure 6 . Following flash column chromatography (silica, pentane/ethyl acetate $4: 1$), the title compound $7 \mathbf{n}$ was obtained as a colorless solid ($6.5 \mathrm{mg}, 25 \mu \mathrm{~mol},>99 \%$, 99% ee).

TLC: $\mathrm{R}_{\mathrm{f}}=0.69$ (Pentane:EtOAc, 1:1) [UV].
M.p.: $167-168^{\circ} \mathrm{C}$.

IR (film) $v_{\max } / \mathrm{cm}^{-1} 3196,3095,3051,2962,2925,2887,1663,1607,1490,1443,1404,1375,1366,1271$, $1194,1152,1108,1054,1019,987,904,846,810,755,685,667$.
${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.17(b r \mathrm{~s}, 1 \mathrm{H}), 7.21(\mathrm{dd}, J=8.5,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{td}, J=8.5,2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.55(\mathrm{dd}, J=9.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{ddd}, J=11.3,9.1,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{~d}, J=12.9$ $\mathrm{Hz}, 1 \mathrm{H}), 2.06(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.78(\mathrm{dd}, J=12.4,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.68(\mathrm{td}, J=12.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.39(\mathrm{~s}$, 3 H), 0.99 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-112.7.
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.8,163.1(\mathrm{~d}, J=246.1 \mathrm{~Hz}), 137.5(\mathrm{~d}, J=10.7 \mathrm{~Hz}), 128.6(\mathrm{~d}, J=9.4 \mathrm{~Hz})$, $118.2(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 110.3(\mathrm{~d}, J=21.3 \mathrm{~Hz}), 102.6(\mathrm{~d}, J=25.7 \mathrm{~Hz}), 87.7,69.3,48.6,44.6,42.4,38.5,21.6$, 18.2.

GC-MS; EI (70 eV): $t_{\mathrm{R}}=14.66 \mathrm{Min} .[\mathrm{STDHT}] ; \mathrm{m} / z(\%)=261(5)[\mathrm{M}+], 246(7), 216(9), 193(100), 164$ (15), 138 (14), 69 (36).

HRMS (ESI) $\mathrm{m} / z:\left[\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{FNO}_{2}+\mathrm{H}\right]^{+}$calcd.: 262.1238; found: 262.1238 .
Optical Rotation: $[\alpha]_{D}^{26}:-57.0\left(\mathrm{c}=2.0, \mathrm{CHCl}_{3}\right)[99 \% \mathrm{ee}]$.
Chiral HPLC: 99\% ee [Daicel Chiralpak AD-H, 250×4.6, $i-\mathrm{PrOH} / n$-heptane $=10 / 90,1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}, t_{\mathrm{R}}$ $=10.65 \mathrm{~min}$ (minor), 11.95 min (major)].
(3aR,4aR,10bS)-3a,4,4-trifluoro-4a-methyl-3,3a,4,4a-tetrahydro-2H-furo[2',3':2,3]cyclobuta[1,2$c]$ quinolin-5(6H)-one (9):

Chemical Formula: $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{NO}_{2}$
Exact Mass: 283.0820

TXT-Catalyzed [2+2] Photocycloaddition

3-methyl-4-((3,4,4-trifluorobut-3-en-1-yl)oxy)quinolin-2(1H)-one (8) ($28.3 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) and$ thioxanthenone (TXT) $(4.2 \mathrm{mg}, 20 \mathrm{~mol} \%)$ were dissolved in acetonitrile $(10 \mathrm{~mL}, c=10 \mathrm{mmol} / \mathrm{L})$ and reacted for 1 h , as described in general procedure 5 . Following flash column chromatography (silica, pentane/ethyl acetate $3: 1$), the racemic compound rac-9 was obtained as a colorless solid ($27.4 \mathrm{mg}, 97 \mu \mathrm{~mol}, 97 \%$).

Enantioselective [2+2] Photocycloaddition

3-methyl-4-((3,4,4-trifluorobut-3-en-1-yl)oxy)quinolin-2($1 H$)-one ($\mathbf{8}$) ($7.1 \mathrm{mg}, 25 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$.$) and 6$ (1.1 $\mathrm{mg}, 2.5 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%$) were dissolved in α, α, α-trifluorotoluene ($10 \mathrm{~mL}, c=2.5 \mathrm{mmol} / \mathrm{L}$) and reacted for 2 h at $-65{ }^{\circ} \mathrm{C}$, as modified in general procedure 6. Following flash column chromatography (silica, pentane/ethyl acetate 3:1), the title compound 9 was obtained as a colorless solid ($5.1 \mathrm{mg}, 18.0 \mu \mathrm{~mol}, 72 \%$, $81 \% e e)$.
TLC: $\mathrm{R}_{\mathrm{f}}=0.32$ (Pentane:EtOAc, 4:1) [UV].
M.p.: $162-163{ }^{\circ} \mathrm{C}$.

IR (film) $v_{\max } / \mathrm{cm}^{-1} 3195,3120,3064,2988,2954,2921,2888,1669,1595,1495,1449,1438,1389,1381$, $1324,1301,1250,1234,1213,1155,1145,1127,1106,1083,1049,989,871,848,815,804,752,691$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.08(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.12(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=7.9$ $\mathrm{Hz}, 1 \mathrm{H}$), 4.56 (virt. td, $J \approx J=8.5 \mathrm{~Hz}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.32$ (virt. $\mathrm{td}, J \approx J=8.5 \mathrm{~Hz}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.80 (virt. $\mathrm{tt}, J \approx J=14.5 \mathrm{~Hz}, J \approx J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.54 (virt. $\mathrm{ttd}, J \approx J=14.5 \mathrm{~Hz}, J \approx J=7.5 \mathrm{~Hz}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}$), $1.55(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-109.8(\mathrm{dd}, J=208.8,9.1 \mathrm{~Hz}),-119.5(\mathrm{dd}, J=208.8,9.2 \mathrm{~Hz}),-168.4(\mathrm{t}, J=$ 9.1 Hz).
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.2,135.6,130.7,129.0,124.0,116.3,116.2(\mathrm{~d}, J=2.5 \mathrm{~Hz}$), 116.1 (ddd, $J=298.0,284.8,24.4 \mathrm{~Hz}), 106.6(\mathrm{ddd}, J=245.9,29.3,20.4 \mathrm{~Hz}), 83.8(\mathrm{ddd}, J=21.4,14.0,4.5 \mathrm{~Hz}), 70.3(\mathrm{~d}$, $J=4.2 \mathrm{~Hz}), 55.2(\mathrm{ddd}, J=23.5,20.5,6.8 \mathrm{~Hz}), 32.1(\mathrm{~d}, J=21.7 \mathrm{~Hz}), 12.4(\mathrm{~d}, J=4.6 \mathrm{~Hz})$.

GC-MS; EI (70 eV): $t_{\mathrm{R}}=14.82 \mathrm{Min}$. [STDHT]; $\mathrm{m} / z(\%)=283(22)[\mathrm{M}+], 269(16), 268(100), 175(24)$, 174 (25), 159 (9), 146 (10), 130 (11), 120 (8), 105 (10).

HRMS (ESI) $\mathrm{m} / \mathrm{z}:\left[\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{NO}_{2}+\mathrm{H}\right]^{+}$calcd.: 284.0893; found: 284.0893.
Optical Rotation: $[\alpha]_{D}^{26}:-50.0\left(\mathrm{c}=2.0, \mathrm{CHCl}_{3}\right)[81 \% \mathrm{ee}]$.
Chiral HPLC: 81% ee [Daicel Chiralpak AD-H, $250 \times 4.6, i-\mathrm{PrOH} / n$-heptane $=10 / 90,1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}, t_{\mathrm{R}}$ $=22.59 \mathrm{~min}$ (major), 25.65 min (minor)].
(3aR,4aR,10bS)-4a-methyl-4-methylene-3,3a,4,4a-tetrahydro-2H-furo[2',3':2,3]cyclobuta[1,2c]quinolin-5(6H)-one (11a):

TXT-Catalyzed [2+2] Photocycloaddition

4-((4攵-penta-3,4-dien-1-yl)oxy)-3-methylquinolin-2(1 H)-one ($\mathbf{1 0 a}$) ($24.1 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) and$ thioxanthenone (TXT) $(4.2 \mathrm{mg}, 20 \mathrm{~mol} \%)$ were dissolved in acetonitrile ($10 \mathrm{~mL}, c=10 \mathrm{mmol} / \mathrm{L}$) and reacted for 1.5 h , as described in general procedure 5. Following flash column chromatography (silica, pentane/ethyl acetate $4: 1$), the racemic compound $\mathrm{rac}-\mathbf{1 1 a}$ was obtained as a colorless solid ($21.7 \mathrm{mg}, 90 \mu \mathrm{~mol}, 90 \%$).

Enantioselective [2+2] Photocycloaddition
4-((4 λ^{5}-penta-3,4-dien-1-yl)oxy)-3-methylquinolin-2($1 H$)-one ($\mathbf{1 0 a}$) ($6.0 \mathrm{mg}, 25 \mu \mathrm{~mol}, 1.0$ eq.) and 6 (1.1 $\mathrm{mg}, 2.5 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%$) were dissolved in α, α, α-trifluorotoluene ($10 \mathrm{~mL}, c=2.5 \mathrm{mmol} / \mathrm{L}$) and reacted for 1.5 h at $-25^{\circ} \mathrm{C}$, as described in general procedure 6 . Following flash column chromatography (silica, pentane/ethyl acetate 4:1), the title compound 11a was obtained as a colorless solid ($5.1 \mathrm{mg}, 21.1 \mu \mathrm{~mol}, 85 \%$, $91 \% e e$).

TLC: $\mathrm{R}_{\mathrm{f}}=0.41$ (Pentane:EtOAc, 2:1) [UV].
M.p.: $181-183{ }^{\circ} \mathrm{C}$.

IR (film) $v_{\max } / \mathrm{cm}^{-1} 3189,3061,2975,2929,2892,1667,1594,1492,1478,1441,1368,1353,1253,1212$, $1104,1053,995,967,939,906,872,854,769,747,681$.
${ }^{1} \mathbf{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.90(b r \mathrm{~s}, 1 \mathrm{H}), 7.37(\mathrm{dd}, J=7.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{td}, J=7.7,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.04(\mathrm{td}, J=7.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{dd}, J=2.6,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{dd}, J=2.2,1.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.46(\mathrm{td}, J=8.0,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{ddd}, J=11.0,8.6,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.65-3.47(\mathrm{~m}, 1 \mathrm{H}), 2.07-1.95$ (m, 2H), 1.45 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.0,152.2,135.4,129.0,125.9,124.3,123.6,115.4,109.7,85.4,70.7$, 56.3, 55.3, 31.0, 16.5.

GC-MS; EI (70 eV): $t_{\mathrm{R}}=16.16 \mathrm{Min}$. [STDHT]; $\mathrm{m} / \mathrm{z}(\%)=241(27)[\mathrm{M}+], 240(39), 226(100), 212(20)$, 198 (15), 186(26), 175 (11), 120 (8), 77 (9).

HRMS (ESI) $\mathrm{m} / z:\left[\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{2}+\mathrm{H}\right]^{+}$calcd.: 242.1176; found: 242.1177 .
Optical Rotation: $[\alpha]_{D}^{26}:+105.0\left(\mathrm{c}=2.0, \mathrm{CHCl}_{3}\right)[91 \% \mathrm{ee}]$.

Chiral HPLC: 91% ee [Daicel Chiralpak AD-H, $250 \times 4.6, i-\mathrm{PrOH} / n$-heptane $=10 / 90,1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}, t_{\mathrm{R}}$ $=11.57 \mathrm{~min}$ (major), $20.73 \mathrm{~min}($ minor $)]$.
(3aR,4aR,10bS)-3a,4a-dimethyl-4-methylene-3,3a,4,4a-tetrahydro-2H-furo[2',3':2,3]cyclobuta[1,2c]quinolin- $5(6 H)$-one (11b):

TXT-Catalyzed [2+2] Photocycloaddition

3-methyl-4-((3-methyl-4 λ^{5}-penta-3,4-dien-1-yl)oxy)quinolin-2($1 H$)-one ($\mathbf{1 0 b}$) ($25.5 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and thioxanthenone (TXT) ($4.2 \mathrm{mg}, 20 \mathrm{~mol} \%$) were dissolved in acetonitrile ($10 \mathrm{~mL}, c=10 \mathrm{mmol} / \mathrm{L}$) and reacted for 1.5 h , as described in general procedure 5. Following flash column chromatography (silica, pentane/ethyl acetate 4:1), the racemic compound rac-11b was obtained as a colorless solid ($23.7 \mathrm{mg}, 93$ $\mu \mathrm{mol}, 93 \%)$.

Enantioselective [2+2] Photocycloaddition
3-methyl-4-((3-methyl-4 λ^{5}-penta-3,4-dien-1-yl)oxy)quinolin-2($1 H$)-one (10b) $(6.4 \mathrm{mg}, 25 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$.) and $6(1.1 \mathrm{mg}, 2.5 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%)$ were dissolved in α, α, α-trifluorotoluene $(10 \mathrm{~mL}, c=2.5 \mathrm{mmol} / \mathrm{L})$ and reacted for 1.5 h at $-25^{\circ} \mathrm{C}$, as described in general procedure 6 . Following flash column chromatography (silica, pentane/ethyl acetate 4:1), the title compound 11b was obtained as a colorless solid ($6.3 \mathrm{mg}, 24.8$ $\mu \mathrm{mol}, 98 \%, 96 \% \mathrm{ee})$.
TLC: $\mathrm{R}_{\mathrm{f}}=0.54$ (Pentane:EtOAc, 2:1) [UV].
M.p.: $174-175{ }^{\circ} \mathrm{C}$.

IR (film) $v_{\max } / \mathrm{cm}^{-1} 3196,3061,2976,2925,2873,1659,1594,1489,1435,1366,1354,1309,1245,1054$, 898, 851, 759, 675.
${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.00(b r \mathrm{~s}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{td}, J=7.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.05$ $(\mathrm{td}, J=7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{dd}, J=7.6,0.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.35(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{ddd}, J=11.6,8.8,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{dd}, J=12.2,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.78(\mathrm{td}, J=$ $11.9,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 1.00(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 173.3,157.7,135.9,129.1,126.9,123.6,121.8,115.4,108.1,87.5,69.4$, 60.8, 53.6, 38.9, 20.5, 16.8.

GC-MS; EI (70 eV): $t_{\mathrm{R}}=15.03 \mathrm{Min}$ [STDHT]; $\mathrm{m} / z(\%)=255(1)[\mathrm{M}+], 241(23), 240(100), 175(23), 146$ (6), 120 (6), 79 (10).

HRMS (ESI) $\mathrm{m} / \mathrm{z}:\left[\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{2}+\mathrm{H}\right]^{+}$calcd.: 256.1332; found: 256.1334 .
Optical Rotation: $[\alpha]_{D}^{26}:+95.0\left(\mathrm{c}=2.0, \mathrm{CHCl}_{3}\right)[96 \% \mathrm{ee}]$.
Chiral HPLC: 96% ee [Daicel Chiralpak AD-H, $250 \times 4.6, i-\mathrm{PrOH} / n$-heptane $=10 / 90,1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}, t_{\mathrm{R}}$ $=9.13 \mathrm{~min}($ major $), 12.56 \mathrm{~min}($ minor $)]$.
(3aR,4aR,10bS)-9-chloro-3a,4a-dimethyl-4-methylene-3,3a,4,4a-tetrahydro-2H-furo[2',3':2,3]-cyclobuta[1,2-c]quinolin-5(6H)-one (11c):

TXT-Catalyzed [2+2] Photocycloaddition
6-chloro-3-methyl-4-((3-methyl-4 λ^{5}-penta-3,4-dien-1-yl)oxy)quinolin-2($1 H$)-one (10c) ($29.0 \mathrm{mg}, 0.1 \mathrm{mmol}$, 1.0 eq.) and thioxanthenone (TXT) ($4.2 \mathrm{mg}, 20 \mathrm{~mol} \%$) were dissolved in acetonitrile ($20 \mathrm{~mL}, c=5 \mathrm{mmol} / \mathrm{L}$) and reacted for 1.5 h , as described in general procedure 5. Following flash column chromatography (silica, pentane/ethyl acetate 5:1), the racemic compound rac-11c was obtained as a colorless solid ($28.0 \mathrm{mg}, 97$ $\mu \mathrm{mol}, 97 \%)$.
Enantioselective $[2+2]$ Photocycloaddition
6-chloro-3-methyl-4-((3-methyl-4 λ^{5}-penta-3,4-dien-1-yl)oxy)quinolin-2($1 H$)-one ($\mathbf{1 0 c}$) ($7.2 \mathrm{mg}, 25 \mu \mathrm{~mol}$, 1.0 eq.) and $6(1.1 \mathrm{mg}, 2.5 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%)$ were dissolved in α, α, α-trifluorotoluene ($16.7 \mathrm{~mL}, c=1.5 \mathrm{mmol} / \mathrm{L}$) and reacted for 2.5 h at $-25^{\circ} \mathrm{C}$, as described in general procedure 6 . Following flash column chromatography (silica, pentane/ethyl acetate 5:1), the title compound 11c was obtained as a colorless solid ($7.0 \mathrm{mg}, 24.2$ $\mu \mathrm{mol}, 97 \%, 91 \% e e)$.
TLC: $\mathrm{R}_{\mathrm{f}}=0.70$ (Pentane:EtOAc, 2:1) [UV].
M.p.: $172-173{ }^{\circ} \mathrm{C}$.

IR (film) $\cup_{\max } / \mathrm{cm}^{-1} 3193,3068,2970,2881,1675,1592,1491,1410,1367,1356,1250,1094,1056,898$, 846, 688.
${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.50(b r \mathrm{~s}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{dd}, J=8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.80$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{ddd}, J$ $=11.6,8.8,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{dd}, J=12.3,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.78(\mathrm{dt}, J=12.0,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.02$ ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 173.5,157.2,134.6,129.1,128.8,126.8,123.6,116.8,108.5,87.2,69.6$, 61.1, 53.3, 38.8, 20.4, 16.7.

GC-MS; EI (70 eV): $t_{\mathrm{R}}=16.32 \mathrm{Min}$ [STDHT]; $\mathrm{m} / \mathrm{z}(\%)=289(2)[\mathrm{M}+], 277$ (8), 276 (45), 275 (23), 274 (100), 209 (19), 79 (13).

HRMS (ESI) m/z: $\left[\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{ClNO}_{2}+\mathrm{H}\right]^{+}$calcd.: 290.0942; found: 290.0943.
Optical Rotation: $[\alpha]_{D}^{24}:+134.5\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)[91 \% \mathrm{ee}]$.
Chiral HPLC: 91% ee [Daicel Chiralpak AD-H, $250 \times 4.6, i-\mathrm{PrOH} / n$-heptane $=10 / 90,1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}, t_{\mathrm{R}}$ $=8.64 \mathrm{~min}($ major $), 11.15 \mathrm{~min}($ minor $)]$.
(3aR,4aR,10bS)-4a-ethyl-3a-methyl-4-methylene-3,3a,4,4a-tetrahydro-2H-furo[2',3':2,3]cyclobuta [1,2-c]quinolin-5(6H)-one (11d):

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{2}$

Exact Mass: 269.1416

TXT-Catalyzed [2+2] Photocycloaddition
3-ethyl-4-((3-methyl-4 λ^{5}-penta-3,4-dien-1-yl)oxy)quinolin-2(1 H)-one ($\mathbf{1 0 d}$) ($26.9 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ eq.) and thioxanthenone (TXT) $(4.2 \mathrm{mg}, 20 \mathrm{~mol} \%)$ were dissolved in acetonitrile ($10 \mathrm{~mL}, c=10 \mathrm{mmol} / \mathrm{L}$) and reacted for 1.5 h , as described in general procedure 5. Following flash column chromatography (silica, pentane/ethyl acetate 6:1), the racemic compound rac-11d was obtained as a colorless solid ($25.0 \mathrm{mg}, 93$ $\mu \mathrm{mol}, 93 \%)$.

Enantioselective [2+2] Photocycloaddition

3-ethyl-4-((3-methyl-4 λ^{5}-penta-3,4-dien-1-yl)oxy)quinolin-2(1 H)-one (10d) ($6.7 \mathrm{mg}, 25 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$.) and $6(1.1 \mathrm{mg}, 2.5 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%)$ were dissolved in α, α, α-trifluorotoluene ($10 \mathrm{~mL}, c=2.5 \mathrm{mmol} / \mathrm{L}$) and reacted for 2 h at $-25^{\circ} \mathrm{C}$, as described in general procedure 6 . Following flash column chromatography (silica, pentane/ethyl acetate 6:1), the title compound 11d was obtained as a colorless solid ($6.0 \mathrm{mg}, 22.3 \mu \mathrm{~mol}, 90 \%$, $92 \% e e)$.
TLC: $\mathrm{R}_{\mathrm{f}}=0.59$ (Pentane:EtOAc, 2:1) [UV].
M.p.: $166-167^{\circ} \mathrm{C}$.

IR (film) $v_{\text {max }} / \mathrm{cm}^{-1} 3190,3066,2974,2934,2877,1659,1595,1490,1435,1352,1310,1193,1057,1046$, 1013, 893, 871, 845, 757, 671.
${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.93(b r \mathrm{~s}, 1 \mathrm{H}), 7.32(\mathrm{dd}, J=7.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{td}, J=7.7,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.04(\mathrm{td}, J=7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{dd}, J=7.9,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~d}, J=0.9 \mathrm{~Hz}$, $1 \mathrm{H}), 4.37(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.09$ (ddd, $J=11.6,8.7,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{dq}, J=14.8,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{dd}$, $J=12.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{dq}, J=14.5,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.77(\mathrm{td}, J=11.8,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.99(\mathrm{~s}, 3 \mathrm{H}), 0.82(\mathrm{t}, J$ $=7.4 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.6,157.0,135.7,128.9,126.3$, 123.6, 123.0, 115.4, 108.1, 87.3, 69.9, 60.4, 58.4, 38.6, 25.5, 20.6, 9.7.

GC-MS; EI (70 eV): $t_{\mathrm{R}}=15.23 \mathrm{Min}$ [STDHT]; m/z (\%) = 269 (1) [M+], 241 (24), 240 (100), 189 (7), 174 (18), 146 (5), 79 (6).

HRMS (ESI) m/z: $\left[\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}_{2}+\mathrm{H}\right]^{+}$calcd.: 270.1489; found: 270.1489.
Optical Rotation: $[\alpha]_{D}^{24}:+88.5\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)[92 \% \mathrm{ee}]$.
Chiral HPLC: 92% ee [Daicel Chiralpak AD-H, $250 \times 4.6, i-\mathrm{PrOH} / n$-heptane $=10 / 90,1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}, t_{\mathrm{R}}$ $=7.57 \mathrm{~min}$ (major), 10.34 min (minor)].

Chemical Formula: $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{CINO}_{2}$ Exact Mass: 261.0557

TXT-Catalyzed [2+2] Photocycloaddition
4-((3 λ^{5}-buta-2,3-dien-1-yl)oxy)-6-chloro-3-methylquinolin-2(1H)-one (12a) ($26.2 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and thioxanthenone (TXT) ($4.2 \mathrm{mg}, 20 \mathrm{~mol} \%$) were dissolved in acetonitrile ($20 \mathrm{~mL}, c=5 \mathrm{mmol} / \mathrm{L}$) and reacted for 1 h , as described in general procedure 5. Following flash column chromatography (silica, pentane/ethyl acetate $3.5: 1$), the racemic compound rac-13a was obtained as a colorless solid ($22.0 \mathrm{mg}, 84$ $\mu \mathrm{mol}, 84 \%)$.

Enantioselective [2+2] Photocycloaddition
4-((3 λ^{5}-buta-2,3-dien-1-yl)oxy)-6-chloro-3-methylquinolin-2($1 H$)-one (12a) $(6.5 \mathrm{mg}, 25 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$.) and $6(1.1 \mathrm{mg}, 2.5 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%)$ were dissolved in $\alpha, \alpha, \alpha-$ trifluorotoluene ($16.7 \mathrm{~mL}, c=1.5 \mathrm{mmol} / \mathrm{L}$) and reacted for 1.5 h at $-25^{\circ} \mathrm{C}$, as modified in general procedure 6 . Following flash column chromatography (silica, pentane/ethyl acetate $3.5: 1$), the title compound 13a was obtained as a colorless solid ($5.5 \mathrm{mg}, 21.0$ $\mu \mathrm{mol}, 85 \%, 88 \%$ ee).
TLC: $\mathrm{R}_{\mathrm{f}}=0.36$ (Pentane:EtOAc, 2:1) [UV].
M.p.: 210-212 ${ }^{\circ} \mathrm{C}$.

IR (film) $v_{\max } / \mathrm{cm}^{-1} 3204,3086,2990,2940,2863,1670,1589,1488,1390,1368,1248,1140,1071,1029$, 1005, 959, 834, 779, 757, 679.
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.98(b r \mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{dd}, J=8.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.68$ $(\mathrm{d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{tt}, J=2.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{ddt}, J=13.0,3.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{ddd}, J=12.5$, $2.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{ddt}, J=12.5,2.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, DMSO-d6) $\delta 168.7,142.3,135.3,129.4,128.5,126.1,124.2,117.6,117.3,92.4$, 80.4, 48.5, 40.0, 13.3.

GC-MS; EI (70 eV): $t_{\mathrm{R}}=15.79 \mathrm{Min}$. [STDHT]; $\mathrm{m} / \mathrm{z}(\%)=263(2)[\mathrm{M}+2+], 262(4)[\mathrm{M}+1+], 261(6)[\mathrm{M}+]$, 260 (11), 248 (34), 246 (100), 234 (8), 232 (21), 218 (10), 126 (11), 79 (21).
HRMS (ESI) m/z: $\left[\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{ClNO}_{2}+\mathrm{H}\right]^{+}$calcd.: 262.0629; found: 262.0630 .
Optical Rotation: $[\alpha]_{D}^{24}:-142.0\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)[88 \% \mathrm{ee}]$.
Chiral HPLC: 88% ee [Daicel Chiralpak AS-H, $250 \times 4.6, i-\operatorname{PrOH} / n$-heptane $=30 / 70,1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$, $t_{\mathrm{R}}=9.03 \mathrm{~min}($ minor $), 12.59 \mathrm{~min}$ (major) $]$.

5-methyl-4,7-dihydrobenzo[b]furo[2,3-d] azocin-6(5H)-one (rac-14b):

4-((3 λ^{5}-buta-2,3-dien-1-yl)oxy)-3-methylquinolin-2($1 H$)-one ($\mathbf{1 2 b}$) ($22.7 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and thioxanthenone (TXT) ($4.2 \mathrm{mg}, 20 \mathrm{~mol} \%$) were dissolved in acetonitrile ($10 \mathrm{~mL}, c=10 \mathrm{mmol} / \mathrm{L}$) and reacted at $0^{\circ} \mathrm{C}$ for 1 h , as described in general procedure 5, then with traces of acid such as $\mathrm{H}_{2} \mathrm{SO}_{4}(0.5 \mathrm{~mol} \%)$ for 0.5 h . Following flash column chromatography (silica, pentane/ethyl acetate $3.5: 1$), the racemic compound rac-14b was obtained as a colorless solid ($21.7 \mathrm{mg}, 96 \mu \mathrm{~mol}, 96 \%$).

TLC: $\mathrm{R}_{\mathrm{f}}=0.35$ (Pentane:EtOAc, 2:1) [UV].
M.p.: 175-176 ${ }^{\circ} \mathrm{C}$.

IR (film) $\cup_{\max } / \mathrm{cm}^{-1} 3184,3058,2939,2903,1659,1576,1491,1419,1400,1290,1156,1056,1047,892$, 809, 757, 714, 675.
${ }^{1} \mathbf{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 8.34(b r \mathrm{~s}, 1 \mathrm{H}), 7.62-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.31(\mathrm{~m}$, $2 \mathrm{H}), 7.21-7.14(\mathrm{~m}, 1 \mathrm{H}), 6.27(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{dqd}, J=12.0,6.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{dd}, J=16.6$, $12.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{dd}, J=16.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.15(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, CDCl_{3}) $\delta 178.0,145.4,142.7,134.1,130.5,129.4,129.0,126.9,125.6,121.0,113.3$, 33.0, 32.4, 17.4.

GC-MS; EI (70 eV): $t_{\mathrm{R}}=15.05 \mathrm{Min} .[\mathrm{STDHT}] ; \mathrm{m} / z(\%)=228(16)[\mathrm{M}+1+], 227(100)[\mathrm{M}+], 210(20)$, 199 (55), 198 (39), 184 (86), 170 (90), 115 (30).

HRMS (ESI) $\mathrm{m} / z:\left[\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{2}+\mathrm{H}\right]^{+}$calcd.: 228.1019; found: 228.1020.
(4aR,10bS)-4,4,4a-trimethyl-4,4a-dihydro- $2 H$-furo[$\left.2^{\prime}, 3^{\prime}: 2,3\right]$ cyclobuta[1,2-c]quinolin-5(6H)-one (16) and (2S,3'S)-3'-methyl-3-(prop-1-en-2-yl)-1'H,5H-spiro[furan-2,4'-quinolin]-2'(3'H)-one (18):

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{2}$ Exact Mass: 255.1259

TXT-Catalyzed [2+2] Photocycloaddition
3-methyl-4-((4-methyl-3 ${ }^{5}$-penta-2,3-dien-1-yl)oxy)quinolin-2($1 H$)-one ($\mathbf{1 5) ~ (~} 25.5 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and thioxanthenone (TXT) ($4.2 \mathrm{mg}, 20 \mathrm{~mol} \%$) were dissolved in acetonitrile ($10 \mathrm{~mL}, c=10 \mathrm{mmol} / \mathrm{L}$) and reacted for 1 h , as described in general procedure 5. Following flash column chromatography (silica, pentane/diethylether 1:1), the racemic compound rac-16 was obtained as a colorless solid ($11.2 \mathrm{mg}, 44 \mu \mathrm{~mol}$, 44%), along with $\mathrm{rac}-18$ as a colorless solid ($14.0 \mathrm{mg}, 55 \mu \mathrm{~mol}, 55 \%$).

Enantioselective [2+2] Photocycloaddition

3-methyl-4-((4-methyl-3 λ^{5}-penta-2,3-dien-1-yl)oxy)quinolin-2($1 H$)-one (15) ($\left.6.4 \mathrm{mg}, 25 \mu \mathrm{~mol}, 1.0 \mathrm{eq}.\right)$ and $6(1.1 \mathrm{mg}, 2.5 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%)$ were dissolved in α, α, α-trifluorotoluene ($10 \mathrm{~mL}, c=2.5 \mathrm{mmol} / \mathrm{L}$) and reacted for 1 h at $-25{ }^{\circ} \mathrm{C}$, as modified in general procedure 6 . Following flash column chromatography (silica, pentane/diethylether 1:1), the title compound 16 was obtained as a colorless solid ($3.2 \mathrm{mg}, 12.5 \mu \mathrm{~mol}, 50 \%$, $98 \% \mathrm{ee}$), along with title compound 18 as a colorless solid ($3.0 \mathrm{mg}, 11.8 \mu \mathrm{~mol}, 47 \%, 92 \% e e$).

TLC: $\mathrm{R}_{\mathrm{f}}=0.48$ (Pentane:Et $\mathrm{t}_{2} \mathrm{O}, 1: 3$) [UV].
M.p.: $175-176{ }^{\circ} \mathrm{C}$.

IR (film) $v_{\max } / \mathrm{cm}^{-1} 3209,3063,2925,2855,1665,1597,1491,1375,1237,1028,1008,754$.
${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.50(b r \mathrm{~s}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{td}, J=7.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.06$ $(\mathrm{td}, J=7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{dd}, J=8.0,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{dd}, J=3.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{dd}, J=12.5$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{dd}, J=12.5,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 170.9,152.0,136.1,129.6,124.9,123.8,117.3,115.5,91.9,79.5,54.7$, 52.6, 23.5, 21.4, 12.3.

GC-MS; EI (70 eV): $t_{\mathrm{R}}=15.56 \mathrm{Min} .[\mathrm{STDHT}] ; \mathrm{m} / z(\%)=255(1)[\mathrm{M}+], 241(17), 240(100), 212(11)$, 120 (13), 79 (8).

HRMS (ESI) $\mathrm{m} / \mathrm{z}:\left[\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{2}+\mathrm{H}\right]^{+}$calcd.: 256.1332; found: 256.1333.
Optical Rotation: $[\alpha]_{D}^{24}:-153.5\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$ [98\% ee].
Chiral HPLC: 98% ee [Daicel Chiralpak AD-H, $250 \times 4.6, i-\mathrm{PrOH} / n$-heptane $=10 / 90,1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$, $t_{\mathrm{R}}=8.87 \mathrm{~min}($ major $), 15.18 \mathrm{~min}($ minor $\left.)\right]$.

TLC: $\mathrm{R}_{\mathrm{f}}=0.40$ (Pentane:Et $\mathrm{E}_{2} \mathrm{O}, 1: 3$) [UV].
M.p.: $160-161{ }^{\circ} \mathrm{C}$.

IR (film) $v_{\max } / \mathrm{cm}^{-1} 3237,2924,2852,1665,1595,1488,1458,1366,1260,1241,1059,1015,923,890$, 757, 732, 654.
${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.41(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.24(\mathrm{td}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.96$ $(\mathrm{td}, J=7.6,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{~s}, 1 \mathrm{H}), 5.03(\mathrm{~s}, 1 \mathrm{H}), 4.693(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.686(\mathrm{~s}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.2,139.7,136.6,135.4,129.6,128.9,127.6,125.9,122.9,116.7,116.0$, 91.7, 74.3, 43.0, 22.6, 8.1.

GC-MS; EI (70 eV): $t_{\mathrm{R}}=16.05 \mathrm{Min}$. [STDHT]; $\mathrm{m} / z(\%)=255(32)[\mathrm{M}+], 240(30), 212(24), 198(16)$, 185 (93), 184 (100), 130 (13), 79 (26).
HRMS (ESI) m/z: [$\left.\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{2}+\mathrm{H}\right]^{+}$calcd.: 256.1332; found: 256.1334.
Optical Rotation: $[\alpha]_{D}^{24}:+139.5\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)[92 \% e e]$.
Chiral HPLC: 92% ee [Daicel Chiralpak AD-H, $250 \times 4.6, i-\mathrm{PrOH} / n$-heptane $=30 / 70,1 \mathrm{~mL} / \mathrm{min}, 210 \mathrm{~nm}$, $t_{\mathrm{R}}=10.51 \mathrm{~min}$ (minor), 23.82 min (major)].

7. X-ray Crystallographic Detail

Data were collected on a single crystal x-ray diffractometer equipped with a CMOS detector (Bruker APEX III, к-CMOS), an IMS micro source with MoK_{α} radiation ($\lambda=0.71073 \AA$) and a Helios optic using the APEX3 software package. ${ }^{7}$ Measurements were performed on single crystals coated with perfluorinated ether. The crystals were fixed on top of a kapton micro sampler and frozen under a stream of cold nitrogen. A matrix scan was used to determine the initial lattice parameters. Reflections were corrected for Lorentz and polarisation effects, scan speed, and background using SAINT. ${ }^{8}$ Absorption correction, including odd and even ordered spherical harmonics was performed using SADABS. ${ }^{8}$ Space group assignments were based upon systematic absences, E statistics, and successful refinement of the structures. The structures were solved using SHELXT with the aid of successive difference Fourier maps, and were refined against all data using SHELXL in conjunction with SHELXLE. ${ }^{9-11}$ Hydrogen atoms (except on heteroatoms) were calculated in ideal positions as follows: Methyl hydrogen atoms were refined as part of rigid rotating groups, with a $\mathrm{C}-\mathrm{H}$ distance of $0.98 \AA$ and $\mathrm{U}_{\text {iso(H) }}=1.5 \cdot \mathrm{U}_{\text {eq(C) }}$. Other H atoms were placed in calculated positions and refined using a riding model, with methylene and aromatic C-H distances of $0.99 \AA$ and $0.95 \AA$, respectively, other C-H distances of $1.00 \AA$, all with $\mathrm{U}_{\text {iso(H) }}=$ $1.2 \cdot \mathrm{U}_{\mathrm{eq}(\mathrm{C})}$. Non-hydrogen atoms were refined with anisotropic displacement parameters. Full-matrix least-squares refinements were carried out by minimizing $\Sigma w\left(\mathrm{~F}_{0}{ }^{2}-\mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2}$ with the SHELXL weighting scheme. ${ }^{9}$ Neutral atom scattering factors for all atoms and anomalous dispersion corrections for the nonhydrogen atoms were taken from International Tables for Crystallography. ${ }^{12}$ Images of the crystal structures were generated with Mercury (main article) ${ }^{13}$ and PLATON (SI). ${ }^{14}$

Stereochemistry determination 7j via X-ray crystallographic analysis

Product $\mathbf{7 j}$ was crystallized as a colorless crystal via slow vaporization of EtOH solution at room temperature, and its absolute configuration was determined by x-ray structure analysis. The CCDC number was 1988524. The supplementary crystallographic data that could be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif

Compound 7j (CCDC 1988524)

Diffractometer operator C. Jandl scanspeed 2-10 s per frame
dx 37 mm
3405 frames measured in 13 data sets
phi-scans with delta_phi $=0.5$
omega-scans with delta_omega $=0.5$
shutterless mode

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{ClNO}_{2} \cdot \mathrm{H}_{2} \underline{\mathrm{O}}$

$M_{r}=295.75$
Monoclinic, $\underline{P 2_{1}}$
Hall symbol: $\underline{\text { P 2yb }}$
$a=\underline{10.1162(9)} \AA$
$b=\underline{13.1872(13)} \AA$
$c=\underline{11.1569(12)} \AA$
$\beta=\underline{94.081(4)^{\circ}}$
$V=\underline{1484.6(3)} \AA^{3}$
$Z=\underline{4}$
$F(000)=\underline{624}$
$F(000)=\underline{624}$
$D_{\mathrm{x}}=\underline{1.323} \mathrm{Mg} \mathrm{m}^{-3}$
Melting point: 458 K
Mo $K \alpha$ radiation, $\lambda=\underline{0.71073} \AA$
Cell parameters from $\underline{9992}$ reflections
$\theta=\underline{2.5}-\underline{27.1^{\circ}}$
$\mu=\underline{0.26} \mathrm{~mm}^{-1}$
$T=\underline{100} \mathrm{~K}$
Fragment, colourless
$\underline{0.46} \times \underline{0.23} \times \underline{0.17} \mathrm{~mm}$

Data collection

$\underline{\text { Bruker Photon CMOS }}$	$\underline{6269}$ independent reflections
diffractometer	$\underline{6217}$ reflections with $\underline{I>2 \sigma(I)}$
Radiation source: $\underline{\text { IMS microsource }}$	
$\underline{\text { Helios optic monochromator }}$	$R_{\text {int }}=\underline{0.030}$
Detector resolution: $\underline{16}$ pixels mm^{-1}	$\theta_{\max }=\underline{26.7^{\circ}}, \theta_{\min }=\underline{2.0^{\circ}}$
$\underline{\text { phi- and } \omega-\text { rotation scans }}$	$h=\underline{-12} \underline{12}$
Absorption correction: $\underline{\text { multi-scan }}$ $\underline{S A D A B S} 2016 / 2$, Bruker	$k=\underline{-16} \underline{16}$
$T_{\min }=\underline{0.730}, T_{\max }=\underline{0.746}$	$l=\underline{-14} \underline{14}$

$\underline{90432}$ measured reflections

Refinement

Refinement on $\underline{F^{2}}$
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=\underline{0.022}$
$w R\left(F^{2}\right)=\underline{0.058}$
$S=\underline{1.06}$
6269 reflections
389 parameters
1 restraint
$\underline{0}$ constraints
Primary atom site location: intrinsic phasing
Secondary atom site location: difference Fourier map

Hydrogen site location: mixed
H atoms treated by a mixture of independent and constrained refinement
$\mathrm{W}=1 /\left[\Sigma^{2}\left(F \mathrm{O}^{2}\right)+(0.0321 P)^{2}+0.3053 P\right]$
WHERE $P=\left(F \mathrm{O}^{2}+2 F \mathrm{C}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=\underline{0.001}$
$\Delta \rho_{\max }=\underline{0.24} \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=\underline{-0.26} \mathrm{e}^{\AA^{-3}}$
Extinction correction: none
Extinction coefficient: =
Absolute structure: Flack ${ }^{9,10}$
Absolute structure parameter: $\underline{0.004 \text { (6) }}$

8. NMR-Spectra of New Compounds

4-chloro-3-methylquinoline 1-oxide (D):

4-(but-3-en-1-yloxy)-3-methylquinoline 1-oxide (Eb):

3-methyl-4-((3-methylbut-3-en-1-yl)oxy)quinoline 1-oxide (Ec):

4-(but-3-en-1-yloxy)-3-methylquinolin-2(1H)-one (5b):

S51

3-methyl-4-((3-methylbut-3-en-1-yl)oxy)quinolin-2(1H)-one (5c):

3－methyl－4－（（4－methylpent－3－en－1－yl）oxy）quinolin－2（1H）－one（5d）：

$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{N}} \\ & \underset{\sim}{n} \end{aligned}$	べ入べべべべ心			\％웅웅우우N눙 		
\int	$\\|$			$\\|$		

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

4-(2-(cyclopent-1-en-1-yl)ethoxy)-3-methylquinolin-2(1H)-one (5e):

4-(2-(cyclohex-1-en-1-yl)ethoxy)-3-methylquinolin-2(1H)-one (5f):

6-methoxy-3-methyl-4-((3-methylbut-3-en-1-yl)oxy)quinolin-2(1H)-one (5g):

3,6-dimethyl-4-((3-methylbut-3-en-1-yl)oxy)quinolin-2(1H)-one (5h):

6-fluoro-3-methyl-4-((3-methylbut-3-en-1-yl)oxy)quinolin-2(1H)-one (5i):

6-chloro-3-methyl-4-((3-methylbut-3-en-1-yl)oxy)quinolin-2(1H)-one (5j):

3-methyl-4-((3-methylbut-3-en-1-yl)oxy)-2-oxo-1,2-dihydroquinoline-6-carbonitrile (5k):


~~~~
\({ }^{1} \mathrm{H}\) NMR \(\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\)



3,7-dimethyl-4-((3-methylbut-3-en-1-yl)oxy)quinolin-2(1H)-one (51):



3-ethyl-4-((3-methylbut-3-en-1-yl)oxy)quinolin-2(1H)-one (5m):



7-fluoro-3-methyl-4-((3-methylbut-3-en-1-yl)oxy)quinolin-2(1H)-one (5n):




3-methyl-4-((3,4,4-trifluorobut-3-en-1-yl)oxy)quinolin-2(1H)-one (8):



4-((4 \(\lambda^{5}\)-penta-3,4-dien-1-yl)oxy)-3-methylquinolin-2(1H)-one (10a):


3-methyl-4-((3-methyl-4 \(\lambda^{5}\)-penta-3,4-dien-1-yl)oxy)quinolin-2(1H)-one (10b):




6-chloro-3-methyl-4-((3-methyl-4 \(\lambda^{5}\)-penta-3,4-dien-1-yl)oxy)quinolin-2(1H)-one (10c):



3-ethyl-4-((3-methyl-4 \({ }^{5}\)-penta-3,4-dien-1-yl)oxy)quinolin-2(1H)-one (10d):




4-((32 \({ }^{5}\)-buta-2,3-dien-1-yl)oxy)-6-chloro-3-methylquinolin-2(1H)-one (12a):




4-((3 \(\lambda^{5}\)-buta-2,3-dien-1-yl)oxy)-3-methylquinolin-2(1H)-one (12b):




3-methyl-4-((4-methyl-3 \(\lambda^{5}\)-penta-2,3-dien-1-yl)oxy)quinolin-2(1H)-one (15):


(3aS,4aR,10bS)-4a-methyl-3,3a,4,4a-tetrahydro-2H-furo[2',3':2,3]cyclobuta[1,2-c]quinolin-5(6H)-one (7b):




(3aS,4aR,10bS)-3a,4a-dimethyl-3,3a,4,4a-tetrahydro-2H-furo[2',3':2,3]cyclobuta[1,2-c]quinolin-5(6H)-one (7c):



(3aR,4aR,10bS)-4,4,4a-trimethyl-3,3a,4,4a-tetrahydro-2H-furo[2',3':2,3]cyclobuta[1,2-c]quinolin-5(6H)-one (7d):

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & \begin{tabular}{l}
\(\stackrel{\stackrel{\circ}{6}}{\uparrow}\)
\[
\int
\] \\
NM
\end{tabular} & 处
R (50 &  &  & Eue éo &  &  & ( & \[
\underset{\sim}{\otimes}
\] &  & &  & ( &  & & & \\
\hline & & & & \(\stackrel{\square}{\circ}\) & - &  & & & & &  & & & & \(\stackrel{+}{\square}\) & \[
\begin{gathered}
\text { Ho } \\
\stackrel{y}{c}
\end{gathered}
\] & & & & \\
\hline 10.0 & 9.5 & 9.0 & 8.5 & 8.0 & 7.5 & 7.0 & 6.5 & 6.0 & 5.5 & \[
\begin{aligned}
& 5.0 \\
& \mathrm{f} 1 \mathrm{ppm})
\end{aligned}
\] & 4.5 & 4.0 & 3.5 & 3.0 & 2.5 & 2.0 & 1.5 & 1.0 & 0.5 & 0.0 \\
\hline
\end{tabular}

( \(6 \mathrm{a} R, 6 \mathrm{~b} R, 9 \mathrm{a} R, 12 \mathrm{aS}\) )-6a-methyl-6b,7,8,9,10,11-hexahydro-5H-cyclopenta[3,4]furo[2',3':2,3]cyclobuta-[1,2-c]quinolin-6(6aH)-one (7e):



\(\left.\begin{array}{llllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10\end{array}\right) 0\)
( \(6 a R, 6 b R, 10 a R, 13 a S)-6 a-m e t h y l-6 a, 6 b, 7,8,9,10,11,12-o c t a h y d r o b e n z o[3,4] f u r o[2 ', 3 ': 2,3]\) cyclobuta-[1,2-c]quinolin-6(5H)-one (7f):



(3aS,4aR,10bS)-9-methoxy-3a,4a-dimethyl-3,3a,4,4a-tetrahydro-2H-furo[2',3':2,3]cyclobuta[1,2\(c\) ]quinolin-5( 6 H )-one ( 7 g ):



(3aS,4aR,10bS)-3a,4a,9-trimethyl-3,3a,4,4a-tetrahydro-2H-furo[2',3':2,3]cyclobuta[1,2-c]quinolin-5(6H)-one (7h):



\(\begin{array}{lllllllllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}\)
(3aS,4aR,10bS)-9-fluoro-3a,4a-dimethyl-3,3a,4,4a-tetrahydro-2H-furo[2',3':2,3]cyclobuta[1,2\(c\) ]quinolin-5(6H)-one (7i):



(3aS,4aR,10bS)-9-chloro-3a,4a-dimethyl-3,3a,4,4a-tetrahydro-2H-furo[2',3':2,3]cyclobuta[1,2\(c\) ]quinolin-5(6H)-one (7j):

(3aS,4aR,10bS)-3a,4a-dimethyl-5-oxo-3,3a,4,4a,5,6-hexahydro-2H-furo[2',3':2,3]cyclobuta[1,2\(c\) ]quinoline-9-carbonitrile (7k):



(3aS,4aR,10bS)-3a,4a,8-trimethyl-3,3a,4,4a-tetrahydro-2H-furo[2',3':2,3]cyclobuta[1,2\(c\) ]quinolin-5(6H)-one (71):

(3aS,4aR,10bS)-4a-ethyl-3a-methyl-3,3a,4,4a-tetrahydro-2H-furo[2',3':2,3]cyclobuta[1,2\(c\) ]quinolin-5( 6 H )-one ( 7 m ):



(3aS,4aR,10bS)-8-fluoro-3a,4a-dimethyl-3,3a,4,4a-tetrahydro-2H-furo[2',3':2,3]cyclobuta[1,2\(c\) ]quinolin-5(6H)-one (7n):


\(\stackrel{N}{\stackrel{N}{\underset{i}{i}}}\)
\({ }^{19}\) F NMR ( \(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )


(3aR,4aR,10bS)-3a,4,4-trifluoro-4a-methyl-3,3a,4,4a-tetrahydro-2H-furo[2',3':2,3]cyclobuta[1,2\(c\) ]quinolin-5(6H)-one (9):




\footnotetext{
\(\begin{array}{llllllllllllllllllllllll}0 & -10 & -20 & -30 & -40 & -50 & -60 & -70 & -80 & -90 & -100 & -110 & -120 & -130 & -140 & -150 & -160 & -170 & -180 & -190 & -200\end{array}\)
}

(3aR,4aR,10bS)-4a-methyl-4-methylene-3,3a,4,4a-tetrahydro-2H-furo[2',3':2,3]cyclobuta[1,2-c] quinolin-5(6H)-one (11a):




(3aR,4aR,10bS)-3a,4a-dimethyl-4-methylene-3,3a,4,4a-tetrahydro-2H-furo[2',3':2,3]cyclobuta[1,2\(c\) ]quinolin-5(6H)-one (11b):


\({ }^{13} \mathrm{C}\) NMR ( \(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\) )
\(\left.\begin{array}{llllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10\end{array}\right) 0\)
(3aR,4aR,10bS)-9-chloro-3a,4a-dimethyl-4-methylene-3,3a,4,4a-tetrahydro-2H-furo[2',3':2,3]-cyclobuta[1,2-c]quinolin-5(6H)-one (11c):


(3aR,4aR,10bS)-4a-ethyl-3a-methyl-4-methylene-3,3a,4,4a-tetrahydro-2H-furo[2',3':2,3]cyclobuta [1,2-c]quinolin-5(6H)-one (11d):



(4aR,10bS)-9-chloro-4a-methyl-4,4a-dihydro-2H-furo[2',3':2,3]cyclobuta[1,2-c]quinolin-5(6H)one (13a):




5-methyl-4,7-dihydrobenzo[b]furo[2,3-d]azocin-6(5H)-one (rac-14b):



(4aR,10bS)-4,4,4a-trimethyl-4,4a-dihydro-2H-furo[2',3':2,3]cyclobuta[1,2-c]quinolin-5(6H)-one (16):



(2S,3'S)-3'-methyl-3-(prop-1-en-2-yl)-1'H,5H-spiro[furan-2,4'-quinolin]-2'(3'H)-one (18):



\section*{9. HPLC Traces}
(3aS,4aR,10bS)-4a-methyl-3,3a,4,4a-tetrahydro-2H-furo[2',3':2,3]cyclobuta[1,2-c]quinolin-5(6H)-one (7a):


7b, \(88 \%\) ee

(3aS,4aR,10bS)-3a,4a-dimethyl-3,3a,4,4a-tetrahydro-2H-furo[2',3':2,3]cyclobuta[1,2-c]quinolin\(\mathbf{5}(\mathbf{6 H})\)-one (7c):



\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline No. & Ret. Time min & Peak Name & Height mAU & \[
\begin{gathered}
\text { Area } \\
\text { mAU*} \text { min }
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { Rel.Area } \\
\% \\
\hline
\end{gathered}
\] & Amount & Type & No. & \[
\begin{gathered}
\hline \text { Ret.Time } \\
\quad \mathrm{min} \\
\hline
\end{gathered}
\] & & Peak Name & Height mAU & \[
\begin{gathered}
\text { Area } \\
\mathrm{mAU}{ }^{*} \min \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { Rel.Area } \\
\% \\
\hline
\end{gathered}
\] & Amount & Type \\
\hline 1 & 12,18 & n.a. & 379,101 & 296,487 & 49,92 & n.a. & BM & 1 & 12,13 & n.a. & & 369,697 & 287,231 & 99,69 & n.a. & BMB \\
\hline 2 & 14,70 & п.a. & 297,002 & 297,393 & 50,08 & n.a. & MB & 2 & 14,74 & n.a. & & 1,700 & 0,898 & 0,31 & n.a. & BMB* \\
\hline Total: & & & 676,102 & 593,880 & 100,00 & 0,000 & & Total: & & & & 371,397 & 288,129 & 100,00 & 0,000 & \\
\hline
\end{tabular}
(3aR,4aR,10bS)-4,4,4a-trimethyl-3,3a,4,4a-tetrahydro-2H-furo[2',3':2,3]cyclobuta[1,2-c]quinolin-5(6H)-one (7d):


7d, 96\% ee

( \(6 a R, 6 \mathrm{~b} R, 9 \mathrm{a} R, 12 \mathrm{aS}\) )-6a-methyl-6b,7,8,9,10,11-hexahydro-5H-cyclopenta[3,4]furo[2',3':2,3]cyclobuta-[1,2-c]quinolin-6(6aH)-one (7e):

\(7 e, 98 \%\) ee

( \(6 a R, 6 b R, 10 a R, 13 a S)-6 a-m e t h y l-6 a, 6 b, 7,8,9,10,11,12-o c t a h y d r o b e n z o[3,4] f u r o[2 ', 3 ': 2,3]\) cyclobuta-[1,2-c]quinolin-6(5H)-one (7f):


7f, \(96 \%\) ee

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline No. & \[
\begin{gathered}
\text { Ret.Time } \\
\text { min } \\
\hline
\end{gathered}
\] & Peak Name & \[
\begin{aligned}
& \hline \text { Height } \\
& \text { mAU }
\end{aligned}
\] & Area
mAU *min & \[
\begin{aligned}
& \text { Rel.Area } \\
& \%
\end{aligned}
\] & Amount & Type & No. & \[
\begin{gathered}
\text { Ret.Time } \\
\text { min }
\end{gathered}
\] & & Peak Name & Height mAU & \[
\begin{gathered}
\text { Area } \\
\text { mAU*min }
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { Rel.Area } \\
\% \\
\hline
\end{gathered}
\] & Amount & Type \\
\hline 1 & 7,97 & n.a. & 853,670 & 204,047 & 49,72 & n.a. & BMB & 1 & 8,28 & n.a. & & 2812,448 & 804,110 & 98,03 & n.a. & BMB \\
\hline 2 & 9,50 & n.a. & 726,601 & 206,312 & 50,28 & n.a. & BMB & 2 & 9,81 & n.a. & & 62,555 & 16,179 & 1,97 & n.a. & BMB \\
\hline Total: & & & 1580,271 & 410,359 & 100,00 & 0,000 & & Total: & & & & 2875,003 & 820,288 & 100,00 & 0,000 & \\
\hline
\end{tabular}
(3aS,4aR,10bS)-9-methoxy-3a,4a-dimethyl-3,3a,4,4a-tetrahydro-2H-furo[2',3':2,3]cyclobuta[1,2\(c\) ]quinolin-5( 6 H )-one ( 7 g ):


7g, 93\% ee

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline No. & Ret.Time min & Peak Name & Height mAU & Area mAU* \({ }^{\text {min }}\) & \[
\begin{gathered}
\hline \text { Rel.Area } \\
\% \\
\hline
\end{gathered}
\] & Amount & Type & No. & \[
\begin{gathered}
\hline \begin{array}{c}
\text { Ret.Time } \\
\mathrm{min}
\end{array} \\
\hline
\end{gathered}
\] & Peak Name & Height mAU & \[
\begin{gathered}
\text { Area } \\
\mathrm{mAU*} \mathrm{~min}
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { Rel.Area } \\
\% \\
\hline
\end{gathered}
\] & Amount & Type \\
\hline 1 & 12,23 & n.a. & 505,707 & 186,629 & 49,95 & n.a. & BMB & 1 & 12,44 & n.a. & 71,949 & 23,474 & 3,30 & n.a. & BMB \\
\hline 2 & 14,70 & ก.a. & 430,813 & 186,998 & 50,05 & n.a. & BMB & 2 & 14,92 & n.a. & 1686,329 & 686,825 & 96,70 & n.a. & BMB \\
\hline Total: & & & 936,519 & 373,627 & 100,00 & 0,000 & & Total: & & & 1758,278 & 710,299 & 100,00 & 0,000 & \\
\hline
\end{tabular}
(3aS,4aR,10bS)-3a,4a,9-trimethyl-3,3a,4,4a-tetrahydro-2H-furo[2',3':2,3]cyclobuta[1,2-c]quinolin-5(6H)-one (7h):


7h, \(98 \%\) ee

(3aS,4aR,10bS)-9-fluoro-3a,4a-dimethyl-3,3a,4,4a-tetrahydro-2H-furo[2',3':2,3]cyclobuta[1,2\(c\) ]quinolin-5(6H)-one (7i):


7i, \(94 \%\) ee


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline No. & \[
\begin{gathered}
\hline \text { Ret.Time } \\
\text { min } \\
\hline
\end{gathered}
\] & Peak Name & \[
\begin{gathered}
\text { Height } \\
\mathrm{mAU} \\
\hline
\end{gathered}
\] & Area
\(\mathrm{mAU}{ }^{*}\) min & \[
\begin{gathered}
\hline \text { Rel.Area } \\
\% \\
\hline
\end{gathered}
\] & Amount & Type & No. & \[
\begin{gathered}
\text { Ret.Time } \\
{ }_{\text {min }}
\end{gathered}
\] & & Peak Name & \[
\begin{gathered}
\text { Height } \\
\mathrm{mAU} \\
\hline
\end{gathered}
\] & Area
mAU*min & \[
\begin{gathered}
\hline \text { Rel.Area } \\
\%
\end{gathered}
\] & Amount & Type \\
\hline 1 & 9,97 & n.a. & 1459,626 & 443,167 & 50,03 & n.a. & BMB & 1 & 10,28 & n.a. & & 2405,703 & 667,202 & 97,20 & n.a. & BMB \\
\hline 2 & 11,39 & n.a. & 1331,903 & 442,621 & 49,97 & n.a. & BMB & 2 & 11,69 & n.a. & & 65,589 & 19,191 & 2,80 & n.a. & BMB \\
\hline Total: & & & 2791,530 & 885,788 & 100,00 & 0,000 & & Total: & & & & 2471,292 & 686,393 & 100,00 & 0,000 & \\
\hline
\end{tabular}
(3aS,4aR,10bS)-9-chloro-3a,4a-dimethyl-3,3a,4,4a-tetrahydro-2H-furo[2',3':2,3]cyclobuta[1,2\(c\) ]quinolin-5(6H)-one (7j):

\(7 \mathrm{j}, 93 \%\) ee

(3aS,4aR,10bS)-3a,4a-dimethyl-5-oxo-3,3a,4,4a,5,6-hexahydro-2H-furo[2',3':2,3]cyclobuta[1,2\(c\) ]quinoline-9-carbonitrile (7k):

\(7 k, 96 \%\) ee


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline No. & Ret.Time min & Peak Name & Height mAU & \[
\begin{gathered}
\text { Area } \\
\text { mAU*min }
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { Rel.Area } \\
\%
\end{gathered}
\] & Amount & Type & No. & Ret.Time min & & Peak Name & Height mAU & \[
\begin{gathered}
\text { Area } \\
\mathrm{mAU*} \mathrm{~min}
\end{gathered}
\] & Rel.Area \% & Amount & Type \\
\hline 1 & 15,51 & n.a. & 143,837 & 60,442 & 50,32 & n. & BMB & 1 & 15,02 & n.a. & & 398,107 & 191,206 & 97,86 & n.a. & BMB \\
\hline 2 & 17,25 & n.a. & 128,156 & 59,669 & 49,68 & n.a. & BMB & 2 & 16,73 & n.a. & & 8,445 & 4,185 & 2,14 & n.a. & BMB* \\
\hline Total: & & & 271,993 & 120,110 & 100,00 & 0,000 & & Total: & & & & 406,552 & 195,391 & 100,00 & 0,000 & \\
\hline
\end{tabular}
(3aS,4aR,10bS)-3a,4a,8-trimethyl-3,3a,4,4a-tetrahydro-2H-furo[2',3':2,3]cyclobuta[1,2\(c\) ]quinolin-5(6H)-one (7l):


(3aS,4aR,10bS)-4a-ethyl-3a-methyl-3,3a,4,4a-tetrahydro-2H-furo[2',3':2,3]cyclobuta[1,2\(c\) ]quinolin-5(6H)-one (7m):


7m, 93\% ee

(3aS,4aR,10bS)-8-fluoro-3a,4a-dimethyl-3,3a,4,4a-tetrahydro-2H-furo[2',3':2,3]cyclobuta[1,2\(c\) ]quinolin-5(6H)-one (7n):


7n, 99\% ee


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline No. & \[
\begin{gathered}
\hline \text { Ret.Time } \\
\text { min } \\
\hline
\end{gathered}
\] & Peak Name & Height mAU & \[
\begin{gathered}
\text { Area } \\
\text { mAU*min }
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { Rel.Area } \\
\%
\end{gathered}
\] & Amount & Type & No. & Ret.Time min & & Peak Name & \[
\begin{gathered}
\text { Height } \\
\text { mAU } \\
\hline
\end{gathered}
\] & Area
mAU*min & \[
\begin{gathered}
\hline \text { Rel.Area } \\
\% \\
\hline
\end{gathered}
\] & Amount & Type \\
\hline 1 & 10,69 & n.a. & 393,094 & 125,404 & 50,08 & n.a. & BMB & 1 & 10,65 & n.a. & & 19,733 & 5,414 & 0,74 & n.a. & MB* \\
\hline 2 & 11,99 & n.a. & 353,353 & 125,024 & 49,92 & n.a & BMB & 2 & 11,95 & n.a. & & 1968,163 & 725,502 & 99,26 & n.a. & BMB \\
\hline Total: & & & 746,447 & 250,429 & 100,00 & 0,000 & & Total: & & & & 1987,896 & 730,916 & 100,00 & 0,000 & \\
\hline
\end{tabular}
(3aR,4aR,10bS)-3a,4,4-trifluoro-4a-methyl-3,3a,4,4a-tetrahydro-2H-furo[2',3':2,3]cyclobuta[1,2-c]quinolin-5(6H)-one (9):


9, \(81 \%\) ee


\begin{tabular}{|c|cccccccc|}
\hline No. & \begin{tabular}{c} 
Ret.Time \\
\(\boldsymbol{m i n}\)
\end{tabular} & Peak Name & \begin{tabular}{c} 
Height \\
mAU
\end{tabular} & \begin{tabular}{c} 
Area \\
mAU in
\end{tabular} & \begin{tabular}{c} 
Rel.Area \\
\(\%\)
\end{tabular} & Amount & Type \\
\hline 1 & 22,82 & n.a. & 1312,814 & 787,461 & 49,92 & n.a. & BMB \\
2 & 25,73 & n.a. & & 1155,386 & 790,094 & 50,08 & n.a. & BMB \\
\hline Total: & & & & 2468,200 & 1577,555 & 100,00 & 0,000 & \\
\hline
\end{tabular}
\begin{tabular}{|c|cccccccc|}
\hline No. & Ret.Time & Peak Name & \begin{tabular}{c} 
Height \\
mAU
\end{tabular} & \begin{tabular}{c} 
Area \\
mAU
\end{tabular} & \begin{tabular}{c} 
Rel.Area \\
\(\%\)
\end{tabular} & Amount & Type \\
\hline 1 & 22,59 & n.a. & 1069,746 & 638,689 & 90,48 & n.a. & BMB \\
2 & 25,65 & n.a. & 11004 & 67,20 & 9,52 & n.a. & BMB \\
\hline Total: & & & 1170,751 & 705,897 & 100,00 & 0,000 & \\
\hline
\end{tabular}
(3aR,4aR,10bS)-4a-methyl-4-methylene-3,3a,4,4a-tetrahydro-2H-furo[2',3':2,3]cyclobuta[1,2\(c\) ]quinolin-5(6H)-one (11a):


11a, \(91 \%\) ee


\begin{tabular}{|c|ccccccc|}
\hline No. & \begin{tabular}{c} 
Ret.Time \\
min
\end{tabular} & Peak Name & \begin{tabular}{c} 
Height \\
mAU
\end{tabular} & \begin{tabular}{c} 
Area \\
mAU'min
\end{tabular} & \begin{tabular}{c} 
Rel.Area \\
\(\%\)
\end{tabular} & Amount & Type \\
\hline 1 & 11,77 & n.a. & & 446,346 & 131,378 & 50,17 & n.a. \\
\hline & BMB \\
2 & 20,91 & n.a. & & 237,860 & 130,471 & 49,83 & n.a. \\
BMB \\
\hline Total: & & & & 684,206 & 261,849 & 100,00 & 0,000 \\
\hline
\end{tabular}
\begin{tabular}{|c|ccrrrrr|}
\hline No. & \begin{tabular}{c} 
Ret.Time \\
\(\boldsymbol{m i n}\)
\end{tabular} & Peak Name & \begin{tabular}{c} 
Height \\
mAU
\end{tabular} & \begin{tabular}{c} 
Area \\
mAU'min
\end{tabular} & \begin{tabular}{r} 
Rel.Area \\
\(\%\)
\end{tabular} & Amount & Type \\
\hline 1 & 11,57 & n.a. & & 2595,406 & 979,901 & 95,28 & n.a. \\
\hline 2 & 20,73 & n.a. & & 87,844 & 48,566 & 4,72 & BMB \\
\hline notal: & & & & 2683,250 & 1028,467 & 100,00 & 0,000 \\
\hline
\end{tabular}
(3aR,4aR,10bS)-3a,4a-dimethyl-4-methylene-3,3a,4,4a-tetrahydro-2H-furo[2',3':2,3]cyclobuta[1,2\(c\) ]quinolin-5(6H)-one (11b):


11b, \(96 \%\) ee


\begin{tabular}{|r|ccrcrcr|}
\hline No. & \begin{tabular}{c} 
Ret.Time \\
min
\end{tabular} & Peak Name & \begin{tabular}{c} 
Height \\
mAU
\end{tabular} & \begin{tabular}{c} 
Area \\
mAU'min
\end{tabular} & \begin{tabular}{c} 
Rel.Area \\
\(\%\)
\end{tabular} & Amount & Type \\
\hline 1 & 9,08 & n.a. & & 1032,433 & 232,317 & 49,96 & n.a. \\
BMB \\
2 & 12,55 & n.a. & & 722,311 & 232,703 & 50,04 & n.a. \\
BMB \\
\hline Total: & & & & 1754,745 & 465,019 & 100,00 & 0,000 \\
\hline
\end{tabular}
\begin{tabular}{|c|ccccccc|}
\hline No. & \begin{tabular}{c} 
Ret.Time \\
min
\end{tabular} & Peak Name & \begin{tabular}{c} 
Height \\
mAU
\end{tabular} & \begin{tabular}{c} 
Area \\
mAU*min
\end{tabular} & \begin{tabular}{c} 
Rel.Area \\
\(\%\)
\end{tabular} & Amount & Type \\
\hline 1 & 9,13 & n.a. & 2125,964 & 638,501 & 98,13 & n.a. & BMB \\
2 & 12,56 & n.a. & & 38,764 & 12,196 & 1,87 & n.a. \\
\hline Botal: & & & & 2164,728 & 650,697 & 100,00 & 0,000 \\
\hline
\end{tabular}
(3aR,4aR,10bS)-9-chloro-3a,4a-dimethyl-4-methylene-3,3a,4,4a-tetrahydro-2H-furo[2',3':2,3]-cyclobuta[1,2-c]quinolin-5(6H)-one (11c):


11c, \(91 \%\) ee


\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline No. & Ret.Time min & Peak Name & Height mAU & \[
\begin{gathered}
\text { Area } \\
\text { mAU* }{ }^{*} \text { min }
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { Rel.Area } \\
\% \\
\hline
\end{gathered}
\] & Amount & Type \\
\hline 1 & 8,61 & n.a. & 736,294 & 160,481 & 50,00 & n.a. & BMB \\
\hline 2 & 11,13 & п.a. & 551,727 & 160,504 & 50,00 & n.a. & BMB \\
\hline Total: & & & 1288,021 & 320,985 & 100,00 & 0,000 & \\
\hline
\end{tabular}
\begin{tabular}{|c|ccccccc|}
\hline No. & \begin{tabular}{c} 
Ret.Time \\
min
\end{tabular} & Peak Name & \begin{tabular}{c} 
Height \\
mAU
\end{tabular} & \begin{tabular}{c} 
Area \\
mAU*min
\end{tabular} & \begin{tabular}{c} 
Rel.Area \\
\(\%\)
\end{tabular} & Amount & Type \\
\hline 1 & 8,64 & n.a. & 2722,928 & 793,278 & 95,68 & n.a. & BMB \\
\hline 2 & 11,15 & n.a. & & 129,425 & 35,790 & 4,32 & n.a. \\
\hline BMB \\
\hline Total: & & & 2852,353 & 829,068 & 100,00 & 0,000 & \\
\hline
\end{tabular}
(3aR,4aR,10bS)-4a-ethyl-3a-methyl-4-methylene-3,3a,4,4a-tetrahydro-2H-furo[2',3':2,3]cyclobuta [1,2-c]quinolin-5(6H)-one (11d):


11d, \(92 \%\) ee


\begin{tabular}{|r|cccccccc|}
\hline No. & \begin{tabular}{c} 
Ret.Time \\
min
\end{tabular} & Peak Name & \begin{tabular}{c} 
Height \\
mAU
\end{tabular} & \begin{tabular}{c} 
Area \\
mAU*
\end{tabular} & \begin{tabular}{c} 
Rel.Area
\end{tabular} & Amount & Type \\
\hline 1 & 7,82 & n.a. & 1578,476 & 311,970 & 49,85 & n.a. & BMB \\
2 & 10,55 & n.a. & & 1152,602 & 313,906 & 50,15 & n.a. & BMB \\
\hline Total: & & & 2731,079 & 625,876 & 100,00 & 0,000 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline No. & Ret. Time min & Peak Name & Height mAU & Area
mAU *min & \[
\begin{gathered}
\text { Rel.Area } \\
\%
\end{gathered}
\] & Amount & Type \\
\hline 1 & 7,57 & n.a. & 2230,949 & 564,263 & 96,01 & n.a. & BMB \\
\hline 2 & 10,34 & n.a. & 78,936 & 23,421 & 3.99 & n.a. & BMB \\
\hline Total: & & & 2309,886 & 587,684 & 100,00 & 0,000 & \\
\hline
\end{tabular}
(4aR,10bS)-9-chloro-4a-methyl-4,4a-dihydro-2H-furo[2',3':2,3]cyclobuta[1,2-c]quinolin-5(6H)one (13a):


13a, \(88 \%\) ee


\begin{tabular}{|r|ccrcccc|}
\hline No. & \begin{tabular}{c} 
Ret.Time \\
min
\end{tabular} & Peak Name & \begin{tabular}{c} 
Height \\
mAU
\end{tabular} & \begin{tabular}{c} 
Area \\
mAU*min
\end{tabular} & \begin{tabular}{c} 
Rel.Area \\
\(\%\)
\end{tabular} & Amount & Type \\
\hline 1 & 9,00 & n.a. & 129,866 & 62,513 & 49,76 & n.a. & BMB \(^{*}\) \\
2 & 12,64 & n.a. & 68,670 & 63,122 & 50,24 & n.a. & BMB \(^{*}\) \\
\hline Total: & & & 198,536 & 125,634 & 100,00 & 0,000 & \\
\hline
\end{tabular}
\begin{tabular}{|c|ccccccc|}
\hline No. & \begin{tabular}{c} 
Ret.Time \\
min
\end{tabular} & Peak Name & \begin{tabular}{c} 
Height \\
mAU
\end{tabular} & \begin{tabular}{c} 
Area \\
mAU*
\end{tabular} & \begin{tabular}{rlrl} 
Rel.Area
\end{tabular} & Amount & Type \\
\hline 1 & 9,03 & n.a. & 39,045 & 18,325 & 5,96 & n.a. & BMB \\
2 & 12,59 & n.a. & & 310,707 & 289,026 & 94,04 & n.a. \\
BMB \\
\hline Total: & & & 349,752 & 307,351 & 100,00 & 0,000 & \\
\hline
\end{tabular}
(4aR,10bS)-4,4,4a-trimethyl-4,4a-dihydro-2H-furo[2',3':2,3]cyclobuta[1,2-c]quinolin-5(6H)-one (16):


16, \(98 \%\) ee


\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline No. & Ret. Time min & Peak Name & Height mAU & \[
\begin{gathered}
\text { Area } \\
\text { mAU'min }
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { Rel.Area } \\
\%
\end{gathered}
\] & Amount & Type \\
\hline 1 & 9,12 & n.a. & 1747,858 & 442,914 & 49,83 & n.a. & BMB \\
\hline 2 & 13,70 & n.a. & 64,335 & 25,670 & 2,89 & n.a. & BMB \\
\hline 3 & 15,41 & n.a. & 1036,661 & 420,262 & 47,28 & n.a. & BMB \\
\hline Total: & & & 2848,854 & 888,847 & 100,00 & 0,000 & \\
\hline
\end{tabular}
\begin{tabular}{|c|ccrrrrr|}
\hline No. & \begin{tabular}{c} 
Ret.Time \\
min
\end{tabular} & Peak Name & \begin{tabular}{c} 
Height \\
mAU
\end{tabular} & \begin{tabular}{c} 
Area \\
mAU'min
\end{tabular} & \begin{tabular}{c} 
Rel.Area \\
\(\%\)
\end{tabular} & Amount & Type \\
\hline 1 & 8,87 & n.a. & 1224,475 & 338,023 & 98,76 & n.a. & BMB \\
2 & 15,17 & n.a. & & 10,733 & 4,247 & 1,24 & n.a. \\
BMB \\
\hline Total: & & & & 1235,208 & 342,270 & 100,00 & 0,000 \\
\hline
\end{tabular}
(2S,3'S)-3'-methyl-3-(prop-1-en-2-yl)-1'H,5H-spiro[furan-2,4'-quinolin]-2'(3'H)-one (18):

\(18,92 \%\) ee


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline No. & Ret. Time min & Peak Name & Height mAU & Area
mAU *min & Rel.Area \% & Amount & Type & No. & Ret. Time min & Peak Name & Height mAU & \[
\begin{gathered}
\text { Area } \\
\text { mAU*min }
\end{gathered}
\] & Rel.Area \% & Amount & Type \\
\hline 1 & 10,55 & n.a. & 1413,753 & 421,051 & 49,58 & n.a. & BMB & 1 & 10,51 & n.a. & 53,000 & 15,484 & 3,79 & n.a. & BMB \\
\hline 2 & 23,88 & n.a. & 593,330 & 428,252 & 50,42 & n.a. & BMB & 2 & 23,82 & n.a. & 545,588 & 392,956 & 96,21 & n.a. & BMB \\
\hline Total: & & & 2007,083 & 849,302 & 100,00 & 0,000 & & Total: & & & 598,588 & 408,440 & 100,00 & 0,000 & \\
\hline
\end{tabular}

\section*{10. Reference}
1. (a) Kaneko, C.; Suzuki, T.; Sato, M.; Naito, T. Chem. Pharm. Bull. 1987, 35, 112-123. (b) Müller, C.; Bauer, A.; Bach, T. Angew. Chem., Int. Ed. 2009, 48, 6640-6642. (c) Müller, C.; Bauer, A.; Maturi, M. M.; Cuquerella, M. C.; Miranda, M. A.; Bach, T. J. Am. Chem. Soc. 2011, 133, 16689-16697.
2. Ochia, E. J. Org. Chem. 1953, 18, 534-551.
3. Bakowski, A.; Dressel, M.; Bauer, A.; Bach, T. Org. Biomol. Chem. 2011, 9, 3516-3529.
4. Gieshoff, T. N.; Villa, M.; Welther, A.; Plois, M.; Chakraborty, U.; Wolf, R.; Wangelin, A. J. Green Chem. 2015, 17, 1408-1413.
5. (a) Kafka, S.; Proisl, K.; Kašpárková, V.; Urankar, D.; Kimmel, R.; Košmrlj, J. Tetrahedron 2013, 69, 10826-10835. (b) Stadlbauer, W.; Laschober, R.; Lutschounig, H.; Schindler, G.; Kappe, T. Monatsh. Chem. 1992, 123, 617-636.
6. (a) Nishi, T.; Tabusa, F.; Tanaka, T.; Ueda, H.; Shimizu, T.; Kanbe, T.; Kimura, Y.; Nakagawa, K. Chem. Pharm. Bull. 1983, 31, 852-860. (b) Maturi, M. M.; Wenninger, M.; Alonso, R.; Bauer, A.; Pöthig, A.; Riedle, E.; Bach, T. Chem.-Eur. J. 2013, 19, 7461-7472.
7. APEX suite of crystallographic software, APEX 3, Version 2016-9.0, Bruker AXS Inc. Madison, Wisconsin, USA, 2016.
8. SAINT, Version 8.38A and SADABS, Version 2016/2, Bruker AXS Inc. Madison, Wisconsin, USA, 2016/2017.
9. Sheldrick, G. M. Acta Crystallogr. Sect. A 2015, 71, 3-8.
10. Sheldrick, G. M. Acta Crystallogr. Sect. C 2015, 71, 3-8.
11. Hübschle, C. B.; Sheldrick, G. M.; Dittrich, B. J. Appl. Cryst. 2011, 44, 1281-1284.
12. International Tables for Crystallography, Vol. C (Wilson, A. J. Ed.), Kluwer Academic Publishers, Dordrecht, The Netherlands, 1992, Tables 6.1.1.4 (pp. 500-502), 4.2.6.8 (pp. 219-222), and 4.2.4.2 (pp. 193-199).
13. Macrae, C. F.; Bruno, I. J.; Chisholm, J. A.; Edgington, P. R.; McCabe, P.; Pidcock, E.; RodriguezMonge, L.; Taylor, R.; van de Streek, J.; Wood, P. A. J. Appl. Cryst. 2008, 41, 466-470.
14. Spek, A. L. Acta Crystallogr. Sect. D 2009, 65, 148-155.
15. Flack, H. D. Acta Crystallogr. Sect A 1983, 39, 876-881.
16. Parsons, S.; Flack, H. D.; Wagner, T. Acta Crystallogr. Sect B 2013, 69, 249-259.~~~~

