Supporting Information for

Combined Temperature and Pressure Sensing Using Luminescent NaBiF₄:Yb,Er Nanoparticles

Magda A. Antoniak^{1,*}, Szymon J. Zelewski^{2,*}, Robert Oliva², Andrzej Żak³, Robert Kudrawiec², Marcin Nyk^{1,**}

¹Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland

²Department of Semiconductor Materials Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland

³ Electron Microscopy Laboratory, Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland

*These authors contributed equally to this work.

**Corresponding author.

E-mail address: marcin.nyk@pwr.edu.pl

Figure S1. Experimental powder X-ray diffraction pattern of NaBiF₄:Yb,Er NPs in comparison with the crystalline reference pattern of hexagonal (β) phase NaBiF₄ (JCPDS no. 41-0796). The XRD peak at 50.16° comes from a silicon sample holder.

Figure S2. Emission images of NaBiF₄:Yb,Er NPs under 980 nm, 5 W/cm² excitation power density (a) and under experimental conditions used in high pressure measurements (b).

Figure S3.Yb-Er energy level diagram and proposed energy transfer mechanisms under 980 nm CW laser diode excitation.

Figure S4. Log-log plots of integrated emission intensity of visible range (a) and infrared (b) electronic transitions as a function of 980 nm CW laser excitation power. $(1-R^2)$ values: 6.6×10^{-4} , 520 nm band; 2.4×10^{-4} , 540 nm band; 1.8×10^{-4} , 660 nm band; 3.8×10^{-3} , 1550 nm band.

Figure S5. Room temperature infrared thermal image (taken with a Seek Thermal Compact microbolometer camera) showing laser-induced sample heating under conditions set for temperature-dependent experiments with 100 mW laser beam.

Figure S6. Temperature-dependent infrared emission from the $\text{Er}^{3+} {}^{4}I_{13/2} \rightarrow {}^{4}I_{15/2}$ transition (a) along with determined integrated band emission intensity and broadening (b).

Figure S7. Schematic diagram for high-pressure luminescence measurements of NaBiF₄:Yb,Er NPs in the diamond anvil cell.

Table S1. The relative sensitivity and reliable operation temperature range of optical temperature sensors based on LIR (I₅₂₀/I₅₄₀) ytterbium (III) and erbium (III) doped nano/microcrystals.

Optical temperature sensor	Temperature range (K)	Maximal value of relative sensitivity SR (K ⁻¹)	Ref.
NaY(WO ₄) ₂ :Yb,Er	293 -503	1.2% at 293 K	1
NaYF4:Yb,Er	293 - 753	1.3% at 293 K	2
NaYF4:Yb,Er	303 - 328	1.35% at 303 K	3
CaF ₂ :Yb,Er	295 - 723	1.4% at 300 K	4
$\begin{array}{c} NaGdF_4:Yb^{3+}:Er^{3+}@\\SiO_2-Eu(tta)_3 \end{array}$	293-323	1.48% at 303 K	5
NaBiF4:Yb,Er	303 - 483	1.24% at 303 K	6
NaBiF4:Yb,Er	303 - 523	1.07% at 303 K	This work

Emission band	Peak designation	Fitted formula (x: Pressure in GPa)	Fit quality (1-R ²)
$^{2}H_{11/2} \rightarrow ^{4}I_{15/2}$	А	516.955 (-0.0383 nm/GPa)x	0.013
	В	520.002 (+0.0316 nm/GPa)x (-0.00157 nm/GPa ²)x ²	0.042
	C	522.559 (+0.0925 nm/GPa)x	0.012
${}^4S_{3/2} {\longrightarrow} {}^4I_{15/2}$	D	539.231 (-0.0199 nm/GPa)x (-0.000969 nm/GPa ²)x ²	0.021
	E	541.865 (+0.0277 nm/GPa)x	0.017
	F	544.449 (+0.107 nm/GPa)x	0.013
	G	549.086 (+0.167 nm/GPa)x	0.016
	Н	555.520 (+0.106 nm/GPa)x	0.022
${}^4F_{9/2} {\longrightarrow} {}^4I_{15/2}$	Ι	653.474 (-0.0367 nm/GPa)x (+0.00335 nm/GPa ²)x ²	0.156
	J	660.593 (+0.226 nm/GPa)x	0.014
${}^{4}I_{13/2} {\longrightarrow} {}^{4}I_{15/2}$	K	1503.28 (-0.780 nm/GPa)x	0.016
	L	1521.71 (-0.398 nm/GPa)x	0.018
	М	1542.99 (+0.934 nm/GPa)x (-0.0378 nm/GPa ²)x ²	0.055

Table S2. Fitted formulas for pressure-induced sublevel shift of Er^{3+} emission bands.

 Table S3. Fitted formulas for pressure-induced emission bands broadening.

Emission band	Fitted formula (x: Pressure in GPa)	Fit quality (1-R ²)
$^{2}\mathrm{H}_{11/2} \rightarrow ^{4}\mathrm{I}_{15/2}$	10.109 (+0.139 nm/GPa)x	0.425
${}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$	6.893 (+0.068 nm/GPa)x	0.124
${}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2}$	14.663 (+0.330 nm/GPa)x	0.077
${}^{4}I_{13/2} \rightarrow {}^{4}I_{15/2}$	63.122 (+1.359 nm/GPa)x	0.018

References

(1) Lin, M.; Xie, L.; Wang, Z.; Richards, B. S.; Gao, G.; Zhong, J. Facile synthesis of monodisperse sub-20 nm $NaY(WO_4)_2$: Er^{3+} , Yb^{3+} upconversion nanoparticles: a new choice for nanothermometry. J. Mater. Chem. C 2019, 7 (10), 2971-2977, DOI: 10.1039/C8TC05669B.

(2) Fan, S.; Gao, G.; Sun, S.; Fan, S.; Sun, H.; Hu, L. Absolute up-conversion quantum efficiency reaching 4% in β -NaYF₄:Yb³⁺,Er³⁺ micro-cylinders achieved by Li⁺/Na⁺ ion-exchange. J. Mater. Chem. C 2018, 6 (20), 5453-5461, DOI: 10.1039/C8TC01806E.

(3) Klier, D. T.; Kumke, M. U. Upconversion Luminescence Properties of NaYF₄:Yb:Er Nanoparticles Codoped with Gd^{3+} . The Journal of Physical Chemistry C 2015, 119 (6), 3363-3373, DOI: 10.1021/jp5103548.

(4) Cai, J.; Wei, X.; Hu, F.; Cao, Z.; Zhao, L.; Chen, Y.; Duan, C.; Yin, M. Up-conversion luminescence and optical thermometry properties of transparent glass ceramics containing

 $CaF_2:Yb^{3+}/Er^{3+}$ nanocrystals. Ceramics International 2016, 42 (12), 13990-13995, DOI: https://doi.org/10.1016/j.ceramint.2016.06.002.

(5) Nigoghossian, K.; Messaddeq, Y.; Boudreau, D.; Ribeiro, S. J. L. UV and Temperature-Sensing Based on NaGdF4:Yb³⁺:Er³⁺@SiO₂-Eu(tta)₃. ACS Omega 2017, 2 (5), 2065-2071, DOI: 10.1021/acsomega.7b00056.

(6) Lei, P.; An, R.; Zhai, X.; Yao, S.; Dong, L.; Xu, X.; Du, K.; Zhang, M.; Feng, J.; Zhang, H. Benefits of surfactant effects on quantum efficiency enhancement and temperature sensing behavior of NaBiF₄ upconversion nanoparticles. J. Mater. Chem. C 2017, 5 (37), 9659-9665, DOI: 10.1039/C7TC03122J.