## **Supporting Information**

Enhanced Electroluminescence Efficiency Using Reverse Intersystem Crossing Induced by Strong Triplet Fusion of Rubrene as a Sensitizer

Fenlan Qu,<sup>a</sup> Weiyao Jia,<sup>a</sup> Hongqiang Zhu,<sup>\*b</sup> Xiantong Tang,<sup>a</sup> Jing Xu,<sup>a</sup> Xi Zhao,<sup>a</sup> Caihong Ma, <sup>a</sup> Shengnan Ye, <sup>a</sup> and Zuhong Xiong<sup>\*a</sup>

<sup>a</sup> School of Physical Science and Technology, MOE Key Laboratory on Luminescence and Real-Time Analysis, Southwest University, Chongqing 400715, People's Republic of China E-mail: zhxiong@swu.edu.cn
<sup>b</sup> Chongqing Key Laboratory of Photo-Electric Functional Materials, Chongqing Normal University, Chongqing 401331, People's Republic of China E-mail: 20132013@cqnu.edu.cn

**Corresponding Authors:** 

zhxiong@swu.edu.cn

## **Supporting Figures:**



**Figure S1** (a, b) Current-dependent MEL and MC experimental curves of Dev.1 at room temperature, respectively. The white solid lines are the fitted curves from Dev.1.



Figure S2 (a) Current-dependent MEL experimental curves at 20K. (b) Temperature-dependent MEL experimental curves at 100  $\mu$ A. The white solid lines are the fitted curves from Dev.1. (c) Temperature-dependent MEL curves at 100  $\mu$ A in Dev.3.



**Figure S3** (a, b) Rubrene and DCJTB Concentration-dependent MEL experimental curves of Dev.1 (mCP: x% rubrene: y% DCJTB), respectively. The white solid lines are the fitted curves.



Figure S4 Schematic diagram of spin-pair states in Dev. 1 with the high DCJTB doping concentration.