SUPPORTING INFORMATION | Determination of ultra-trace level ¹³⁵ Cs and ¹³⁵ Cs/ ¹³⁷ Cs ratio in small v | volume | |--|--------| | seawater by chemical separation and thermal ionization mass spectro | metry | Liuchao Zhu¹, Changkun Xu², Xiaolin Hou¹*, Jixin Qiao¹, Yonggang Zhao², Guorong Liu² ¹ Technical University of Denmark, Department of Environmental Engineering, Risø Campus, Roskilde DK-4000, Denmark ² China Institute of Atomic Energy, Beijing 102413, China Number of pages in Supporting Information Section : 4, including cover. Number of Figures in Supporting Information: 4 ^{*} Corresponding author: E-mail: xiho@dtu.dk (Xiaolin Hou). Fax:45 46775357 Figure S1. Sampling sites of seawater in Greenland coast, the Baltic Sea and Danish Straits Figure S2. Chemical separation procedure for Cs in low-level seawater samples Figure S3. Elution profiles of Cs and Rb from an cation exchange chromatography column (AG 50W-×8, H $^+$ form, ϕ 1.0 cm × 20 cm) with different concentration (1.5M, 1M, 0.75M and 0.5M) of HNO₃ Figure S4. Spectra of mass scan of a real sample (IAEA-375) prepared for TIMS measurement for ¹³⁵Cs, ¹³⁷Cs and ¹³⁸Ba (a) in green measured by ion counter and ¹³³Cs (b) in red measured by Faraday cup. The cesium (¹³³Cs) loaded on the filament was estimated to be about 10 ng, which contained 5.6 fg ¹³⁷Cs and 2.6 fg ¹³⁵Cs.