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Supplementary Notes 

1. Derivation of concentration evolution equation.  

We adopt the smoothed boundary method to combine the phase transformation in 

the bulk Te NW with fast diffusion of Ag atom along the Te NW surface. A domain 

parameter φ is introduced to distinguish the bulk nanowire, the surrounding vacuum 

and surface zone of the nanowire, where φ equals 1 in the bulk of the NW and 0 in the 

vacuum, varying smoothly from 0 to 1 within the surface zone. Cahn-Hilliard equation 

is used to describe the phase transformation in the bulk of the nanowire.1 
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and the concentration evolution for the surface zone observes the conservation law,2 
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Here, ρ is the number of Ag atom per unit volume. kB and T are Boltzmann’s constant 

and the absolute temperature, respectively. Db and Ds represent the diffusion coefficient 

in the bulk and surface, respectively. λ is the characteristic thickness of the surface zone. 

𝛻𝑠  is the surface gradient operator. μ is the chemical potential, which is defined as 

ˆ/E c   . E is the total energy of the system as shown in Eq.(2). Jint denotes the flux 

from the surface into the bulk, Jappl is the applied flux imposed at the left side of the 

nanowire as shown in Figure S2. 

To effectively simulate the surface diffusion and phase transformation in the bulk 

nanowire, we adopt the smoothed boundary method via multiplying the domain 

parameter φ on the both sides of Eq. (S1),  
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Recalling the relationship between the normal vector n (pointing to the nanowire) and 

the domain parameter, i.e. /   n , and the flux intJ =  /b BD k T  , we can 

obtain2 
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Then, we can combine the surface diffusion equation (Eq. (S2)) with the Cahn Hilliard 

equation (Eq. (S4)) by substituting the term Jint, 
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Finally, it can be written in a simpler form as Eq. (1). 

2. Calculation of strain and stress.  

We adopt the phase field microelasticity theory to obtain the distribution of strain and 

stress. The elastic strain can be expressed as  
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where  c

ij r   is the chemical eigenstrain tensor that can be given by 

   0
ˆc

ij ijc c   r , β is the expansion coefficient, c0 is the reference concentration 

and δij is Kronecker delta function. The total strain  ij r  can be written as.3,4  
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where the average strain 
ij  is given by   3 /ij ij

V
d r V   r . in  is a component of 

the unit vector / | |n k k  in the Fourier space, where k is the wave vector and |k| is 

its modulus.  ij n  is the Green function tensor.   0 0

klmn mnC 
k

r denotes the Fourier 

transformation of  0 0

klmn mnC  r  .  0

ij r   is defined as the virtual eigenstrain when 

introducing a elastically and structurally inhomogeneous computational system, and it 

is determined by a time-dependent Ginzburg-Landau type equation.3 
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where Lijkl  is the kinetic coefficient. Einhom is elastic energy of the elastically and 

structurally inhomogeneous system energy which can be obtained from 
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where  0

ij r  is the eigenstrains that obeys Hooke’s law    0 0 0

ij ijkl ijC r r .  0

ij k  

is the Fourier transform of  0

ij r   and  0

kl k   is complex conjugate of  0

kl k  . 

1

mnpqC   is the inverse of 
mnpqC . The relationship between  ijklC r  and 0

ijklC  is 

   0=ijkl ijkl ijklC C C r r . Here, the reference modulus 0

ijklC  is set as modulus of the 

nanowire. As a result,   0ijklC r   in the nanowire and   0=ijkl ijklC C r   in the 
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surrounding vacuum space. Once the total strain is obtained by Eq. (S7), the elastic 

stress will be identified according to Hooke’s law, 

       c

ij ijkl kl klC     r r r r                          (S10) 

3. Material parameters. 

Supplementary Table 1 

symbol parameter value 

 ρ number of atoms per unit volume 2.82×1028 m-3 a 

 κ gradient coefficient 4.5×10-11 J∙m-1 b 

λ characteristic thickness of the surface     1 nm c 

ν Poisson’s ratio 0.3 a 

G shear modulus of Te 16 GPa a 

ω potential height 5.76×107J m-3 

kB Boltzmann constant 1.38×10-23 JK-1 

T temperature 300 K 

 
β expansion coefficient 0.256 b 

cmax maximum concentration 4.68×104molm-3 a 

 

 

 

m-3 

l characteristic length 20 nm c 

Ds surface diffusion coefficient 2.79×10-11 cm2/s 

Db bulk diffusion coefficient  1.25×10-13 cm2/s 

a obtained from the website: https://materialsproject.org 
b calculated as follows 
c measured from the experiment 

The determination of expansion coefficient β: According to the measured 33% 

increase in the diameter of the Ag2Te NW compared to the intact Te NW, the volumetric 

strain 0 0( ) /dV dV dV    , is calculated as 0.769. It is assumed that the chemical 

eigenstrains is isotropic, i.e. 
11 22 33

c c c    , and recalling    0
ˆc

ij ijc c   r , where 

the reference concentration is set as zero. Consequently, the expansion coefficient β has 

the value 0.256.  

The gradient coefficient κ can be determined by the following equations,4 

2

int / 32l    and / 2 / 2k   . Here, γ is the interfacial free energy, which is 
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estimated as 0.5 J/m2. lint is the interface width between the two phases, which is 

estimated about 1nm according to Figure 3. Thus, we can calculate κ and w as 3.5×10-

10 J m-1 and 5.7×109J m-3, respectively. 

The calculation of bulk diffusion coefficient is based on the relationship between Ag 

atom flux (J) and the concentration gradient:  2/ /
gb AJ q R t D dC dx   . Here, q is 

the molar quantity of Ag which equals to C0 × VAg. t is the measured time which is set 

as 15 s, and dCAg/dx is the corresponding concentration gradients of Ag according to 

Supplementary Fig. 1 and dCAg/dx is calculated as 0.7813 × C0. R is the radius of the 

nanowire, which is measured as 3.5 nm. Finally, the bulk diffusion coefficient was 

estimated to be 1.25×10-13 cm2 s-1. It should be pointed out that the surface diffusion 

coefficient is difficult to calculate so that its value is estimated as 2.79×10-11 cm2 s-1 in 

our simulation.  
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Supplementary Figures 

 

Figure S1.The proportion of Ag calculated from Fig. 1d. 

 
Figure S2. The crystal structure of reacted Te nanowires after the Ag migration. (a-f) HRTEM 

images of the reacted Te nanowire from the 1st to 6th nanowires. The scale bars are 5 nm.   

 

Figure S3. TEM image of the electron beam induced reaction on the special designed Ag-Te co-

assembly sample (left panel are Te nanowires and right panel are Ag nanowires). The average 

reaction length can reach as long as 10 μm.  
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Figure S4. Ag nanowire before and after the electron beam irradiation. (a-b) TEM and the 

corresponding HRTEM images of Ag nanowire with uniform morphology before the electron beam 

irradiation; (c-d) TEM and the corresponding HRTEM images of Ag nanowire with rough 

morphology after the electron beam irradiation.  

 
Figure S5. Te nanowire before and after the electron beam irradiation. (a) TEM image of Te 

nanowire before the electron beam irradiation; (b) TEM image of Te nanowire after the electron 

beam irradiation, showing uniform morphology.  

 

Figure S6. STEM image of the emerged heterostructure in the edge of reaction zone. The edge of 

core-shell structure.  
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Figure S7. Structure evolution of Ag atoms invading Te nanostructure from ab initio simulation. 

Ag atoms invade into the (101) facet of Te. 

 

 
Figure S8. Comparison of the Ag invading process with and without the surface diffusion at the 

same time simulated by our phase-field model. (a) Snapshots of Ag invading process considering 

the surface diffusion at time 120 s, 230 s and 340 s. (b) Snapshots of Ag invading process neglecting 

the surface diffusion at the same times. 
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Figure S9. The atom distribution in axial direction of nanowire. The inset was the HRTEM image 

of the reaction zone.  

 

 

Figure S10. The hydrostatic stress evolution considering the surface diffusion at time 120 s, 230 s 

and 340 s, corresponding to the concentration distribution in Figure S8a. The color bar indicates the 

level of hydrostatic stress with the unit: GPa. 
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Figure S11. The connection “bridge” phenomenon in the reaction zone. (a) TEM image of the 

reaction zone after completely migration; (b) High-resolution STEM image of connection “bridge” 

between telluride nanowires and the two nanowires grow into an intact crystal.  

 

Figure S12. (a-d) EDS line scan of Se, Te and Ag at the reaction zone after migration. 
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Figure S13. The migration of Cu on Te NWs under electron beam irradiation. (a-f) Time sequential 

TEM images of Cu migration process showing the Cu NW was gradually disappeared. The scale 

bars in (a-f) are 50 nm. 
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