Supporting Information

Programming Surface-Enhanced Raman Scattering of DNA Origami-templated Metamolecules

Chunyang Zhou ${ }^{1,3 \#}$, Yanjun Yang ${ }^{2 \#}$, Haofei $\mathrm{Li}^{1 \#}$, Fei Gao 1, Chunyuan Song ${ }^{2}$, Donglei Yang ${ }^{1}$, $\mathrm{Fan} \mathrm{Xu}^{1}$, Na Liu ${ }^{5,6}$, Yonggang $\mathrm{Ke}^{3,4}$, Shao $\mathrm{Su}^{2 *}$, Pengfei Wang ${ }^{1 *}$
${ }^{1}$ Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
Email: pengfei.wang@sjtu.edu.cn
${ }^{2}$ Key Laboratory for Organic Electronics and Information Displays (KLOEID) \& Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
Email: iamssu@njupt.edu.cn
${ }^{3}$ Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, USA.
${ }^{4}$ Department of Chemistry, Emory University, Atlanta, Georgia 30322, USA.
${ }^{5}$ Kirchhoff Institute for Physics and Centre for Advanced Materials, Heidelberg University, Im Neuenheimer Feld 227, D-69120 Heidelberg, Germany
${ }^{6}$ Max Planck Institute for Intelligent Systems, Heisenbergstrasse 3, D-70569 Stuttgart, Germany

\# Equal contribution
Materials: Short DNA staple strands were purchased from IDT and used as received without purification. M13 bacteriophage single stranded DNA (p7560) were used as scaffold for origami construction and produced following a published protocol ${ }^{1} .10 \mathrm{~nm}$ AuNPs were purchased from Ted Pella, Inc.

DNA origami hexagon tile design and assembly: DNA origami hexagon tile was designed using caDNAno ${ }^{2,3}$. In a typical annealing protocol, staples were mixed with single stranded DNA scaffold ($\mathrm{p} 7560,10 \mathrm{nM}$) in 5 -fold molar excess in folding buffer (5 mM Tris base, 1 mM EDTA, supplement with 10 mM MgCl 2) with a total volume of $100 \mu \mathrm{~L}$. The mixed solution was slowly cooled down to room temperature $\left(24^{\circ} \mathrm{C}\right)$ in a PCR thermal cycler over 18 hrs in the following protocol: $65^{\circ} \mathrm{C}$ for $5 \mathrm{mins}, 60$ to $24^{\circ} \mathrm{C}$, at $30 \mathrm{~min} /{ }^{\circ} \mathrm{C}$.

Conjugation of DNA onto AuNPs: 50 mL of colloidal citrated 10 nm AuNP solution was added with 15 mg of Bis(p-sulfonatophenyl) phenylphosphine dihydrate dipotassium salt (BSPP) and shaken for overnight. Then NaCl was added until a color change of the solution from red to blue was observed. The AuNPs were centrifuged to the bottom at $1,000 \mathrm{rcf}$ for 30 min and the clear supernatant was removed with a pipette. The particles were dissolved in BSPP solution ($1 \mathrm{~mL}, 2.5 \mathrm{mM}$) followed by addition of 3 mL of methanol. The particles were centrifuged again and re-suspended in 1 mL of BSPP. The concentration of the AuNPs was determined from the optical absorption at a wavelength of 520 nm using a Nanodrop spectrophotometer. For reducing the disulfide bonds of the thiolated ssDNA strands to monothiol, the modified strands were incubated with 100 -fold of TCEP (Tris(carboxyethyl) phosphine hydrochloride) for at least 30 mins . AuNPs and thiolated DNA were mixed in $0.5 \times$ TBE buffer at a designated ratio (1: 100). Within a period of $24 \mathrm{hrs}, \mathrm{NaCl}$ solution was added to the solution to achieve a final concentration of 300 mM . To remove the unbound DNA strands, the mixture was spun for 30 min at $18,000 \mathrm{rcf}$, and the supernatant was removed carefully without disturbing the pellet. 4 additional washing and spinning steps ($30 \mathrm{~min}, 18,000 \mathrm{rcf}$) with $100 \mu \mathrm{~L}$ of $0.5 \times$ TBE buffer containing 300 mM NaCl were conducted to fully removed unbound DNA.

Attaching AuNPs onto DNA origami templates: DNA origami hexagon tile was assembled first, as described above, which was then added with 5-fold of DNA-conjugated AuNPs and incubated for at least 2 hours at room temperature under constant shaking. DNA origami hexagon monomer with 6 AuNPs were purified from agarose gel. For dimer and trimer samples, corresponding connector strands (100fold) were added to the monomer and incubated at $40^{\circ} \mathrm{C}$ overnight. These samples were then subject to agarose gel electrophoresis and corresponding bands of dimer and trimer were extracted for subsequent experiments. For 1D chain, DNA connector strands ($100-$ fold) were added to the purified monomer and incubated at $40^{\circ} \mathrm{C}$ overnight.

Gel electrophoresis: DNA origami with AuNPs was subject to 1% native agarose gel electrophoresis for 2 hours (gel prepared in $0.5 \times \mathrm{TBE}$ buffer supplemented with $10 \mathrm{mM} \mathrm{MgCl}_{2}$ and 0.005% (v/v) EtBr) in an ice water bath. Then, the target gel bands were excised and placed into a Freeze ' N Squeeze column (Bio-Rad Laboratories, Inc.). The gel pieces were crushed into fine pieces by a microtube pestle in the column, and the column was then centrifuged at 7000 rcf for 5 minutes. Samples that were extracted through the column were collected for subsequent experiments.

TEM imaging: $10 \mu \mathrm{~L}$ of purified samples were deposited onto glow-discharged, carbon-coated copper TEM grids for 5-30 minutes inside a moisture chamber. Residual solution was dried by filter paper. The grids were then stained for 1 minute using a 1% aqueous uranyl formate solution containing 25 mM NaOH . Imaging was performed using a Hitachi- 7700 microscope operated at 80 kV . No staining was conducted for samples if silver growth has happened.

In-situ silver growth: $10 \mu \mathrm{~L}$ of samples were deposited onto glow-discharged, carbon-coated copper TEM grids for 5-30 minutes inside a moisture chamber. Residual solution was dried by filter paper. 10 $\mu \mathrm{L}$ of mixed solution from HQ silver enhancement kit (Nanoprobes, Inc.) was added onto the copper grids in a dark room. After 3-10 min of growth, dip the copper grids into distilled water for several times to completely wash away the silver growth solution, dry the copper grids by filter paper after the last wash.

FDTD Calculations: A commercial software package (FDTD Solutions, trial version, Lumerical Solutions Inc.) was used to calculate the localized electric field (E-field) distribution of the DNAtemplated metamolecules. The sizes and geometric parameters of gold or silver nanoparticles were set from corresponding TEM images, respectively. In the process of computational calculations, the incident light is circularly polarized with wavelength of 633 nm , which is consistent with SERS measurement in the experiment. A monitor of "frequency-domain field profile" was set up to calculate the localized Efield distributions. The obtained electromagnetic (EM) fields were normalized to the magnitude of the incident E-fields. To ensure the convergence of the calculations, a mesh size of $1 \mathrm{~nm} \times 1 \mathrm{~nm} \times 1 \mathrm{~nm}$ was chosen. Perfectly matched layer (PML) absorbing boundary were used in all directions. The dielectric constant spectra of the Ag materials were taken from the model of Palik ${ }^{4}$ and gold were taken from Johnson and Christy ${ }^{5}$, respectively.

Dark-field microscopy measurement: An inverted microscope (eclipse Ti-U, Nikon, Japan) equipped with a dark-field condenser ($0.8<$ NA < 0.95), a 100 W halogen lamp, a monochromator (Acton SP2300i) equipped with a spectrograph CCD (CASCADE512B, Roper Scientific), and a true-color digital camera (Nikon DS-fi) and a grating (1200 grooves per mm) were used for the dark-field spectrum measurements. The true-color images were taken using a $60 \times$ objective lens.

Surface enhanced Rahman spectroscopy measurement: TEM grid loaded DNA-templated metamolecules was immersed in $100 \mu \mathrm{M} 4-\mathrm{MBA}$ for 1 h . Then, the TEM grid was washed by water and dried by nitrogen stream. The SERS measurements were performed on a confocal Raman microscope (InVia, Renishaw, England) connected with the above-mentioned inverted microscope using a 633 nm excitation laser (we used 50% power), $60 \times$ objective lens (NA=0.70) and 3 s acquisition time. For each sample, ten SERS spots were recorded to obtain an averaged SERS spectrum and the baselines were subtracted by the software Wire 4.0.

Figure S1. TEM images of DNA origami hexagon tile decorated with six of 10 nm AuNPs.

Figure S2. Native agarose gel electrophoresis of hexagon monomer, dimer, trimer, and 1D metamolecules

Figure S3. In-situ silver growth on AuNP hexagon monomers with varied growth time.

Figure S4. FDTD simulation of 3-nanoparticle metamolecules. Size of nanoparticles are the same as 6nanoparticle metamolecules but with different interparticle gaps. FDTD revealed no observable electromagnetic fields.

Figure S5. Discrete Ag@Au core-shell nanoparticles. a, b) TEM images; c) DFM image; d) Raman spectra of 4-MBA.

Figure S6. Native agarose gel electrophoresis of AuNP Core-satellite structures.

Figure S7. AuNP Core-satellite structures prior to silver deposition.

Figure S8. Ag@Au core-satellite metamolecules.

Figure $\mathrm{S} 9 . \mathrm{Ag} @ \mathrm{Au}$ hexagon dimer metamolecules.

Figure $\mathrm{S} 10 . \mathrm{Ag} @$ Au hexagon trimer metamolecules.

Figure S11. Ag@Au hexagon 1D chain metamolecules.

Figure S12. Average Raman intensity of 4-MBA at $1585 \mathrm{~cm}^{-1}$ for complex metamolecules ($\mathrm{N}=10$).

Table S1. Theoretical enhancement factors for SERS metamolecules

Metamolecules	Monomer				Core-satellite	Dimer	Trimer	1 D	
Growth time	$0-\mathrm{min}$	$3-\mathrm{min}$	7 -min	$10-\mathrm{min}$	$12-\mathrm{min}$	$7-\mathrm{min}$	$10-\mathrm{min}$	$10-\mathrm{min}$	$10-\mathrm{min}$
Enhancement factor	3.6×10^{1}	4.5×10^{1}	1.3×10^{2}	2.4×10^{3}	2.6×10^{6}	4.1×10^{4}	3.2×10^{4}	3.9×10^{4}	8.2×10^{4}

Sequence of p7560 scaffold DNA:

GCTTGGCACTGGCCGTCGTTTTACAACGTCGTACTGGGAAAACCCTGGCGTTACCCAACTTAATCGCCTTGCAGCACATCCCCCTTTCGCCAGCTGGCGTAATAGCGA AGAGGCCCGCACCGATCGCCCTTCCCAACAGTTGCGCAGCCTGAATGGCGAATGGCGCTTTGCCTGGTTTCCGGCACCAGAAGCGGTGCCGGAAAGCTGGCTGGAGTG CGATCTTCCTGAGGCCGATACTGTCGTCGTCCCCTCAAACTGGCAGATGCACGGTTACGATGCGCCCATCTACACCAACGTGACCTATCCCATTACGGTCAATCCGCCGT TTGTTCCCACGGAGAATCCGACGGGTTGTTACTCGCTCACATTTAATGTTGATGAAAGCTGGCTACAGGAAGGCCAGACGCGAATTATTTTTGATGGCGTTCCTATTGGTTA AAAAATGAGCTGATTTAACAAAAATTTAATGCGAATTTTAACAAAATATTAACGTTTACAATTTAAATATTTGCTTATACAATCTTCCTGTITTTGGGGCTTTTCTGATTATCAAC GGGGGTACATATGATTGACATGCTAGTTITACGAITACCGTTCATCGATTCTCTTGTTTGCTCCAGACTCTCAGGCAATGACCTGATAGCCTITGTAGATCTCTCAAAAATAG CTACCCTCTCCGGCATTAATTTATCAGCTAGAACGGTTGAATATCATATTGATGGTGATTTGACTGTCTCCGGCCTTTCTCACCCTTTTGAATCTTTACCTACACATTACTCA GGCATTGCATTTAAAATATATGAGGGTTCTAAAAATTTTTATCCTTGCGTTGAAATAAAGGCTTCTCCCGCAAAAGTATTACAGGGTCATAATGTTTTTGGTACAACCGATTTA GCTTTATGCTCTGAGGCTTTATTGCTTAATTTTGCTAATTCTTTGCCTTGCCTGTATGATTTATTGGATGTTAATGCTACTACTATTAGTAGAATTGATGCCACCTTTTCAGCT CGCGCCCCAAATGAAAATATAGCTAAACAGGTTATTGACCATTTGCGAAATGTATCTAATGGTCAAACTAAATCTACTCGTTCGCAGAATTGGGAATCAACTGTTATATGGAA TGAAACTTCCAGACACCGTACTTTAGTTGCATATTTAAAACATGTTGAGCTACAGCATTATATTCAGCAATTAAGCTCTAAGCCATCCGCAAAAATGACCTCTTATCAAAAGG AGCAATTAAAGGTACTCTCTAATCCTGACCTGTTGGAGTTTGCTTCCGGTCTGGTTCGCTTTGAAGCTCGAATTAAAACGCGATATITGAAGTCTTTCGGGCTTCCTCTTAAT CTTTTTGATGCAATCCGCTTTGCTTCTGACTATAATAGTCAGGGTAAAGACCTGATTTTTGATTTATGGTCATTCTCGTTTTCTGAACTGTTTAAAGCATTTGAGGGGGATTCA ATGAATATTTATGACGATTCCGCAGTATTGGACGCTATCCAGTCTAAACATTTTACTATTACCCCCTCTGGCAAAACTTCTTTTGCAAAAGCCTCTCGCTATTTTGGTTTTTA CGTCGTCTGGTAAACGAGGGTTATGATAGTGTTGCTCTTACTATGCCTCGTAATTCCTTTTGGCGTTATGTATCTGCATTAGTTGAATGTGGTATTCCTAAATCTCAACTGAT GAATCTTTCTACCTGTAATAATGTTGTTCCGTTAGTTCGTTTTATTAACGTAGATTTTTCTTCCCAACGTCCTGACTGGTATAATGAGCCAGTTCTTAAAATCGCATAAGGTAA TTCACAATGATTAAAGTTGAAATTAAACCATCTCAAGCCCAATTTACTACTCGTTCTGGTGTTTCTCGTCAGGGCAAGCCTTATTCACTGAATGAGCAGCTTTGTTACGTTGA TTTGGGTAATGAATATCCGGTTCTTGTCAAGATTACTCTTGATGAAGGTCAGCCAGCCTATGCGCCTGGTCTGTACACCGTTCATCTGTCCTCTTTCAAAGTTGGTCAGTTC GGTICCCTTATGATTGACCGTCTGCGCCTCGITCCGGCTAAGTAACATGGAGCAGGTCGCGGATITCGACACAATITATCAGGCGATGATACAAATCTCCGITGTACTITG TTTCGCGCTTGGTATAATCGCTGGGGGTCAAAGATGAGTGTTTTAGTGTATTCTTTTGCCTCTTTCGTTTTAGGTTGGTGCCTTCGTAGTGGCATTACGTATTTTACCCGITT AATGGAAACTTCCTCATGAAAAAGTCTTTAGTCCTCAAAGCCTCTGTAGCCGTTGCTACCCTCGTTCCGATGCTGTCTTTCGCTGCTGAGGGTGACGATCCCGCAAAAGCG GCCTTTAACTCCCTGCAAGCCTCAGCGACCGAATATATCGGTTATGCGTGGGCGATGGTTGTTGTCATTGTCGGCGCAACTATCGGTATCAAGCTGTTTAAGAAATTCACC TCGAAAGCAAGCTGATAAACCGATACAATTAAAGGCTCCTTTTGGAGCCTTTTTTTTGGAGATTTTCAACGTGAAAAAATTATTATTCGCAATTCCTTTAGTTGTTCCTTTCTA TTCTCACTCCGCTGAAACTGTTGAAAGTTGTTTAGCAAAATCCCATACAGAAAATTCATTTACTAACGTCTGGAAAGACGACAAAACTTTAGATCGTTACGCTAACTATGAGG GCTGTCTGTGGAATGCTACAGGCGTTGTAGTTTGTACTGGTGACGAAACTCAGTGTTACGGTACATGGGTTCCTATTGGGCTTGCTATCCCTGAAAATGAGGGTGGTGGC CTGAGGGTGGCGGTTCTGAGGGTGGCGGTTCTGAGGGTGGCGGTACTAAACCTCCTGAGTACGGTGATACACCTATTCCGGGCTATACTTATATCAACCCTCTCGACGGC ACTTATCCGCCTGGTACTGAGCAAAACCCCGCTAATCCTAATCCTTCTCTTGAGGAGTCTCAGCCTCTTAATACTTTCATGTTTCAGAATAATAGGTTCCGAAATAGGCAGG GGGCATTAACTGTTTATACGGGCACTGTTACTCAAGGCACTGACCCCGTTAAAACTTATTACCAGTACACTCCTGTATCATCAAAAGCCATGTATGACGCTTACTGGAACGG TAAATTCAGAGACTGCGCTTTCCATTCTGGCTTTAATGAGGATTTATTTGTTTGTGAATATCAAGGCCAATCGTCTGACCTGCCTCAACCTCCTGTCAATGCTGGCGGCGGC TCTGGTGGTGGTTCTGGTGGCGGCTCTGAGGGTGGTGGCTCTGAGGGTGGCGGTTCTGAGGGTGGCGGCTCTGAGGGAGGCGGTTCCGGTGGTGGCTCTGGTTCCGG TGATTTTGATTATGAAAAGATGGCAAACGCTAATAAGGGGGCTATGACCGAAAATGCCGATGAAAACGCGCTACAGTCTGACGCTAAAGGCAAACTTGATTCTGTCGCTAC TGATTACGGTGCTGCTATCGATGGTTTCATTGGTGACGTTTCCGGCCTTGCTAATGGTAATGGTGCTACTGGTGATTTTGCTGGCTCTAATTCCCAAATGGCTCAAGTCGGT GACGGTGATAATTCACCTTTAATGAATAATTTCCGTCAATATTTACCTTCCCTCCCTCAATCGGTTGAATGTCGCCCTTTTGTCTTTGGCGCTGGTAAACCATATGAATTTTCT ATTGATTGTGACAAAATAAACTTATTCCGTGGTGTCTTTGCGTTTCTTTTATATGTTGCCACCTTTATGTATGTATTTTCTACGTTTGCTAACATACTGCGTAATAAGGAGTCTT AATCATGCCAGTTCTTTTGGGTATTCCGTTATTATTGCGTTTCCTCGGTTTCCTTCTGGTAACTTTGTTCGGCTATCTGCTTACTTTTCTTAAAAAGGGCTTCGGTAAGATAGC TATTGCTATTTCATTGTTTCTTGCTCTTATTATTGGGCTTAACTCAATTCTTGTGGGTTATCTCTCTGATATTAGCGCTCAATTACCCTCTGACTTTGTTCAGGGTGTTCAGTTA ATTCTCCCGTCTAATGCGCTTCCCTGTTTTTATGTTATTCTCTCTGTAAAGGCTGCTATTTTCATTTTTGACGTTAAACAAAAAATCGTTTCTTATTTGGATTGGGATAAATAAT ATGGCTGTTTATTTTGTAACTGGCAAATTAGGCTCTGGAAAGACGCTCGTTAGCGTTGGTAAGATTCAGGATAAAATTGTAGCTGGGTGCAAAATAGCAACTAATCTTGATT TAAGGCTTCAAAACCTCCCGCAAGTCGGGAGGTTCGCTAAAACGCCTCGCGTTCTTAGAATACCGGATAAGCCTTCTATATCTGATTTGCTTGCTATTGGGCGCGGTAATG ATTCCTACGATGAAAATAAAAACGGCTTGCTTGTTCTCGATGAGTGCGGTACTTGGTTTAATACCCGTTCTTGGAATGATAAGGAAAGACAGCCGATTATTGATTGGTTTCTA CATGCTCGTAAATTAGGATGGGATATTATTTTTCTTGTTCAGGACTTATCTATTGTTGATAAACAGGCGCGTTCTGCATTAGCTGAACATGTTGTTTATTGTCGTCGTCTGGA CAGAATTACTTTACCTTTTGTCGGTACTTTATATTCTCTTATTACTGGCTCGAAAATGCCTCTGCCTAAATTACATGTTGGCGTTGTTAAATATGGCGATTCTCAATTAAGCCC TACTGTTGAGCGTTGGCTTTATACTGGTAAGAATTTGTATAACGCATATGATACTAAACAGGCTTTTTCTAGTAATTATGATTCCGGTGTTTATTCTTATTTAACGCCTTATTTA TCACACGGTCGGTATTTCAAACCATTAAATTTAGGTCAGAAGATGAAATTAACTAAAATATATTTGAAAAAGTTTTCTCGCGTTCTTTGTCTTGCGATTGGATTTGCATCAGCA TTTACATATAGTTATATAACCCAACCTAAGCCGGAGGTTAAAAAGGTAGTCTCTCAGACCTATGATTTTGATAAATTCACTATTGACTCTTCTCAGCGTCTTAATCTAAGCTAT CGCTATGTTTTCAAGGATTCTAAGGGAAAATTAATTAATAGCGACGATTTACAGAAGCAAGGTTATTCACTCACATATATTGATTTATGTACTGTTTCCATTAAAAAAGGTAAT TCAAATGAAATTGTTAAATGTAATTAATTTTGTTTTCTTGATGTTTGTTTCATCATCTTCTTTTGCTCAGGTAATTGAAATGAATAATTCGCCTCTGCGCGATTTTGTAACTTGG TATTCAAAGCAATCAGGCGAATCCGTTATTGTTTCTCCCGATGTAAAAGGTACTGTTACTGTATATTCATCTGACGTTAAACCTGAAAATCTACGCAATTTCTTTATTTCTGTT TTACGTGCAAATAATTTTGATATGGTAGGTTCTAACCCTTCCATTATTCAGAAGTATAATCCAAACAATCAGGATTATATTGATGAATTGCCATCATCTGATAATCAGGAATAT GATGATAATTCCGCTCCTTCTGGTGGTTTCTTTGTTCCGCAAAATGATAATGTTACTCAAACTTTTAAAATTAATAACGTTCGGGCAAAGGATTTAATACGAGTTGTCGAATTG TTTGTAAAGTCTAATACTTCTAAATCCTCAAATGTATTATCTATTGACGGCTCTAATCTATTAGTTGTTAGTGCTCCTAAAGATATTTTAGATAACCTTCCTCAATTCCTTTCAA CTGTTGATTTGCCAACTGACCAGATATTGATTGAGGGTTTGATATTTGAGGTTCAGCAAGGTGATGCTTTAGATTTTTCATTTGCTGCTGGCTCTCAGCGTGGCACTGTTGC AGGCGGTGTTAATACTGACCGCCTCACCTCTGTTTTATCTTCTGCTGGTGGTTCGTTCGGTATTTTTAATGGCGATGTTTTAGGGCTATCAGTTCGCGCATTAAAGACTAAT AGCCATTCAAAAATATTGTCTGTGCCACGTATTCTTACGCTTTCAGGTCAGAAGGGTTCTATCTCTGTTGGCCAGAATGTCCCTTTTATTACTGGTCGTGTGACTGGTGAAT CTGCCAATGTAAATAATCCATTTCAGACGATTGAGCGTCAAAATGTAGGTATTTCCATGAGCGTTTTTCCTGTTGCAATGGCTGGCGGTAATATTGTTCTGGATATTACCAGC AAGGCCGATAGTTTGAGTTCTTCTACTCAGGCAAGTGATGTTATTACTAATCAAAGAAGTATTGCTACAACGGTTAATTTGCGTGATGGACAGACTCTTTTACTCGGTGGCC TCACTGATTATAAAAACACTTCTCAGGATTCTGGCGTACCGTTCCTGTCTAAAATCCCTTTAATCGGCCTCCTGTTTAGCTCCCGCTCTGATTCTAACGAGGAAAGCACGTT ATACGTGCTCGTCAAAGCAACCATAGTACGCGCCCTGTAGCGGCGCATTAAGCGCGGCGGGTGTGGTGGTTACGCGCAGCGTGACCGCTACACTTGCCAGCGCCCTAG CGCCCGCTCCTTTCGCTTTCTTCCCTTCCTTTCTCGCCACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGCTTTACGGC ACCTCGACCCCAAAAAACTTGATTTGGGTGATGGTTCACGTAGTGGGCCATCGCCCTGATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGAC TCTTGTTCCAAACTGGAACAACACTCAACCCTATCTCGGGCTATTCTTTTGATTTATAAGGGATTTTGCCGATTTCGGAACCACCATCAAACAGGATTTTCGCCTGCTGGGG CAAACCAGCGTGGACCGCTTGCTGCAACTCTCTCAGGGCCAGGCGGTGAAGGGCAATCAGCTGTTGCCCGTCTCACTGGTGAAAAGAAAAACCACCCTGGCGCCCAATA CGCAAACCGCCTCTCCCCGCGCGTTGGCCGATTCATTAATGCAGCTGGCACGACAGGTTTCCCGACTGGAAAGCGGGCAGTGAGCGCAACGCAATTAATGTGAGTTAGC TCACTCATTAGGCACCCCAGGCTTTACACTTTATGCTTCCGGCTCGTATGTTGTGTGGAATTGTGAGCGGATAACAATTTCACACAGGAAACAGCTATGACCATGATTACGA ATTCGAGCTCGGTACCCGGGGATCCTCCGTCTTTATCGAGGTAACAAGCACCACGTAGCTTAAGCCCTGTTTACTCATTACACCAACCAGGAGGTCAGAGTTCGGAGAAAT GATTTATGTGAAATGCGTCAGCCGATTCAAGGCCCCTATATTCGTGCCCACCGACGAGTTGCTTACAGATGGCAGGGCCGCACTGTCGGTATCATAGAGTCACTCCAGGG CGAGCGTAAATAGATTAGAAGCGGGGTTATTTTGGCGGGACATTGTCATAAGGTTGACAATTCAGCACTAAGGACACTTAAGTCGTGCGCATGAATTCACAACCACTTAGA AGAACATCCACCCTGGCTTCTCCTGAGAA

Sequence of thiolated DNA strand:
5’-ThioMC6-D/TTTTTTTTTTTTTTTTTTTT-3'.

Table S2. Sequence of DNA staple strands

Name	Sequence
O[47]	ACAATATTTTTGAATGAGGTGAGGTCGCCATTAGCCAGCA
0[79]	CCTGAAAGCGTAAGGTTTGGATTAGAGACTACCTTTTTAACCTCCGGCT
0[153]	GACTCCAACGTCAAAGAAGGCGTTTTTCTGACCCCTGTTTA
O[185]	GAACAAGAGTCCACAAGCAAGCCCAATGAAATAGCAATAGCTATCTTAC
0[259]	TCGGCAAAATCCCTTAATACATAAATTAAGACTAAGTTTA
0 [291]	AAAATCCTGTTTGAGAGCCACCATAGGTGTATCACCGTACTCAGGAGGT
0[365]	CCTTCACCGCCTGGCCTTCCACAGGTAACACTTCTTTCCA
0[397]	ACCAGTGAGACGGGGAGGCTTTGAATTTCAACTTTAATCATTGTGAATT
0 [471]	TGAATCGGCCAACGCGTGCAGATATAGAAAGAACTATCAT
0 [503]	GGGAAACCTGTCGTTCCTTTTGAGTAAAGATTCAAAAGGGTGAGAAAGG
0 [577]	GGGGTGCCTAATGAGTGGTAATCGCAGGTCATCAGAAAAG
0[609]	CGAGCCGGAAGCATCCAGGCAAACAGGGCTTAAGCTACGTGGTGCTTGT
0[636]	TATCCGCTCACACATAAATCATTTCCAGCAGA
1[32]	ATAGCCCTAAAGGGTTATATAACGGCACAG
1[72]	GATGCAAATAGGTCTGATACTTCTGAATAACGA
1[96]	AAGAACGCGAGAAAACTTTTTCAAACCGTCTATCATCTGGCCAACAGAATTAAGAC
1[138]	TAGTTAATTTCCCTTTTTAAGAAGAACGTG
1[178]	CCGAACAAGCAAGAAAGTTTTTATTTTCATGCG
1[202]	ACCGAGGAAACGCAATAATAACGGAAGAATAGCCCGAGATAGGGTTGAAGAGAGAT
1[244]	AAAGAACTGGCCCGCCACCCTCATCCGAAA
1[284]	AGAACCGAGCCCGGAACCGGAACCGCCTCCGTT
1[308]	CACCCTCATTTTCAGGGATAGCAAGTTGCAGCAAGCGGTCCACGCTGGTACCAGGC
1[350]	GGAACCCATGTTGCGATTTTAAGTGATTGC
1[390]	ACCAGTCAGATGGTTTAGGACTAAAGACTTGAA
1[414]	AAATCTACGTTAATAAAACGAACTGGCGGTTTGCGTATTGGGCGCCAGGCCCTGAC
1[456]	AACATTATTACACAGTCAAATCAGCATTAA
1[496]	TTCAACCAATGTGTAGTAAGAGGTCATTTTGCA
1[520]	TAATGCCGGAGAGGGTAGCTATTTTCACATTAATTGCGTTGCGCTCACAATTTTTA
1[562]	TCTACAAAGGCGATAAAGACGGAAAAGCCT
1[602]	CGAGCTCATGAGTAAAGCGCCATTCGCCATTGA
1[626]	TCATAGCTGTTTCCTGTGTAATGCGCGAACTG
$2[20]$	ACGAACCACTCCGAACTCTGATCTGTAAGCAA
2[48]	TAGGTTACACGGAATTCATCAATATA
$2[87]$	TCAAAATCATCCAATCCCTTCTGA
2[126]	GTTTGAAAGAAGAGTCAATAGTAAATCGTCGC
2[154]	CGAAGCATCAAACAAGTACCGCACTC
2[193]	ATAATAAGAAGTTACCCCAGTTTG
2[232]	CAGTATGTACAAGAATTGAGTAGACGGGAGAA
2[260]	TTAGTAATGAGGCATAATCAAAATCA

2[299]	ATAAGTATCCACCCTCAGCAGGCG	core
2[338]	CCAGTACAAGTGCCGTCGAGAAAGTATTAAGA	core
2[366]	ACCTTAACCACAGAACGAGGGTAGCA	core
2[405]	TGGGCTTGAGGACGTTTTCTTTTC	core
2[444]	AGATTTAGACACCAGAACGAGAACCGGATATT	core
2[472]	CCGGAGAGGCATGATTAGAGAGTACC	core
2[511]	GCCTGAGTGTTCTAGCTTCCAGTC	core
2[550]	CTGGAGCACTCATATATTTTAAAACATTATGA	core
2[578]	TACCTCTATTAAGGCACCGCTTCTGG	core
2[617]	TTGGTGTAGAATTCGTACAACATA	core
3[21]	AGATAAAACAGGCTATTAGTCTTTGAAATTGT	core
3[56]	ATCCTGATTAATACGTTATATGTAAATGCT	core
3[88]	TAGCTTAGGATAGAACGCAAGACA	core
3[104]	GCTGATACCGACCGTGTGATAAATGGCGAAAAATATATTT	core
3[162]	ATCGAGAACTATTAAAAAGTAAGCAGATAG	core
3[194]	CTAATATCGTGTTGTTAGAAGGAA	core
3[210]	AACCCTAGCAAACGTAGAAAATACTAAATCAAAATACCCA	core
3[268]	CCGGAACCATGGTGGTGAACCGCCACCCTC	core
3[300]	TTGCTCAGTTTGCCCCAGAGCCAC	core
3[316]	GGATAAACTACAACGCCTGTAGCACTGAGAGAGCCCAATA	core
3[374]	ACGGCTACACAACAGCAACTGGCTCATTAT	core
3[406]	TAAGGCTTGGTGGTTTGGGAAGAA	core
3[422]	GAGAAGAATACCACATTCAACTAACGGGGAGAAACGGAAC	core
3[480]	TTTAATTGCGCCAGCTCCATCAATATGATA	core
3[512]	AGGATAAATGCCCGCTTGATAAAT	core
3[528]	GAACCAACAAGAGAATCGATGAACGAGCTAACTTGAGAGA	core
3[586]	TGCCGGAAAAAAGTGTGGATCCCCGGGTAC	core
3[618]	CGCATTTCAATTCCACAATCATGG	core
4[71]	TATCATCATCATTTGATCTGGTCAGTTGGC	core
4[177]	TTTCCTTATTGTCCAGATTGAGAATCGCCA	core
4[283]	CATAGCCCCATCACCATTCAACCGATTGAG	core
4[389]	ATCGTCACCTTATCAGGAGTGAGAATAGAA	core
4[495]	AACCAGACCAGAAAACTTTGCCAGAGGGGG	core
4[601]	CCTCAGGAATAAATGTAAATTCGCATTAAA	core
5[40]	GCAAATGACAGTTGAATTAGAGCCGTCAATA	core
5[72]	CTCAAATATCAAACAACACCAGAAGAAAACAGA	core
5[146]	GTATCATACAACGCCACCGACAAAAGGTAAA	core
5[178]	AAGCCAACGCTCAATAAATCAATAAATAGAAGG	core
5[252]	TTTTGTCAAGGTAAATTTTGGGAATTAGAGC	core
5[284]	CCAGCGCCAAAGACCCGTCATCGGCCACCCTCA	core
5[358]	GACGTTAGACTAAAGGAGGAGCCTTTAATTG	core
5[390]	CTAAACAACTTTCAACAAAGGCCGCGCCACTAC	core
5[464]	AACCCTCGAAAATGTTCCTCAAATGCTTTAA	core
5[496]	TAGCGAGAGGCTTTCGGATTCGAGCGCTCAACA	core
5[570]	CCCCAAAATAAATCAGTGTAGCCAGCTTTCA	core

5[602]	AAATTGTAAACGTTATAGACGACGATCTTCGCT	core
6[55]	AAATCAAAAAATCTAATATCAGATGATGGCTCA	re
6[161]	TATTTAATGCGTTATAAACGGGTATTAAACTAA	ore
6[267]	GGAGGGACAATCAATAGTTTGCCATCTTTTTGG	ore
6[373]	AGGAACATAAATGAATGAAAGACAGCATCGGCC	ore
6[479]	TAATAGTTTTACCAGACTCCAACAGGTCAGAAC	ore
6[585]	TTTTTGTACAGGAAGACCAGCCAGCTTTCCAAC	ore
7[21]	AGCACTAACAAACCGCCTGCAACATGGGCACG	ore
7[56]	GATAATAATTCCTGATAGCATCACCTTGCTGAAC	ore
7[84]	TATTAGACTTTAAAGAAACCGTTATTAATCAGATGA	ore
7[127]	AATAAGAGAATACCGGAATCATAAAATTTTCC	ore
7[162]	GTAATTCCATTCCAAGCAAATTCTTACCAGTATA	ore
7[190]	AAACAACATGTTAGAAACCAGTCCTGAAGCGAACCT	ore
7[233]	CCGTCACCGACAAAAGAAACGCAAACACCCTG	core
7[268]	CAGCAAACTTATTAGCGAAAATTCATATGGTTTA	core
7[296]	ACCATTAGCAAGGCGCGTTTTAATCAGTCAGCATTG	core
7[339]	CCAAAAAAAAGTAGCGTAACGATCCTCCTCAA	re
7[374]	TATCGGTCTCAGCAGCTTTCTGTATGGGATTTTG	ore
7[402]	GGTGAATTTCTTGGGAGTTAACCATCGCATACACTA	re
7[445]	TAAATATTCATGAATTACGAGGCAAAATCAAC	ore
7[480]	ACAGTTCGGAAGCAAACGACGATAAAAACCAAAA	re
7[508]	TAAATCAAAAATGCGTTTTAATTGCATCAAGTTTCA	core
7[551]	AATTCGCGTCTCAATCATATGTACTACTTTTG	core
7[586]	TCAACATGATCGCACTTTGTATAAGCAAATATTT	core
7[614]	AACCCGTCGGATTTTGAGGGGGTCACGTAGGCGATT	core
8[71]	CCTACCATAAACAATTGAATACCAAGTTAC	core
8[106]	CTTAGAATCCTGGAAACAGTACATGAGCCAGT	core
8[177]	CCGCGCCCAAACGATTACAATTTTATCCTG	core
8[212]	AACAAAGTCAGAATAGCAGCCTTTAATTATCA	core
8[283]	CCTCAGAACCAGTGCCTAAAGCCAGAATGG	core
8[318]	GAGAAGGATTACAGTTAATGCCCCGAAAATCT	core
8[389]	TTCCATTAATTTGAAATGTATCATCGCCTG	core
8[424]	GTAACAAAGCTACCAGGCGCATAGAATCGTCA	core
8[495]	AGCTTAATTAATCATACATTTCGCAAATGG	core
8[530]	CGGGAGAAGCCAATTAAGCAATAATCAAAAAT	core
8[601]	TGTTGGGAACGCCAAACTTTCTCAGGAGAA	core
8[636]	AATATAGGGGCACGCTCGCCCTGGTCTTTAGG	core
9[40]	ATATACAGCGCAGAGGGAAAACAA	core
9[64]	CGGGAGAAACAATAACGGATTCGCCTTAGTGGAAGGGTTAGAA	core
9[107]	TATTAATTTTACTAGAAAAAGTAAATTTAATG	core
9[146]	CCCGACTTCCAACGCTATTTATCC	core
9[170]	TTAAATCAAGATTAGTTGCTATTGGATGACGTAGGAATCATTA	core
9[213]	TTAACTGAAGACACCACGGAATCCTTATTACG	core
9[252]	ACAGGAGGAGTCTCTGTGGTAATA	core
9[276]	TTGGCCTTGATATTCACAAACAACTGGGGCTCAGAGCCGCCAC	core

9[319]	GGCTGAGATAAAGTTTTGTCGGAGTTTCGTCA	core
9[358]	AAACACTCGTGTCGAATAAGGGAA	core
9[382]	TTATACCAAGCGCGAAACAAAGTATCAGTTTTCATGAGGAAGT	core
9[425]	CATTACCCTAGTAAGAGCAACTTCATCAGTTG	core
9[464]	TTCCATATCCTGTTTAGTAGTAGC	core
9[488]	CTGCGAACGAGTAGATTTAGTTTGGTAACTGCGGATGGCTTAG	core
9[531]	CCCTGTAACCCGGTTGATAATTGCCTGAGAGT	core
9[570]	AAGTTGGGTGGATGTTTGTCAACC	core
9[594]	AGTCACGACGTTGTAAAACGACGCGGGGCTCAGGCTGCGCAAC	core
9[637]	CTCGTCGGGTGCCACGCTGAGAAAAATACCGA	core
10[55]	AAAATCGTAACAGTACTTTGCACGTGAGCGGAAT	core
10[95]	TGAGTGAATAACCTGATTGCTTTTCATTTG	core
10[161]	AATCTTAGCGGGAGGTAAATCAGATTCGGCTGTC	core
10[201]	CATAAAAACAGTTGCACCCAGCTTTTTGTT	core
10[267]	AAAGCGCTTGAGGCAGCAGAGCCACATTTTCGGT	core
10[307]	AACCTATTATTATAAATCCTCATTTGAGTA	core
10[373]	ATAAATTATCTTTGACATACGTAATTTTTGCGGG	core
10[413]	CATCAAGAGTAACAACGGAGATTGAGGACA	core
10[479]	TCAATAAAACAGTTGAAATGCTGTATTCAAAGCG	core
10[519]	AAAGCTAAATCGACCATTAGATACAGGCAA	core
10[585]	GCCAGGGTAACGCCAGGTGCGGGCCCAGTATCGG	core
10[625]	TACCGACAGTGGCCAGTGCCAAGATAACCC	core
11[48]	AATTAATTACATTTTCAAAATTACTTTTACAT	core
11[80]	AATTACCTTTTTTAATTGAAAACATGCTTCTGTGAATTTA	core
11[154]	CAATCCAAATAAGAATAGCAAGCTTTGAAGCC	core
11[186]	TAACGTCAAAAATGAAAGGGTAATAGCGCATTTAAGCCCA	core
11[260]	AGTTTTAACGGGGTCGCCACCCTGTCAGACGA	core
11[292]	ACAGTGCCCGTATAAAGGATTAGCAAACATGAGGGTTGAT	core
11[366]	CCGAACTGACCAACACGGGTAAACCCCAGCGA	core
11[398]	GATGAACGGTGTACAGGCTCATTCTTGACAAGTAGTAAAT	core
11[472]	ATTAACATCCAATAGCTGAATATTTCCCAATT	core
11[504]	GGCAAAGAATTAGCAATTTATTTCTGTACCAAAATGCAAT	core
11[578]	TTATGACAATGTCCGGGCGATCGGGTTTTCCC	core
11[610]	CGCTTCTAATCTATTTCTTGAATCCCCTGCCACCTCCTGG	core
4[39]	GTATTAACCTAATAGAAGGAATTG	AuNP Capture
4[145]	GAATAAACATAAAGTAACATGTAA	AuNP Capture
4[251]	CAACATATTTGAGCCAATTGACGG	AuNP Capture
4[357]	CTCATAGTGCTCCAAAAATTGCGA	AuNP Capture
4[463]	GCCAAAAGTGAATCCCTAGACTGG	AuNP Capture
4[569]	TAGCATGTGGCCTTCCCTCATTTT	AuNP Capture
6[31]	AGGAAGGTTATCTAAAATAAGTGACTCTATGA	AuNP Capture
6[137]	TTTAGGCAGAGGCATTTTCAAATCAATATATG	AuNP Capture
6[243]	AAATTATTCATTAAAGGTGACAGAGAGAATAA	AuNP Capture
6[349]	ATAATAATTTTTTCACGTTCTGCCTATTTCGG	AuNP Capture

6[455]	ATAGCGTCCAATACTGCGGGCTGGCTGACCTT	AuNP Capture
6[561]	TTAACCAATAGGAACGCCAAGCCTCAGAGCAT	AuNP Capture
4[109]	CATTTTGCGGAACACAAACAATTCGACAAAAG	Dimer connector
5[110]	GTAACTTCAGGTTTAACGTTTTAAAAGTTTGA	Dimer connector
8[39]	AATAAAGAAACATCAACGAATTATTCATTTCAATTACC	Dimer connector
10[17]	TGAGCAACTCGTATTAAATCCTTTGCCCGCCTCAATCAATAGGATTTAGAAG	Dimer connector
11[18]	AAGATGATGAAACAAATTGCGTAGATTATTAT	Dimer connector
4[109]	CATTTTGCGGAACACAAACAATTCGACGCCAG	Trimer connector
4[215]	ATTTACGAGCATGTCAGCTAATGCAGAAAAAG	Trimer connector
5[110]	GTAACGCGAGGCGTTTTACAAGAAAAATAATA	Trimer connector
5[216]	TCCCATTCAGGTTTAACGTTTTAAAAGTTTGA	Trimer connector
8[39]	AATAAAGAAACATCAACGAATTATTCATTTCAATTACC	Trimer connector
8[145]	CTTATCCGGCCATATTAACGAGCGTCTTTCCAGAGCCT	Trimer connector
10[17]	TGAGCACGCGCCTGTTTATCAACAATAGACAGTAGGGCTTAACGACGACAAT	Trimer connector
10[123]	AATTTAACTCGTATTAAATCCTTTGCCCGCCTCAATCAATAGGATTTAGAAG	Trimer connector
11[18]	AAGATGATGAAACAAATTGCGTAGATTTCCTA	Trimer connector
11[124]	TTACAAAATAAACAGTATTCTAAGAACATTAT	Trimer connector
4[109]	CATTTTGCGGAACACAAACAATTCGACATGGC	Tetramer connector
4[321]	AGCGTCAGACTGTAGCCGGAAACGTCAAAAAG	Tetramer connector
5[110]	GTAACCCAGAGCCGCCGCAGCGACAGAATCAA	Tetramer connector
5[322]	GTTTGTTCAGGTTTAACGTTTTAAAAGTTTGA	Tetramer connector
8[39]	AATAAAGAAACATCAACGAATTATTCATTTCAATTACC	Tetramer connector
8[251]	GAGCCGCCGAGTGTACAATTTACCGTTCCAGTAAGCGT	Tetramer connector
10[17]	TGAGCCCAATGAAACCATCGATAGCAGCAAAAAGGGCGACAGTAGCACCATT	Tetramer connector
10[229]	CATACAACTCGTATTAAATCCTTTGCCCGCCTCAATCAATAGGATTTAGAAG	Tetramer connector
11[18]	AAGATGATGAAACAAATTGCGTAGATTCCTTT	Tetramer connector
11[230]	TTTTGATGATACAGACCAGAACCACCAATTAT	Tetramer connector
4[109]	CATTTTGCGGAACACAAACAATTCGACCCGGA	1D connector
4[427]	CGCTGAGGCTTGCAAAACAGCTTGATAAAAAG	1D connector
5[110]	GTAACAAGAGGCAAAAGACCACGCATAACCGA	1D connector
5[428]	TATATTTCAGGTTTAACGTTTTAAAAGTTTGA	1D connector
8[39]	AATAAAGAAACATCAACGAATTATTCATTTCAATTACC	1D connector
8[357]	GAAGGCACGTCAATCAATCCGCGACCTGCTCCATGTTA	1D connector
10[17]	TGAGCCCGATAGTTGCGCCGACAATGACAACAGTTTCAGCGCTTGCTTTCGA	1D connector
10[335]	CTTAGAACTCGTATTAAATCCTTTGCCCGCCTCAATCAATAGGATTTAGAAG	1D connector
11[18]	AAGATGATGAAACAAATTGCGTAGATTTCGGT	1D connector
11[336]	ACGAGGCGCAGACGCAACCTAAAACGAATTAT	1D connector

References

1. Douglas, S. M.; Chou, J. J.; Shih, W. M., DNA-nanotube-induced alignment of membrane proteins for NMR structure determination. P Natl Acad Sci USA 2007, 104 (16), 6644-6648.
2. Douglas, S. M.; Marblestone, A. H.; Teerapittayanon, S.; Vazquez, A.; Church, G. M.; Shih, W. M., Rapid prototyping of 3D DNA-origami shapes with caDNAno. Nucleic Acids Res 2009, 37 (15), 5001-5006.
3. Wang, P. F.; Gaitanaros, S.; Lee, S.; Bathe, M.; Shih, W. M.; Ke, Y. G., Programming SelfAssembly of DNA Origami Honeycomb Two-Dimensional Lattices and Plasmonic Metamaterials. J Am Chem Soc 2016, 138 (24), 7733-7740.
4. Choyke, W.; Palik, E. D., Handbook of optical constants of solids. Palik (ed.), Academic Press, Inc 1985, 587.
5. Johnson, P. B.; Christy, R.-W., Optical constants of the noble metals. Physical review B 1972, 6 (12), 4370.
