9-Ethyladenine: Mechanochemical Synthesis,

Characterization and DFT Calculations of Novel

Cocrystals and Salts

Yannick Roselló ${ }^{\dagger}$, Mónica Benito ${ }^{\ddagger}$, Núria Bagués ${ }^{\ddagger}$, Núria Martínez ${ }^{\ddagger}$, Alba Moradell ${ }^{\ddagger}$, Ignasi Mata ${ }^{\ddagger}$, Judit Galcerà ${ }^{\ddagger}$, Miquel Barceló-Oliver ${ }^{\dagger}$, Antonio Frontera ${ }^{\text {* }}$, Elies Molins ${ }^{\ddagger{ }^{\ddagger}}$

${ }^{\dagger}$ Departament de Química, Universitat de les Illes Balears, Ctra. Valldemosa km 7.5, E-07122 Palma de Mallorca, Spain
${ }^{\dagger}$ Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), c/ Til•lers, 1, Campus UAB, 08193 Bellaterra, Spain

TABLE OF CONTENTS

Experimental details for the synthesis of the new salts and cocrystals.
Figure S1 PXRD comparison of experimental and calculated patterns for all the compounds.
Figure S2 TGA - DSC comparison
Figure S3 FT-IR spectra comparison
Table S1 Hydrogen bonds tables

Experimental details for the synthesis of the new salts and cocrystals

Synthesis of 9-ethyladenine- malonic acid (2:1) hydrated salt (1). A mixture of 9ethyladenine $(50.20 \mathrm{mg}, 0.308 \mathrm{mmol})$ and malonic acid $(31.79 \mathrm{mg}, 0.306 \mathrm{mmol})$ was placed in the grinding jar with two drops of water. The mixture was milled for 30 min .

Suitable crystals were obtained by dissolving 26 mg of product obtained by grinding in a mixture of ethyl acetate $(10 \mathrm{~mL})$ and absolute ethanol $(5 \mathrm{~mL})$, filtered and left to evaporate at room temperature. After three weeks, plate-shaped crystals were collected.

Synthesis of 9-ethyladenine- succinic acid salt (1:1) (2). A mixture of 9-ethyladenine $(101.07 \mathrm{mg}, 0.617 \mathrm{mmol})$ and succinic acid $(72.56 \mathrm{mg}, 0.614 \mathrm{mmol})$ was placed in the grinding jar with two drops of water. The mixture was milled for 30 min .

Synthesis of 9-ethyladenine- succinic acid (1:1) salt (2). A mixture of 9-ethyladenine $(101.36 \mathrm{mg}, 0.621 \mathrm{mmol})$ and succinic acid $(72.52 \mathrm{mg}, 0.614 \mathrm{mmol})$ was placed in the grinding jar with two drops of methanol. The mixture was milled for 30 min .

Suitable crystals were afforded by dissolving 25 mg of product obtained by grinding in a mixture of acetonitrile (3 mL) and methanol (3 mL), filtered and left to evaporate at room temperature. After five days, needle-shaped crystals were collected.

Synthesis of 9-ethyladenine- succinic acid (2:1) cocrystal (3). A mixture of 9ethyladenine ($100.16 \mathrm{mg}, 0.614 \mathrm{mmol})$ and succinic acid $(36.23 \mathrm{mg}, 0.307 \mathrm{mmol})$ was placed in the grinding jar with two drops of water. The mixture was milled for 30 min .

Synthesis of 9-ethyladenine- succinic acid (2:1) cocrystal (3). A mixture of 9ethyladenine ($100.76 \mathrm{mg}, 0.617 \mathrm{mmol}$) and succinic acid ($36.36 \mathrm{mg}, 0.308 \mathrm{mmol}$) was placed in the grinding jar with two drops of methanol. The mixture was milled for 30 min .

Suitable crystals were obtained by dissolving 25 mg of product obtained by grinding in dimethyl sulfoxide (0.5 mL), filtered and left to evaporate at $60^{\circ} \mathrm{C}$. After six days, plateshaped crystals were collected.

Synthesis of 9-ethyladenine- glutaric acid (1:1) cocrystal (4). A mixture of 9-ethyladenine ($100.42 \mathrm{mg}, 0.615 \mathrm{mmol}$) and glutaric acid $(81.04 \mathrm{mg}, 0.613 \mathrm{mmol})$ was placed in the grinding jar with two drops of water. The mixture was milled for 30 min .

Suitable crystals were afforded by dissolving 6 mg of product obtained by grinding in dimethyl sulfoxide (0.5 mL), filtered and left to evaporate at $60^{\circ} \mathrm{C}$. After five days, prismatic crystals were collected.

Synthesis of 9-ethyladenine- fumaric acid hydrated (1:1:1) salt (5). A mixture of 9ethyladenine ($100.31 \mathrm{mg}, 0.615 \mathrm{mmol}$) and fumaric acid $(71.17 \mathrm{mg}, 0.613 \mathrm{mmol})$ was placed in the grinding jar with two drops of water. The mixture was milled for 30 min .

Suitable crystals were afforded by dissolving 28 mg of product obtained by grinding in methanol (13.5 mL), filtered and left to evaporate at room temperature. After two weeks, prismatic crystals were collected.

Synthesis of 9-ethyladenine- fumaric acid (2:1) cocrystal (6). A mixture of 9-ethyladenine ($100.40 \mathrm{mg}, 0.615 \mathrm{mmol}$) and fumaric acid $(35.58 \mathrm{mg}, 0.307 \mathrm{mmol})$ was placed in the grinding jar with two drops of water. The mixture was milled for 30 min .

Suitable crystals were afforded by dissolving 6 mg of product obtained by grinding in dimethyl sulfoxide (0.5 mL), filtered and left to evaporate at $60^{\circ} \mathrm{C}$. After six days, prismatic crystals were collected.

Synthesis of 9-ethyladenine- fumaric acid (2:1) cocrystal (6). A mixture of 9-ethyladenine ($100.09 \mathrm{mg}, 0.613 \mathrm{mmol}$) and fumaric acid $(36.38 \mathrm{mg}, 0.313 \mathrm{mmol})$ was placed in the grinding jar with two drops of methanol. The mixture was milled for 30 min .

Synthesis of 9-ethyladenine- adipic acid (2:1) cocrystal (7). A mixture of 9-ethyladenine ($49.97 \mathrm{mg}, 0.306 \mathrm{mmol}$) and adipic acid $(44.83 \mathrm{mg}, 0.307 \mathrm{mmol})$ was placed in the grinding jar with two drops of water. The mixture was milled for 30 min .

Crystals of this compound were obtained by dissolving 25.37 mg of 9 -ethyladenine and 22.24 mg of adipic acid in a mixture of ethanol and deionized water (in a ratio 20:1) by slow evaporation.

Figure S1. PXRD comparison of experimental and calculated patterns.

Figure S2. TGA and DSC comparison.

Figure S3. Comparison of FT-IR spectra.

Table S1. Hydrogen bond parameters for the obtained structures.

Compound	D-H...	D-H (£)	$\mathbf{H} \cdots \mathbf{A}(\AA)$	D $\cdots \mathbf{A}(\AA)$	<(DHA)	Symmetry code
(1)	$\mathrm{N}(1)-\mathrm{H} 1 \cdots \mathrm{O}(1)$	0.86	1.75	2.606(3)	171.3	$2-x,-1-y, 2-z$
	$\mathrm{N}(6)-\mathrm{H}(6 \mathrm{~A}) \cdots \mathrm{O}(2)$	0.86	1.97	2.821(3)	171.8	$2-\mathrm{x},-1-\mathrm{y}, 2-\mathrm{z}$
	$\mathrm{N}(6)-\mathrm{H} \cdots \mathrm{N}(7)$	0.86	2.15	2.982(3)	161.8	$-x+1,-y,-z+2$
	$\mathrm{C}(2)-\mathrm{H}(2) \cdots \mathrm{O}(1)$	0.93	2.26	3.170(4)	164.2	$1+\mathrm{x}, \mathrm{y}, \mathrm{z}$
	$\mathrm{O}(4)-\mathrm{H}(4) \cdots \mathrm{O}(5)$	0.82	1.76	$2.556(3)$	164.3	$2-x,-1-y, 1-z$
	$\mathrm{O}(5)-\mathrm{H}(51) \cdots \mathrm{O}(3)$	0.951(18)	1.85(2)	2.798(3)	170(4)	$\mathrm{x}+1, \mathrm{y}, \mathrm{z}$
	$\mathrm{O}(5)-\mathrm{H}(52) \cdots \mathrm{O}(2)$	0.954(18)	1.717(19)	2.662(3)	170(3)	
(2)	$\mathrm{N}(1)-\mathrm{H}(1) \cdots \mathrm{O}(20)$	0.976(19)	1.730(19)	$2.6852(19)$	165.1(17)	$\mathrm{x}-1, \mathrm{y}, \mathrm{z}$
	$\mathrm{N}(6)-\mathrm{H}(6 \mathrm{~A}) \cdots \mathrm{O}(21)$	0.91(2)	1.88(2)	2.760(2)	162.9(18)	$-x+1,-y+1,-z+1$
	$\mathrm{N}(6)-\mathrm{H}(6 \mathrm{~B}) \cdots \mathrm{N}(7)$	0.899(19)	2.05(2)	2.914(2)	159.9(18)	$-x+1,-y+1,-z+2$
	$\mathrm{O}(30)-\mathrm{H}(30) \cdots \mathrm{O}(20)$	0.94(2)	1.60(2)	$2.5466(16)$	179.3(19)	$\mathrm{x}-1, \mathrm{y}, \mathrm{z}$
(3)	$\mathrm{C}(8)-\mathrm{H}(8) \cdots \mathrm{O}(1)$	0.93	2.36	3.183(4)	147.6	-x+3/2, y-1/2, -z+1/2
	$\mathrm{N}(6)-\mathrm{H}(6 \mathrm{~A}) \cdots \mathrm{N}(7)$	0.86	2.19	3.044(4)	174.5	$-\mathrm{x}+1 / 2, \mathrm{y}+1 / 2,-\mathrm{z}+1 / 2$
	$\mathrm{N}(6)-\mathrm{H}(6 \mathrm{~B}) \cdots \mathrm{N}(1)$	0.86	2.21	3.055(4)	165.6	-x+1/2, y-1/2, -z+1/2
	$\mathrm{O}(2)-\mathrm{H}(2 \mathrm{~A}) \cdots \mathrm{N}(3)$	0.82	1.86	2.664(3)	167.2	-x+3/2, y-1/2, -z+1/2
(4)	$\mathrm{C}(2)-\mathrm{H}(2) \cdots \mathrm{N}(3)$	0.95	2.52	3.361(3)	147.2	$-\mathrm{x}+1,-\mathrm{y}+2,-\mathrm{z}+1$
	$\mathrm{N}(6)-\mathrm{H}(6 \mathrm{~A}) \cdots \mathrm{O}(22)$	0.88	2.05	2.925 (2)	169.9	
	$\mathrm{N}(6)-\mathrm{H}(6 \mathrm{~B}) \cdots \mathrm{O}(26)$	0.88	1.99	2.868(2)	171.8	$x+1,-y+3 / 2, z+1 / 2$
	$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B}) \cdots \mathrm{O}(26)$	0.99	2.53	3.331(4)	137.9	$-\mathrm{x}+1, \mathrm{y}+1 / 2,-\mathrm{z}+1 / 2$
	$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A}) \cdots \mathrm{O}(26)$	0.98	2.51	$3.398(4)$	151.4	$-\mathrm{x}+1, \mathrm{y}+1 / 2,-\mathrm{z}+3 / 2$
	$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B}) \cdots \mathrm{O}(26)$	0.98	2.56	3.459(3)	152.9	$-x+1,-y+2,-z+1$
	$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{C}) \cdots \mathrm{O}(22)$	0.98	2.60	$3.579(4)$	173.3	$-x+2, y+1 / 2,-z+3 / 2$
	$\mathrm{O}(21)-\mathrm{H}(21) \cdots \mathrm{N}(1)$	0.97(2)	1.72(2)	$2.673(2)$	167(2)	
	$\mathrm{O}(27)-\mathrm{H}(27) \cdots \mathrm{N}(7)$	0.98(3)	1.69(3)	2.658(2)	169(2)	$x-1,-y+3 / 2, z-1 / 2$
(5)	$\mathrm{N}(1)-\mathrm{H}(1) \cdots \mathrm{O}(21)$	0.89(2)	1.82(2)	2.711(4)	179(5)	
	$\mathrm{N}(6)-\mathrm{H}(6 \mathrm{~A}) \cdots \mathrm{O}(22)$	0.88	1.92	$2.793(5)$	175.4	
	$\mathrm{N}(6)-\mathrm{H}(6 \mathrm{~B}) \cdots \mathrm{N}(7)$	0.88	2.13	$2.966(5)$	158.6	-x,-y,-z+1
	$\mathrm{O}(31)-\mathrm{H}(31) \cdots \mathrm{O}(21)$	0.91(2)	1.64(2)	2.550(4)	179(5)	
	$\mathrm{O}(1 \mathrm{~W})-\mathrm{H}(1 \mathrm{~W} 1) \cdots \mathrm{O}(22)$	0.94(2)	1.86 (3)	2.790 (6)	167(9)	
	$\mathrm{O}(1 \mathrm{~W})-\mathrm{H}(1 \mathrm{~W} 2) \cdots \mathrm{O}(31)$	0.94(2)	2.05(3)	2.974(7)	166(9)	-x-1,-y,-z
(6)	$\mathrm{C}(2 \mathrm{~B})-\mathrm{H}(2 \mathrm{~B}) \cdots \mathrm{O}(4)$	0.966(18)	2.63(3)	$3.316(5)$	128(2)	-x-1/2, y-1/2, -z+1/2
	$\mathrm{C}(8 \mathrm{~A})-\mathrm{H}(8 \mathrm{~A}) \cdots \mathrm{O}(1)$	0.936(18)	2.23(2)	$3.109(5)$	156(3)	-x, -y+1, -z+1
	$\mathrm{C}(8 \mathrm{~B})-\mathrm{H}(8 \mathrm{~B}) \cdots \mathrm{O}(4)$	0.947(18)	2.32(2)	$3.131(5)$	143(3)	-x-1/2, y+1/2, -z+1/2
	$\mathrm{N}(6 \mathrm{~A})-\mathrm{H}(6 \mathrm{~A} 1) \cdots \mathrm{N}(7 \mathrm{~A})$	0.875(18)	2.187(19)	3.058(4)	174(3)	-x-1/2, y-1/2, -z+1/2
	$\mathrm{N}(6 \mathrm{~A})-\mathrm{H}(6 \mathrm{~A} 2) \cdots \mathrm{N}(1 \mathrm{~A})$	0.865(18)	2.25(2)	3.091(4)	163(3)	-x-1/2, y+1/2, -z+1/2
	$\mathrm{N}(6 \mathrm{~B})-\mathrm{H}(6 \mathrm{~B} 1) \cdots \mathrm{N}(7 \mathrm{~B})$	0.896(18)	2.154(19)	3.047(4)	175(3)	-x+1/2, y-1/2, -z+1/2
	$\mathrm{N}(6 \mathrm{~B})-\mathrm{H}(6 \mathrm{~B} 2) \cdots \mathrm{N}(1 \mathrm{~B})$	0.874(18)	2.26(2)	$3.113(4)$	165(3)	$-\mathrm{x}+1 / 2, \mathrm{y}+1 / 2,-\mathrm{z}+1 / 2$
	$\mathrm{O}(2)-\mathrm{H}(2 \mathrm{C}) \cdots \mathrm{N}(3 \mathrm{~A})$	0.854(19)	1.82(2)	2.658(4)	168(5)	-x, -y, -z+1
	$\mathrm{O}(3)-\mathrm{H}(3 \mathrm{~A}) \cdots \mathrm{N}(3 \mathrm{~B})$	0.860(19)	1.80(2)	2.647(4)	169(4)	-x-1/2, y+1/2, -z+1/2
(7)	$\mathrm{C}(2 \mathrm{~A})-\mathrm{H}(2 \mathrm{~A}) \ldots \mathrm{O}(1 \mathrm{D})$	0.93	2.56	$3.475(5)$	168.3	-x+1,y+1/2,-z+3/2
	$\mathrm{N}(6 \mathrm{~A})-\mathrm{H}(6 \mathrm{~A} 1) \ldots \mathrm{O}(2 \mathrm{C})$	0.86	2.12	2.976(4)	170.6	
	$\mathrm{N}(6 \mathrm{~A})-\mathrm{H}(6 \mathrm{~A} 2) \ldots \mathrm{O}(7 \mathrm{D})$	0.86	1.99	$2.846(4)$	171.4	
	$\mathrm{N}(7 \mathrm{~A})-\mathrm{H}(7 \mathrm{~A}) \ldots \mathrm{O}(8 \mathrm{D})$	1.027(19)	1.71(2)	2.714(4)	166(4)	

$\mathrm{C}(10 \mathrm{~A})-\mathrm{H}(10 \mathrm{~B}) \ldots \mathrm{O}(2 \mathrm{C})$	0.97	2.63	$3.431(6)$	139.7	$-\mathrm{x}+1, \mathrm{y}+1 / 2,-\mathrm{z}+3 / 2$
$\mathrm{C}(11 \mathrm{~A})-\mathrm{H}(11 \mathrm{~B}) \ldots \mathrm{O}(7 \mathrm{D})$	0.96	2.64	$3.494(8)$	148.5	$-\mathrm{x}+1, \mathrm{y}+1 / 2,-\mathrm{z}+3 / 2$
$\mathrm{C}(2 \mathrm{~B})-\mathrm{H}(2 \mathrm{~B}) \ldots \mathrm{O}(1 \mathrm{C})$	0.93	2.50	$3.414(5)$	169.2	$-\mathrm{x}+1, \mathrm{y}-1 / 2,-\mathrm{z}+3 / 2$
$\mathrm{~N}(6 \mathrm{~B})-\mathrm{H}(6 \mathrm{~B} 1) \ldots \mathrm{O}(2 \mathrm{D})$	0.86	2.10	$2.947(5)$	169.7	
$\mathrm{~N}(6 \mathrm{~B})-\mathrm{H}(6 \mathrm{~B} 2) \ldots \mathrm{O}(7 \mathrm{C})$	0.86	1.99	$2.843(5)$	168.7	$\mathrm{x}+1, \mathrm{y}, \mathrm{z}-1$
$\mathrm{C}(10 \mathrm{~B})-\mathrm{H}(10 \mathrm{D}) \ldots \mathrm{O}(2 \mathrm{D})$	0.97	2.61	$3.406(7)$	139.1	$-\mathrm{x}+2, \mathrm{y}-1 / 2,-\mathrm{z}+1 / 2$
$\mathrm{C}(11 \mathrm{~B})-\mathrm{H}(11 \mathrm{~F}) \ldots \mathrm{N}(3 \mathrm{~B})$	0.96	2.68	$3.306(9)$	123.3	
$\mathrm{O}(1 \mathrm{C})-\mathrm{H}(1 \mathrm{C}) \ldots \mathrm{N}(1 \mathrm{~A})$	$0.89(2)$	$1.80(2)$	$2.669(4)$	$167(6)$	
$\mathrm{O}(8 \mathrm{C})-\mathrm{H}(8 \mathrm{C}) \ldots \mathrm{N}(7 \mathrm{~B})$	$0.92(2)$	$1.83(3)$	$2.719(4)$	$163(5)$	$\mathrm{x}-1, \mathrm{y}, \mathrm{z}+1$
$\mathrm{O}(1 \mathrm{D})-\mathrm{H}(1 \mathrm{D}) \ldots \mathrm{N}(1 \mathrm{~B})$	$0.91(2)$	$1.78(3)$	$2.642(4)$	$156(6)$	

