Supporting Information

Selective C₂₊ Alcohol Synthesis from Direct CO₂ Hydrogenation over a Cs-Promoted Cu-Fe-Zn Catalyst

Di Xu¹, Mingyue Ding², Xinlin Hong^{1*}, Guoliang Liu^{1*}, and Shik Chi Edman Tsang³ ¹ College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China ² School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China ³ Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford, OX1 3QR, UK.

*Corresponding authors:

Email address: hongxl@whu.edu.cn; liugl@whu.edu.cn

Experimental Section

Catalyst preparation. Mixed CuFeZn oxides were prepared by using a coprecipitation method. In detail, the CuFeZn precipitates were obtained by a precipitation of Cu, Zn and Fe nitrate solution (0.2 mol L⁻¹) using aqueous $(NH_4)_2CO_3$ (0.24 mol L⁻¹) as the precipitating agent with a single-drop method at 70 °C and pH = 9 under stirring. The molar ratio of Cu:Fe:Zn was set at x:y:1. The products were collected by centrifugation and washed with deionized water for several times, followed by drying at 80 °C for 12 h. After calcination at 400 °C for 2 h, the CuFeZn ternary metal oxides were obtained. Cs modified CuFeZn catalysts were prepared by impregnating CuFeZn oxides (1 g) in a Cs₂CO₃ aqueous solution, followed by drying at 110 °C and calcination at 400 °C for 2 h. The final catalysts are denoted as x%Cs-CyFzZ_{1.0}, where x% represents the weight percent of Cs and CyFzZ_{1.0} represents Cu, Fe and Zn with a molar ratio of y:z:1.0. And the weight percent of Cs is fixed at 3% if it is not marked.

Catalyst characterization. All samples were reduced under 10% H₂/Ar flow at 350 °C prior to characterization. After cooling down to room temperature, the samples were transferred into a sample vial of liquid chromatography and we then replaced the air in the bottle with N₂. The bottle was then put into a Teflon flask containing Fe powder at the bottom and then vacuumed and filled with N₂ to purge O₂ in the flask.

Transmission Electron Microscopy (TEM) images were acquired on a JEM-2100F (JEOL) at 200 kV. After taken out from sample vial filled with protective N_2 , the sample was dispersed in ethanol and then deposited on a carbon film. The TEM imaging was

immediately performed after ethanol volatilization. The lattice d-spacing was measured with Digital Micrograph software as follows: we first drew a line vertical to lattice fringes, and then we generally counted 10-20 units of fringes to calculate the d-spacing value. N₂ sorption was used to analyze Brunauer-Emmett-Teller (BET) surface area and pore volume on an ASAP 2020 (Micromeritics). Powder X-ray diffraction (PXRD) was performed on a Bruker D8 Advances with Cu Kα radiation. The samples were scanned from 20° to 60° with a step angle of 0.02°. The crystallite size was calculated with Scherrer formula. Elemental analysis was detected by ICP-AES with a ContrAA 700 spectrometer (Analytikjena).

 H_2 temperature-programmed reduction (TPR) experiments were performed on Micromeritics Autochem 2920. The experimental procedure is described as follows: 50 mg sample was loaded on the layer of quartz wool in a U-shaped quartz tube and then heated to 150 °C with a rate of 4 °C min⁻¹ in an Ar flow (30 mL min⁻¹) for 0.5 hour to clean the sample. The experiment was carried out in a 5% H₂/Ar flow of 30 mL min⁻¹ with heating to 600 °C at a heating rate of 10 °C min⁻¹. The signal was recorded by a TCD detector.

 H_2 temperature-programmed desorption (TPD) experiments were performed as follows: 100 mg sample was reduced under 5% H_2 /Ar flow (30 mL/min) at 350 °C for 1 h and cooled down to 50 °C. Then, the gas was switched to Ar at a flow rate of 50 mL/min to purge the residual H_2 for 20 min. After that, the TPD measurements were conducted from 50 °C to 600 °C with a TCD detector. CO₂ temperature-programmed desorption (TPD) experiments were carried out as follows: 100 mg sample was reduced under 5% H₂/Ar flow (30 mL/min) at 350 °C for 1 h. Then, the gas was switched to Ar at a flow rate of 30 mL/min to purge the residual H₂ and cooled down to 50 °C. After a pre-adsorption of CO₂ in 30 mL min⁻¹ flow at 50 °C, the gas was switched to Ar at a flow rate of 50 mL min⁻¹ to purge the residual CO₂. The TPD measurements were conducted by using He as carrier from 50 °C to 600 °C with a quadrupole mass spectrometer (Hidden, QIC-20) detector.

Temperature-programmed surface reaction (TPSR) experiments were performed as follows: 50 mg sample was reduced in a 5% H₂/Ar atmosphere at 350 °C for 1 hour and cooled down to 50 °C in 30 mL min⁻¹ of Ar. After a pre-adsorption of CO in 30 mL min⁻¹ flow at 50 °C, the gas was switched to Ar at a flow rate of 50 mL min⁻¹ to purge the residual CO. The TPSR experiments were begun by using 5% H₂/Ar as carrier from 50 °C to 700 °C (10 °C min⁻¹) with a quadrupole mass spectrometer (Hidden, QIC-20) detector. The m/q of desorption species are listed as follows: H₂ (2), H₂O (18), CO₂ (44), CH₄ (16) and CO (28).

In situ diffuse reflectance Fourier transform infrared spectroscopy (DRIFTS) measurements were accomplished in an in situ reaction cell on a Bruker VERTEX 70 spectrometer with a MCT detector. The DRIFTS tests were carried out at 100 °C and 200 °C in a H_2/CO_2 (3:1) flow of 30 mL min⁻¹ at a total pressure of 0.3 MPa. The sample was reduced at 350 °C in a 10% H_2/Ar flow of 30 mL min⁻¹ for 1 h, and then purged with Ar at the same temperature for 1 h before test. The spectra were collected by 32

scans at a resolution of 4 cm⁻¹. Each spectrum was referenced to the spectrum collected at the same temperature in Ar flow. The background spectra were obtained after cooling down to the desired temperature.

Catalytic testing. The HAS from CO₂ hydrogenation was evaluated on a customized fixed-bed reactor (internal diameter of 10 mm). 0.2 g catalyst was diluted with 0.4 g quartz sand and then loaded into a stainless steel tube. Before measurement, the catalyst was reduced at 350 °C for 1 h in a 10% H₂/Ar flow of 30 mL min⁻¹. After cooling down to room temperature, the feeding gas with a $H_2/CO_2/N_2$ (N₂ as internal standard) ratio of 72/24/4 was introduced into the reactor and then pressurized to 5 MPa. Then the gas flow was set as 15 mL min⁻¹ and the reaction temperature was raised up to the desired temperature with a heating rate of 5 °C min⁻¹. The post-reactor line and valves were maintained at 150 °C to avoid product condensation. The products were analyzed online by a gas chromatograph equipped with thermal conductivity detector (TCD) and flame ionization detector (FID). CO₂ conversion was calculated using an internal standard method and product selectivity was calculated on a molar carbon basis. All data were obtained after the reaction lasts for 3 h at each temperature for the equilibrium of tail gas composition. Then the reaction temperature was continuously increased to higher temperatures to obtain other catalytic data with using the same catalysts. For the time on stream test, the reaction was kept at 310 °C. As for the referenced Cs-CxFyZ1 sample reduced by syngas, the pre-reduction treatment was performed at 350 °C for 5 h in 10% H₂/Ar flow of 15 mL min⁻¹ and 5% CO/Ar flow of 15 mL min⁻¹.

The methanol steam reforming experiment was performed on another fixed-bed reactor (internal diameter of 8 mm) equipped with a high-pressure constant current pump. 0.1 g catalyst diluted with 0.4 g quartz sand was loaded into the stainless steel tube. Before measurements, the catalyst was reduced at 350 °C for 1 h in a 10% H₂/Ar flow (30 mL min⁻¹). During the test, an aqueous solution of methanol (H₂O:CH₃OH = 2:1) at a rate of 0.1 mL min⁻¹ was fed into a vaporizer. H₂ (20 mL min⁻¹) was also introduced into the vaporizer to carry the feed vapor into the reactor at atmospheric pressure. The products were analyzed online by a gas chromatograph equipped with a TCD detector.

Discussion on the particle size of active components

CuO and ZnO are the primary components for the fresh Cs-C_yF_zZ_{1.0} catalysts (Fig. 1a). The absence of Fe₂O₃ suggests that Fe species is highly dispersed. After H₂ reduction treatment, Cu and Fe₃O₄ appear (Fig. 1b). The peak intensity trends of Cu and Fe species are consistent with their relative contents. The particle sizes of Cu and Fe₃O₄ were obtained by XRD (see Table 1). However, the Cu particle sizes over Cs-C_{0.2}F_{1.0}Z_{1.0} and Cs-C_{0.2}F_{1.0}Z_{1.0} are lacking because the content of Cu is low and the diffraction peak of Cu (111) is covered by Fe₃O₄ (400). But we can speculate the Cu size follows an order Cs-C_{0.2}F_{1.0}Z_{1.0}<Cs-C_{0.5}F_{1.0}Z_{1.0}<Cs-C_{0.8}F_{1.0}Z_{1.0} according to H₂-TPR results (Fig. S1).

Fig. S1. H_2 -TPR results of fresh Cs-C_yF_zZ_{1.0} catalysts.

The reduction peak in the temperature range of 150-300 °C is assigned to the reduction of CuO to metallic Cu along with Fe_2O_3 to Fe_3O_4 .¹⁻⁴ And the broad reduction peak at above 300 °C is ascribed to continuous reduction of Fe_3O_4 to metallic Fe.¹⁻⁴ With the increase of Cu/Fe molar ratio, the reduction peak area of CuO goes up while that of Fe_3O_4 decreases. Moreover, the reduction peak of CuO slightly shifts towards high temperature, verifying the increase in the particle size of CuO which is observed in the XRD patterns (Table 1).

Fig. S2. XRD patterns over (a) fresh and (b) reduced x%Cs-C_{0.9}F_{0.1}Z_{1.0} catalysts. Cu PDF#85-1326, CuO PDF#45-0937, ZnO PDF#79-2205, Fe₃O₄ PDF#75-1372.

Fig. S3. HRTEM image of reduced $Cs-C_{0.8}F_{1.0}Z_{1.0}$ catalyst.

	Fre	esh	Reduced		
Catalyst	d _{CuO} (nm)	d _{ZnO} (nm)	$d_{Cu}\left(nm\right)$	$d_{ZnO}\left(nm ight)$	
$C_{0.9}F_{0.1}Z_{1.0}$	8.7	12.3	22.6	18.1	
1%Cs-C _{0.9} F _{0.1} Z _{1.0}	9.5	12.6	25.0	16.8	
3%Cs-C _{0.9} F _{0.1} Z _{1.0}	10.2	13.7	28.9	18.5	
$5\% Cs\text{-}C_{0.9}F_{0.1}Z_{1.0}$	10.2	14.4	31.6	17.9	

Table S1. Particle sizes of Cu/CuO and ZnO in fresh and reduced $x\%Cs-C_{0.9}F_{0.1}Z_{1.0}$ catalysts calculated by the Scherrer formula.

Sample	$H_2 de$	esorption (umo	Total H ₂ desorption	
	α	β	γ	(umol g ⁻¹)
$C_{0.9}F_{0.1}Z_{1.0}$	25.3	101.5	60.4	187.2
1%Cs-C _{0.9} F _{0.1} Z _{1.0}	50.8	99.7	36.6	187.1
3%Cs-C _{0.9} F _{0.1} Z _{1.0}	60.6	84.1	43.1	187.8
$5\% Cs\text{-}C_{0.9}F_{0.1}Z_{1.0}$	95.6	68.2	24.4	188.2

Table S2. The amount of H_2 desorption over x%Cs-C_{0.9}F_{0.1}Z_{1.0} catalysts.

Fig. S4. CO₂-TPD-MASS results over x%Cs-C_{0.9}F_{0.1}Z_{1.0} catalysts.

Fig. S5. Time-on-stream test of the Cs-C_{0.8}F_{1.0}Z_{1.0} catalyst in CO₂ hydrogenation. Reaction conditions: 200 mg catalyst diluted by 400 mg quartz sand; $H_2/CO_2 = 3:1; 5$ MPa; 15 mL min⁻¹; 310 °C.

Ref.	5	9	L	1	8	6	10	11	This work
W _{HA} ^e (%)	82.5	pprox 41.8	ı	87.1	93.2 (ethanol)	49.4 (ethanol)	I	87.5	93.8
${ m STY}_{ m HA}$ (mmol ${ m g}_{ m cat}$ ⁻¹ ${ m h}^{-1}$)	0.42	0.75	0.44/0.89 (ethanol)	0.17 (g mL _{cat} ⁻¹ h ⁻¹)	1.32 (ethanol)	1.04 (ethanol)	1.87 (ethanol)	ı	1.47 (ethanol 1.12)
$Y_{\rm HA}{}^{\rm d}$ (%)	I	≈ 5.1	ı	13.5 (wt%)	4.9 (ethanol)	2.9 (ethanol)	2.1	1.6	7.2
S _{VP} ^c (%)	34.0	≈ 56	ı	I	33.5	41.9	55.6	33.4	67.6
S_{HA}^{b} (%)	29.3	≈ 23	92.1/88.9 (ethanol)	31.9 (wt%)	31.3 (ethanol)	24.1 (ethanol)	15.2 (ethanol)	8.7	19.8
X _{CO2} ^a (%)	I	≈ 11	·	42.3	15.7	12.1	13.9	18.8	36.6
Reaction conditions	20 mg, water/DMI, 8 MPa, 200 °C	6000 h ⁻¹ , 2 MPa, 200 °C	20 mg, water, 4 MPa, 140/200 °C	5000 h⁻¹, 6 MPa, 300 °C	6000 h ⁻¹ , 3 MPa, 250 °C	6000 h ⁻¹ , 3 MPa, 250 °C	36000 h ⁻¹ , 3 MPa, 250 °C	4000 h ⁻¹ , 5 MPa, 250 °C	4500 h ⁻¹ , 5 MPa, 330 °C
Reactor	Tank	Fixed-bed	Tank	Fixed-bed	Fixed-bed	Fixed-bed	Fixed-bed	Fixed-bed	Fixed-bed
Catalyst	Pt/Co ₃ O4	Pt/Co ₃ O4-m	CoAlO _x	CuZnFe _{0.5} K _{0.15}	RhFeLi-TiO ₂	Rh-0.3VO _x /MCM-41	Cu/Co ₃ O ₄ -2h	Na-Co/SiO2	$Cs-C_{0.8}F_{1.0}Z_{1.0}$

Table S3. Comparison of HAS activity over $Cs-C_{0.8}F_{1.0}Z_{1.0}$ with some advanced catalysts in the literature in HAS from CO_2 hydrogenation.

^[a] CO₂ conversion.

^[b] Alcohol selectivity.

 $^{[c]}\ensuremath{\mathsf{Valuable}}\xspace$ products (e.g. alcohols and $C_{2^+}\ensuremath{\mathsf{hydrocarbons}}\xspace$) selectivity.

^[d] HA yield.

^[e] Weight percent of HA in total alcohol.

Discussion on the effect of BET surface area

The surface area (SA) is an important factor for the activity of a catalyst. The physicochemical properties of our $Cs-C_yF_zZ_{1.0}$ catalysts are showed in Table 1. All catalysts have similar BET surface area and porosity. We then try to correlate catalytic activity with SA. From Fig. S6, there is no linear relevance between CO_2 conversion and BET SA. So, we can conclude that the CO_2 conversion is not directly determined by the surface area in our catalysis system.

Fig. S6. CO₂ conversion at 330 °C as a function of BET surface area of $Cs-C_yF_zZ_{1.0}$ catalysts.

Discussion on the effect of particle size

The particle sizes of active Cu and Fe species are also an important factor for catalytic performance. It is reported that high HA selectivity is obtainable if Cu is around 10 nm in size and Fe is moderately aggregate for CO hydrogenation over CuFe catalysts.¹² However, in this work, the trend of catalytic performance is not monotonous with particle size of individual species, which rules out the effect of particle size (Fig. S7).

Fig. S7. Correlations between catalytic performance (CO₂ conversion, CO and HA selectivity) at 330 °C and particle size of Cu (a, b and c) and Fe₃O₄ (d, e and f).

Fig. S8. TEM images of Cs- $C_{0.8}F_{1.0}Z_{1.0}$ catalyst after TOS test.

Catalyst	$d_{Cu}\left(nm\right)$	$d_{ZnO}\left(nm\right)$	d _{Fe3O4} (nm)
Spent catalyst pre-reduced with H ₂ /Ar	30.1	45.9	44.6
Spent catalyst pre-reduced with diluted syngas	31.2	39.4	75.4
After TOS	33.1	51.4	44.1

Table S4. Particle size of Cu, ZnO and Fe₃O₄ in the Cs- $C_{0.8}F_{1.0}Z_{1.0}$ catalyst after different treatments calculated by the Scherrer formula.

Fig. S9. Comparison of HAS activities over Cs-C_{0.8}F_{1.0}Z_{1.0} reduced by different gas flows: 10% H₂/Ar reduction (A) and diluted syngas reduction (B). (a) CO₂ conversion (yellow square) and product distribution (CO, CH₄, C₂₊ alkane, olefin and alcohol, in all carbon products); (b) STY of different alcohols and C₂₊OH/ROH weight contents (red circle). Reaction conditions: catalyst 200 mg and quartz sand 400 mg; H₂/CO₂ = 3:1; 5 MPa; 15 mL min⁻¹; 260-330 °C.

Discussion on the effect of reduction conditions

We also investigated the influence of pre-reduction conditions on the activity of Cs-C_{0.8}F_{1.0}Z_{1.0}. The catalyst reduced by H₂/Ar is denoted as Catalyst A. The reference catalyst was treated by diluted syngas at 350 °C for 5 h, denoted as Catalyst B. Fig. S9 shows that, as the reaction temperature is raised from 260 °C to 310 °C, the CO₂ conversion over Catalyst A is significantly enhanced while that over Catalyst B shows just a slight increasing trend. The selectivity and STY of total alcohols or C₂₊OH over Catalyst B are much lower than those over Catalyst A. This reveals that H₂/Ar reduction is preferable and much better than syngas reduction for our Cs-C_{0.8}F_{1.0}Z_{1.0} catalysts.

To rationalize the poor activity of Catalyst B, we next compared the particle size of Cu, Fe and Zn species in Catalyst A and Catalyst B. As seen in Table S4, after syngas reduction, the agglomeration of Fe₃O₄ phase is severe (75.4 nm) when compared with that by H₂ reduction (44.6 nm) while ZnO and Cu are almost the same. This is probably because syngas has a stronger reducing activity than H₂/Ar, which causes a severe sintering of Fe₃O₄. Moreover, there is still no diffraction peaks of iron carbide for the spent Catalyst B (Fig. S10). So the poor activity of Catalyst B results from severe sintering of Fe species and thus disfavoring the formation of abundant copper-iron carbide interfaces. By contrast, a mild reduction treatment (H₂/Ar and the following *insitu* reaction condition) is beneficial to the formation of copper-iron carbide interfaces as active sites for HAS.

Fig. S10. PXRD patterns over spent $Cs-C_{0.8}F_{1.0}Z_{1.0}$ catalyst pre-reduced by H₂/Ar or diluted syngas. Cu PDF#85-1326, ZnO PDF#79-2205, Fe₃O₄ PDF#75-1372.

Fig. S11. H₂-TPSR-MS results of desorbed CO_2 over CO pre-adsorbed $Cs-C_yF_zZ_{1.0}$ catalyst.

Table S5. Proportion (A%) of desorbed CO, CO_2 and CH_4 species in all desorbed carbon-based molecules (CO_2 , CO and CH_4) calculated by MS peak areas and catalytic performance over different Cs-C_yF_zZ_{1.0} catalysts.

Sample	A _{CO} % ^a (%)	A _{CO2} % (%)	A _{CH4} % (%)	S _{HC} ^b (%)	S _{CO} (%)	S _{HA} (%)	STY_{HA} (mg g _{cat} ⁻¹ h ⁻¹)
Cs-C _{0.2} F _{1.0} Z _{1.0}	16.9	26.7	56.4	62.4	23.8	13.8	36.2
$Cs-C_{0.5}F_{1.0}Z_{1.0}$	22.6	32.3	45.1	58.7	22.6	17.9	64.5
$Cs-C_{0.8}F_{1.0}Z_{1.0}$	25.7	30.3	44.0	58.7	20.6	19.8	73.4
$Cs-C_{0.9}F_{0.4}Z_{1.0}$	34.1	28.8	37.1	61.2	20.7	17.4	65.5
$Cs-C_{0.9}F_{0.1}Z_{1.0}$	39.5	29.5	31.0	54.7	26.7	17.2	51.7

^[a] A% stands for the proportion of MS peak area for specific species.

^[b] Product selectivity.

As for all Cs-C_yF_zZ_{1.0} catalysts, CO₂ desorption shows three peaks (peak α at 150 °C, β at 300 °C and γ at 600 °C). As a reference, Cs-CZ (without Fe) exhibits good WGS activity at low temperature region while Cs-FZ (without Cu) shows relatively weak CO₂ desorption at 300 °C and 600 °C (Fig. S11). So we can conclude that Cu sites mainly contribute to α while Fe species contribute to β and γ . The CO₂ desorption capability can reflect the RWGS ability in our real condition. With the increase in Cu/Fe molar ratio, the peak intensity of CO₂ increases first and then decreases (see Table S5), implying the synergistic effect between Cu and Fe species.

Fig. S12. Catalytic performance (methanol conversion and CO_2/CO selectivity) of the Cs-C_yF_zZ_{1.0} catalyst. Reaction conditions: 100 mg catalyst diluted by 400 mg quartz sand; methanol/water = 1:2, 0.1 mL min⁻¹; carrier gas H₂ flow=20 mL min⁻¹; 260-330 °C.

Figure S13. (a) In situ DRIFTS spectra and (b) full-range $(1000 \sim 4000 \text{ cm}^{-1})$ spectra of the CO₂+H₂ reaction over Cs-C_{0.5}F_{1.0}Z_{1.0} catalyst taken under 0.3 MPa CO₂/H₂ flow at 200 °C.

The characteristic band of gaseous CH_4 is at ~3016 cm⁻¹. Indeed, the small peak at 3025 cm⁻¹ is likely assigned to gaseous CH_4 (Fig. S13a). As for the other alkyl species, the characteristic bands are overlapped with carbonate and bicarbonate species in the range of 1300-1500 cm⁻¹. The bands for CO_2 overtones and hydroxyl are displayed in the range of 3100-4000 cm⁻¹ (Fig. S13b).

Fig. S14. Methanol STY (blue bar chart) and its weight percent in total alcohols (red circle) over $Cs-C_{0.8}F_{1.0}Z_{1.0}$ and Cs-CF catalysts.

Fig. S15. Methanol STY (blue bar chart) and its weight percent in total alcohols (red circle) over $Cs-C_{0.2}F_{1.0}Z_{1.0}$, $Cs-C_{0.5}F_{1.0}Z_{1.0}$ and $Cs-C_{0.8}F_{1.0}Z_{1.0}$ catalysts.

Fig. S16. Catalytic performance of Cs-CF and Cs-C_{0.8}F_{1.0}Z_{1.0} catalysts. (a) CO₂ conversion (yellow square) and product selectivity (CO, CH₄, C₂₊ alkane, olefin and alcohol, in all carbon products), (b) STY of alcohols and C₂₊OH/ROH selectivity (red circle). Reaction conditions: 200 mg catalyst and 400 mg quartz sand; H₂/CO₂ = 3:1; 5 MPa; 15 mL min⁻¹; 260-330 °C.

Discussion on the effect of ZnO

As showed in Fig. S17, we can clearly see that the CuO and Cu particles would grow bigger without the protection of ZnO. Fe₃O₄ shows the similar results. Therefore, ZnO plays an important role in dispersing and stabilizing Cu and Fe species. Moreover, ZnO is a good partner to Cu. Cu-ZnO is a widely studied catalyst system for methanol synthesis as well as RWGS reaction.¹³⁻¹⁸ The high RWGS activity of Cu-ZnO would provide a relatively high fraction of initial CO for tandem reaction. Theoretical calculations have shown that ZnO decoration can benefit the adsorption of O-anchored intermediates such as formate and acyl groups due to the oxophile property of Zn atoms.¹⁶ In this content, Zn would promote the formation of oxy-compounds. ZnO is also a good hydrogen reservoir and hence increases the hydrogenation activity of Cu based catalysts, which can be further confirmed by the lower olefins/paraffin ratio over Cs-C_{0.8}F_{1.0}Z_{1.0} (Fig. S16).^{18,19}

Fig. S17. XRD patterns over (a) fresh, (b) reduced and (c) spent Cs-CF and Cs-CFZ catalysts. Cu PDF#85-1326, CuO PDF#45-0937, ZnO PDF#79-2205, Fe3O4 PDF#75-1372.

References

(1) Li, S. G.; Guo, H. J.; Luo, C. R.; Zhang, H. R.; Xiong, L.; Chen, X. D.; Ma, L. L. Effect of Iron Promoter on Structure and Performance of K/Cu-Zn Catalyst for Higher Alcohols Synthesis from CO₂ Hydrogenation. *Catal. Lett.* **2013**, 143, 345-355.

(2) Han, X. Y.; Fang, K. G.; Zhou, J.; Zhao, L.; Sun, Y. H. Synthesis of Higher Alcohols over Highly Dispersed Cu-Fe Based Catalysts Derived from Layered Double Hydroxides. *J. Colloid Interface Sci.* **2016**, 470, 162-171.

(3) Ding, M. Y.; Qiu, M. H.; Liu, J. G.; Li, Y. P.; Wang, T. J.; Ma, L. L.; Wu, C. Z. Influence of Manganese Promoter on Coprecipitated Fe-Cu Based Catalysts for Higher Alcohols Synthesis. *Fuel* **2013**, 109, 21-27.

(4) Gao, W.; Zhao, Y. F.; Liu, J. M.; Huang, Q. W.; He, S.; Li, C. M.; Zhao, J. W.; Wei,
M. Catalytic Conversion of Syngas to Mixed Alcohols over CuFe-Based Catalysts
Derived from Layered Double Hydroxides. *Catal. Sci. Technol.* 2013, 3, 1324-1332.

(5) He, Z. H.; Qian, Q. L.; Ma, J.; Meng, Q. L.; Zhou, H. C.; Song, J. L.; Liu, Z. M.; Han, B. X. Water-Enhanced Synthesis of Higher Alcohols from CO₂ Hydrogenation over a Pt/Co₃O₄ Catalyst under Milder Conditions. *Angew. Chem. Int. Ed.* **2016**, 55, 737-741.

(6) Liu, B.; Ouyang, B.; Zhang, Y. H.; Lv, K. L.; Li, Q.; Ding, Y. B.; Li, J. L. Effects of Mesoporous Structure and Pt Promoter on the Activity of Co-Based Catalysts in Low-Temperature CO₂ Hydrogenation for Higher Alcohol Synthesis. *J. Catal.* **2018**, 366, 91-97.

(7) Wang, L. X.; Wang, L.; Zhang, J.; Liu, X. L.; Wang, H.; Zhang, W.; Yang, Q.; Ma, J. Y.; Dong, X.; Yoo, S. J.; Kim, J. G.; Meng, X. J.; Xiao, F. S. Selective Hydrogenation of CO₂ to Ethanol over Cobalt Catalysts. *Angew. Chem. Int. Ed.* **2018**, 57, 1-6.

(8) Yang, C. S.; Mu, R. T.; Wang, G. S.; Song, J. M.; Tian, H.; Zhao, Z. J.; Gong, J. L.
Hydroxyl-mediated Ethanol Selectivity of CO₂ Hydrogenation. *Chemical Science* 2019, 10, 3161-3167.

(9) Wang, G. S.; Luo, R.; Yang, C. S.; Song, J. M.; Xiong, C. Y.; Tian, H.; Zhao, Z. J.;
Mu, R. T.; Gong, J. L. Active Sites in CO₂ Hydrogenation over Confined VO_x-Rh
Catalysts. *Sci. Chi. Chem.* 2019, 62, 1710-1719.
31/32

(10) Yang, C. S.; Liu, S. H.; Wang, Y. N.; Song, J. M.; Wang, G. S.; Wang, S.; Zhao, Z.
J.; Mu, R. T.; Gong, J. L. The Interplay between Structure and Product Selectivity of CO₂ Hydrogenation. *Angew. Chem. Int. Ed.* **2019**, 58, 1-6.

(11)Zhang, S. N.; Liu, X. F.; Shao, Z. L.; Wang, H.; Sun, Y. H. Direct CO₂ Hydrogenation to Ethanol over Supported Co₂C Catalysts: Studies on Support Effects and Mechanism. *J. Catal.* **2020**, 382, 86-96.

(12)Luk, H. T.; Mondelli, C.; Mitchell, S.; Siol, S.; Stewart, J. A.; Ferré, D. C.; Pérez-Ramírez, J. Role of Carbonaceous Supports and Potassium Promoter on Higher Alcohols Synthesis over Copper-Iron Catalysts. *ACS Catal.* **2018**, 8, 9604-9618.

(13)Daza, Y. A.; Kuhn, J. N. CO₂ Conversion by Reverse Water Gas Shift Catalysis: Comparison of Catalysts, Mechanisms and Their Consequences for CO₂ Conversion to Liquid Fuels. *RSC Adv.* **2016**, 6, 49675-49691.

(14)Roy, S.; Cherevotan, A.; Peter, S. C. Thermochemical CO₂ Hydrogenation to Single Carbon Products: Scientific and Technological Challenges. *ACS Energy Lett.* **2018**, 3, 1938-1966.

(15)Artz, J.; Muller, T. E.; Thenert K. Sustainable Conversion of Carbon Dioxide: An Integrated Review of Catalysis and Life Cycle Assessment. *Chem. Rev.* **2018**, 118, 434-504.

(16)Behrens, M.; Studt, F.; Kasatkin, I.; Kuhl, S.; Havecker, M.; Abild-Pedersen, F.;
Zander, S.; Girgsdies, F.; Kurr, P.; Kniep, B. L.; Tovar, M.; Fischer, R. W.; Norskov, J.
K.; Schlogl, R. The Active Site of Methanol Synthesis over Cu/ZnO/Al₂O₃ Industrial Catalysts. *Science* 2012, 336, 893-897.

(17)Kuld, S.; Thorhauge, M.; Falsig, H.; Elkjaer, C. F.; Helveg, S.; Chorkendorff, I.; Sehested, J. Quantifying the Promotion of Cu Catalysts by ZnO for Methanol Synthesis. *Science* **2016**, 352, 969-974.

(18)Kattel, S.; Ramirez, P. J.; Chen, J. G. G.; Rodriguez, J. A.; Liu, P. Active Sites for CO₂ Hydrogenation to Methanol on Cu/ZnO Catalysts. *Science* **2017**, 355, 1296-1299.

(19)Cheng, K.; Zhou, W.; Kang, J. C.; He, S.; Shi, S. L.; Zhang, Q. H.; Pan, Y.; Wen,

W.; Wang, Y. Bifunctional Catalysts for One-Step Conversion of Syngas into Aromatics with Excellent Selectivity and Stability. *Chem* **2017**, 3, 334-347. 32/32