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Abstract

In this supplementary material, we first include the detailed experimental data of contact angle

using a flat hydrophobic substrate and two types of superhydrophobic (SH) surfaces studied. Sec-

ond, we report the fitting method and parameters of the surfactant adsorption isotherms model.

Third, we also show the free energy derivation for predicting the experimentally observed wetting

states. Finally, we include the detailed derivation of the metastability criterion for a Cassie–Baxter

state.
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Supplementary Material

1. CONTACT ANGLE DATA OF SURFACTANT-LADEN DROPLETS ON FLAT

HYDROPHOBIC AND SUPERHYDROPHOBIC SURFACES

Here we report the detailed contact angle measurements of a DDAB-laden droplet on

both flat PDMS and two types of SH surfaces, S1 (r = 2.31, φ = 0.34) and S2 (r = 1.33, φ

= 0.08), for nine different DDAB concentrations, and for ten droplets on each surface. On

the one hand, for the higher-r SH S1, droplets were in a CB state for CS ≤ 0.25 CMC and

in a W state for CS ≥ 0.5 CMC. On the other, both a CB and W state could appear for

droplets on the lower-r SH S2 for CS ≤ 0.75 CMC, while all the surfactant-laden droplets

were in a W state for CS = 1 CMC.
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FIG. S1 Contact angle measurements for a pure-water droplet on (a) Flat PDMS, (b) SH S1 (r

= 2.31, φ = 0.34), and (c) SH S2 (r = 1.33, φ = 0.08) surfaces during a period of 100s right after

the droplet deposition.
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FIG. S2 Contact angle measurements for 0.02 CMC-DDAB droplet on (a) Flat PDMS, (b) SH

S1 (r = 2.31, φ = 0.34), and (c) SH S2 (r = 1.33, φ = 0.08) surfaces during a period of 100s right

after the droplet deposition.
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FIG. S3 Contact angle measurements for 0.05 CMC-DDAB droplet on (a) Flat PDMS, (b) SH

S1 (r = 2.31, φ = 0.34), and (c) SH S2 (r = 1.33, φ = 0.08) surfaces during a period of 100s right

after the droplet deposition.
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FIG. S4 Contact angle measurements for 0.1 CMC-DDAB droplet on (a) Flat PDMS, (b) SH S1

(r = 2.31, φ = 0.34), and (c) SH S2 (r = 1.33, φ = 0.08) surfaces during a period of 100s right

after the droplet deposition.
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FIG. S5 Contact angle measurements for 0.2 CMC-DDAB droplet on (a) Flat PDMS, (b) SH S1

(r = 2.31, φ = 0.34), and (c) SH S2 (r = 1.33, φ = 0.08) surfaces during a period of 100s right

after the droplet deposition.
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FIG. S6 Contact angle measurements for 0.25 CMC-DDAB droplet on (a) Flat PDMS, (b) SH

S1 (r = 2.31, φ = 0.34), and (c) SH S2 (r = 1.33, φ = 0.08) surfaces during a period of 100s right

after the droplet deposition.
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FIG. S7 Contact angle measurements for 0.5 CMC-DDAB droplet on (a) Flat PDMS, (b) SH S1

(r = 2.31, φ = 0.34), and (c) SH S2 (r = 1.33, φ = 0.08) surfaces during a period of 100s right

after the droplet deposition.
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FIG. S8 Contact angle measurements for 0.75 CMC-DDAB droplet on (a) Flat PDMS, (b) SH

S1 (r = 2.31, φ = 0.34), and (c) SH S2 (r = 1.33, φ = 0.08) surfaces during a period of 100s right

after the droplet deposition.
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FIG. S9 Contact angle measurements for 1 CMC-DDAB droplet on (a) Flat PDMS, (b) SH S1

(r = 2.31, φ = 0.34), and (c) SH S2 (r = 1.33, φ = 0.08) surfaces during a period of 100s right

after the droplet deposition.

2. FITTING OF WETTING DATA FROM FLAT PDMS SURFACES TO DETER-

MINE LIQUID-VAPOR AND SOLID-LIQUID ADSORPTION COEFFICIENTS

To account for the adsorption fitting parameters for LV and SL interfaces, we first use the

Zhu–Gu adsorption isotherm [1] at the LV interface. We extracted LV interfacial tension,

γLV(CS), for DDAB aqueous solution droplets at the studied concentrations from two studies

by Biswal-Paria [2, 3] and subsequently used the averaged values for our analysis. Fig.S10

shows a gradual decrease in the LV interfacial tension with increasing DDAB concentration.

The best fit of eq. (3) in the main text to the data is also shown in Fig.S10. The fit was

obtained using MATLAB’s curve fitting ‘cftool’. To solve the singularity at ln(CS) → −∞,

a pure water interfacial tension (γ0
LV) was used as a fitting parameter. The best fitting

parameters obtained include: Γ∞LV = 4.679 ×10−6 mol/m2, nLV = 1.235, KLV = 191.5, and
γ0
LV = 72.2 mJ/m2, with goodness of fit parameters, SSE (Sum Squared Error): 6.879 × 10−6,

R2 ∶ 0.9652, adjusted-R2 ∶ 0.9512, and RMSE (Root Mean Square Error):1.173 × 10−3J/m2.

The fitting parameter Γ∞LV is the maximum surfactant concentration at the liquid–vapor

interface, KLV is the adsorption equilibrium constant, and nLV is an empirical fitting param-

eter.

To account for the surfactant adsorption at the SL interface, we use the Zhu–Gu adsorp-

tion isotherm [1] and arrive at the form of Milne et al. [4] modified Young equation, eq. (4)

in the main text, which quantifies the contact angle of a drop on a flat and homogeneous
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FIG. S10 Liquid-vapor (LV) interfacial tension vs. DDAB concentration in natural logarithmic

scale (C/CCMC). The experimental data (∎) is the average LV interfacial tension from two

studies [2, 3]. The line is the best fit of eq. (3) in the main text to the experimental data. The

fitting parameters obtained include: Γ∞LV = 4.679 × 10
−6 mol/m2, nLV = 1.235, KLV = 191.5, and

γ0LV = 72.2 mJ/m2, with the goodness of fitting parameters, SSE (Sum Squared Error): 6.879 ×

10−6 , R2 ∶ 0.9652, adjusted-R2 ∶ 0.9512, and RMSE (Root Mean Square Error):

1.173 × 10−3J/m2.

surface as a function of surfactant concentration, by assuming no surfactant adsorption at

the SV interface. The average contact angles for the first 10 s and last 10 s of a 100 s

recording period are shown in Fig. S11 and S12, respectively, along with the best fit of eq.

(4) in the main text to our data. The fitting was done using the same way as for the LV

adsorption parameters and using the previously found values of Γ∞LV, nLV, KLV, and γ0
LV. The

singularity at ln(CS) → −∞ was solved by using the contact angle for pure water (CS = 0) as
a fitting parameter. The best fitting parameters found for the first 10 s as in Fig.S11 were:

Γ∞SL = 2.979 × 10−6mol/m2, nSL = 1.171, KSL = 114, and θ0Y = 110.84○, with goodness of fit

parameters, SSE: 1.803 × 10−3, R2 ∶ 0.9921, adjusted-R2: 0.989, and RMSE: 0.01899. The

fitting parameters found for the last 10 s as in Fig. S12 were: Γ∞SL = 3.819 × 10−6mol/m2,

nSL = 1.311, KSL = 188.1, and θ0Y = 109.43○, with goodness of fit parameters, SSE: 5.343×10−3,
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R2 ∶ 0.9916, adjusted-R2 ∶ 0.9882, and RMSE∶ 0.03269. The fitting parameter of Γ∞SL is the

maximum surfactant concentration at the solid-liquid interface, KSL is the adsorption equi-

librium constant, and nSL is an empirical fitting parameter. Based on the fitting parameters,

both LV and SL adsorption process are in the same order of magnitude (10−6) and together

contribute to decrease θY as CS increases.
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FIG. S11 Cosine of average contact angle on flat PDMS vs. DDAB concentration in natural

logarithmic scale (C/CCMC). The experimental contact angle (∎) is the average of first 10 s of

100 s recording period. The line is the best fit of eq. (4) in the main text to the experimental

data. The fitting parameters are: Γ∞SL = 2.979 × 10
−6mol/m2, nSL = 1.171, KSL = 114, and

θ0Y = 110.84
○, with goodness of fit parameters, SSE: 1.803 × 10−3, R2 ∶ 0.9921, adjusted-R2: 0.989,

and RMSE: 0.01899.
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FIG. S12 Cosine of average contact angle on flat PDMS vs. DDAB concentration in natural

logarithmic scale (C/CCMC). The experimental contact angle (∎) is the average of last 10 s of

100 s recording period. The line is the best fit of eq. (4) in the main text to the experimental

data. The fitting parameters are: Γ∞SL = 3.819 × 10
−6mol/m2, nSL = 1.311, KSL = 188.1, and

θ0Y = 109.43
○, with goodness of fit parameters, SSE: 5.343× 10−3, R2 ∶ 0.9916, adjusted-R2 ∶ 0.9882,

and RMSE: 0.03269.

3. FREE ENERGY DERIVATIONS FOR DIFFERENT WETTING STATES

In the derivation, we start from fundamental thermodynamic theories to derive the free

energy and finally use this free energy to describe the effect of DDAB-surfactant concen-

tration on a stable Cassie-Baxter and Wenzel wetting state. The free energy analysis of

different wetting states of CB and Wenzel was first proposed by Johnson and Dettre [5], and

other analyses have been performed for pure liquids on rough surfaces [6–10]. Here we closely

follow the analytical approach of N. Shardt et al.[11] considering the effect of a surfactant on

the free energies of different wetting states. Following Gibbsian composite-system thermo-

dynamics [11–17], we consider a simplified geometry where the liquid phase has a spherical

cap shape (curved), while the SL and SV interfaces are assumed to be flat. We also assume

that there are no external forces, such as gravity or pinning/depinning forces at the three
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phase contact line. According to this approach, the entire system is confined within a mov-

able piston cylinder that interacts with a surrounding reservoir at constant pressure (PR)

and temperature (TR). The reservoir can exchange energy and volume through the system

boundary, but no mass exchange mass with the reservoir since the system is closed. Figure

S13a shows the reference state assumed and in Fig. S13b a sessile drop with radius R and

contact angle θ on a rigid solid. As shown in Fig. S13b, the assumed system is modeled as

two bulk phases (or components). The first component consists of both liquid phase (e.g.,

water with surfactant) and the vapor phase, and the second component is the solid phase.

Using the Gibbsian thermodynamics theory [12], the two phases are separated by a divid-

ing surface that has the following thermodynamic quantities (internal energy, entropy, and

moles). The equilibrium conditions of this closed system can be obtained by maximizing

the entropy, S, so the differential of the entropy (dS) should equal to zero:

dSL + dSV + dSLV + dSS + dSSL + dSSV + dSR = 0, (S1)

where the superscripts L, V, LV, S, SL, SV, and R denote the liquid, vapor, liquid-vapor,

solid, solid-liquid, solid-vapor, and reservoir phases, respectively.

Expressions in the differential form of the fundamental equation of thermodynamics of a

bulk phase, a flat interface, or a curved interface is given by eqs. (S2), (S3), and (S4), which

relate the changes in the internal energies, U due to the changes in the absolute temperature

T , volume, V , pressure, P , the area, A, and chemical potential, µ:

dU i = T idSi − P idV i +
r

∑
j=1

µi
jdN

i
j , (S2)

dUab = T abdSab + γabdAab +
r

∑
j=1

µab
j dNab

j , (S3)

dUab = T abdSab + γabdAab +
r

∑
j=2

µab
j dNab

j , (S4)

where i denotes each phase, i.e., liquid, solid, or vapor, j is the phase component, either 1

or 2, Nj is the number of moles of component j, γ is the surface tension, and ab denotes

each interface, i.e., SL, LV, or SV. To solve the free energy for this system, five constraints

are imposed on the system, and we will discuss them below.
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FIG. S13 (a) A Spherical drop without solid-liquid contact is assumed as the reference state.

(b) Schematic of a piston-cylinder device in a reservoir containing a liquid drop in the shape of a

spherical cap with contact angle θ and radius of curvature R on a rough, chemically homogeneous

solid surface (with only component 1) in equilibrium with its vapor (V) and a solid surface

(component 2).

Firstly, since the system is closed, there is no mass exchange between the reservoir and

the system:

dNR
1 = 0 dNR

2 = 0. (S5)

While component 1 can transfer between bulk phases and interfaces of the system,

dNV
1 + dNL

1 + dNS
1 + dNLV

1 + dNSV
1 + dNSL

1 + dNR
1 = 0. (S6)

Secondly, both the reservoir and the system are isolated so that

dUV = − dUR − dUS − dUL − dUSL − dUSV − dULV. (S7)

Thirdly, the system can exchange volume with the reservoir through the movable piston so

dV R = − dV V − dV S − dV L. (S8)

Fourthly, the solid surface is assumed to be rigid (incompressible) means that no volume

changes happen in the solid:

dV S = 0. (S9)
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Finally, the solid surface is considered nonvolatile means that component 2 can only transfer

between the solid phase and the SL and SV interfaces:

dNS
2 = − dNSL

2 − dNSV
2 . (S10)

Based on the“Gibbs dividing surface” approach, the excess surface quantity (component 2)

is assumed to be zero for the flat SL and SV interfaces, which means:

dNSL
2 = 0 dNSV

2 = 0 → dNS
2 = 0. (S11)

Also, it is worth mentioning here that for any increase or decrease in the SV interface

area, there is an equivalent decrease or increase of the SL interfacial area: ASV = −ASL.

The volume of the spherical cap of the liquid drop, V L, (shown in Fig. S13b) and areas

for the LV and SL interfaces (ALV and ASL, respectively) can be written in terms of the

radius of curvature, R, and the contact angle, θ [14, 16]:

V L = ∫
θ

0
πR3 sin3ϕ dϕ = πR3

3
(2 − cos θ(2 + sin2 θ)) = πR3

3
(2 − 3 cos θ + cos3 θ), (S12)

ALV = ∫
θ

0
2πR2 sinϕ dϕ = 2πR2(1 − cos θ), (S13)

ASL = πR2 sin2 θ. (S14)

To obtain the equilibrium conditions for the defined system, we first take the differential

forms of the volume and the interfacial areas, eqs. (S12)-(S14) (with respect to both R and

θ). We subsequently substitute eqs. (S2) - (S4), the constraints (S5) - (S11), the derivatives

of (S12) - (S14) into eq. (S1) and collect the similar terms, and get the following equation:
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( 1

T L
− 1

TV
) dUL + (PR

TR
− PV

TV
) dV R − (µL

1

T L
− µV

1

TV
) dNL

1

+ ( 1

T S
− 1

TV
) dUS + ( 1

T LV
− 1

TV
) dULV

− (µLV
1

T LV
− µV

1

TV
) dNLV

1 + ( 1

T SL
− 1

TV
) dUSL

− (µSL
1

T SL
− µV

1

TV
) dNSL

1 + ( 1

T SV
− 1

TV
) dUSV

− (µSV
1

T SV
− µV

1

TV
) dNSV

1 + ( 1

TR
− 1

TV
) dUR

+ [(P L

T L
− PV

TV
)(2 − cos θ(2 + sin2 θ))πR2

− γLV

T LV
(1 − cos θ)4πR + (γSV − γSL)

T SL
(2πR sin2 θ)] dR

+ [(P L

T L
− PV

TV
)(sin θ(2 + sin2 θ) − 2 sin θ cos2 θ)πR3

3

− γLV

T LV
2πR2 sin θ + (γSV − γSL)

T SL
(2πR2 sin θ cos θ)] dθ = 0.

(S15)

For the above expression to be valid for any arbitrary displacement about equilibrium, the

coefficients in front of each differential must be equal to zero. Setting all the coefficient of

each independent variation to zero, yielding to the following equilibrium conditions:

T L = T LV = T S = T SL = T SV = TV = TR, (S16)

µL
1 = µLV

1 = µSL
1 = µSV

1 = µV
1 , (S17)

PR = PV. (S18)

In addition, the Laplace equation and Young equation can be obtained by setting the

coefficients in front of dR and dθ to zero in eq. (S15) as follows:

P L − PV = 2γLV

R
, (S19)

γSV − γSL = γLV cos θ. (S20)

Given these equilibrium conditions, assuming that the pressure in the system is constant,

and moving terms to the right-hand side, eq. (S15) is simplified to:

−(γSV − γSL)ASL + γLVALV = 0. (S21)
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Therefore, the total free energy of this system, E, is:

E = (γSL − γSV)ASL + γLVALV, (S22)

which has the common form of the free energy as follows [12, 13, 15, 16]:

E = GV + F L + F S + F SL + F LV + F SV + PVV L, (S23)

where G and F are Gibbs and Helmholtz free energies, respectively. As mentioned before,

since the energy should be calculated with respect to a reference level, we choose the system

of a spherical drop with no SL contact area as a reference point, and we assume that it is

an equilibrium state. The total energy of this reference state, E0, is given by:

E0 = 4πR2
0γ

LV. (S24)

Therefore, the change of the free energy of the current system with respect to the assumed

reference point, E −E0 is equal to:

E −E0 = (γSL − γSV)ASL + γLVALV − 4πR2
0γ

LV, (S25)

which has the same form as the free energy derived by Shardt et al. [11] for SDS surfactant

drops on hydrophobic microstructures. If the current state of the system is also assumed

in an equilibrium state, and by substituting the previous derived equilibrium condition, eq.

(S20) and eq. (S13) - (S14) for the LV and SL areas, respectively, the final form of the free

energy, E −E0, is equal to:

E −E0 = πR2γLV(2 − 3 cos θ + cos3 θ) − 4πR2
0γ

LV, (S26)

where E0 is the reference free energy; defined as the free energy of a spherical drop with no

SL contact, R is the spherical cap radius of curvature, R0 is the initial radius of a spherical

drop of 10 µl, and cos θ = f cos θY − f1. Here, f is the ratio of the SL surface area (pillar-top

area) to the total (liquid-solid and liquid-gas) areas. f1 is the ratio of the LV interfacial area

to the total projected area beneath the drop. Finally, eq. (S26) can be used to predict the

free energy difference related to the reference state for a CB, an intermediate, or a Wenzel

state, depending on the parameter values of f and f1.

A CB to Wenzel wetting transition may be modeled through two main processes [6, 14].

Initially, right after droplet deposition, a droplet wetting in the classical CB wetting state
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has f = φ and f1 = 1−φ. In the first phase, the liquid penetrates the surface structure until it

wets the bottom of the surface. We assume that the liquid wets the cylinders walls only, and

the bottom surface is not wet, so the value of f increases from φ to (πD2

4
+πDH)/(P 2) since

the solid–liquid contact area increases and f1 = 1 − f does not change. In the second phase,

liquid wets the bottom surface from the edges of pillars towards the center, as f continues

to increase while f1 = r − f until the area below the drop is fully wetted. A full transition

of the droplet to W occurs when f = r and f1 = 0, and hence cos θ = r cos θY(CS) as in the

Wenzel equation [14, 18, 19].

4. DERIVATION OF THE METASTABILITY CRITERION FOR CASSIE-BAXTER

STATE

To explain the stability and metastability of CB state, we use a similar approach to the

proposed free energy analysis by Gong et al. for a pure water on a square-post microstruc-

tures [6]. They outline that there is an energy barrier between CB and W states based on

the first derivative of the free energy barrier (i.e., Emax −E0, where Emax is the maximum

free energy state) with respect to the variable f as follows:

∂(Emax −ECB)
∂f

∣
f=φ

> 0. (S27)

Shardt et al. [6] used the same approach to analyze sodium dodecyl sulfate (SDS) surfactant-

laden drops on hydrophobic microstructures. To apply eq. (S27), we first substitute the

variable R in eq. (S26) by the corresponding value from the spherical cap volume approx-

imation, i.e., eq. (S12). We subsequently replace the variable cos θ by cos θ = f cos θY − f1,
where f1 = 1−φ as in the first process of CB-W transition. We obtained the energy barrier,

Emax −E0, by substituting all theses values into eq. (S26) and simplifying the equation:

Emax −E0 = π1/3(3V L)2/3γLV{2 − 3[f cos θY − (1 − φ)] + [f cos θY − (1 − φ)]3}
1/3 − 4πR2

0γ
LV.

(S28)

The first partial derivative of eq. (S28) for the first process of CB-W transition with respect

to f is:

∂(Emax −E0)
∂f

∣
f=φ

= π1/3(3V L)2/3γLV[3 cos θY(f cos θY + φ − 1)2 − 3 cos θY]
3[(f cos θY + φ − 1)3 − 3(f cos θY + φ − 1) + 2]2/3 . (S29)
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Note that the common term in the nominator π1/3(V L)2/3γLV and the denominator

3[(f cos θY + φ − 1)3 − 3(f cos θY + φ − 1) + 2]2/3 are always positive. To get the solution

for eq. (S27) and based on the above observation, eq. (S29) is simplified to:

cos θY(φ cos θY + φ − 1)2 − cos θY > 0. (S30)

The above equation can be simplified further to the following form:

φ2 cos3 θY − 2φ(1 − φ) cos2 θY + (1 − φ)2 cos θY − cos θY > 0. (S31)

To solve for the ranges of cos θY (or θY ) that fulfills the eq. (S31) criteria, we first set the

left hand side of eq. (S31) = 0, which has three roots:

cos θY = −1,0, −φ + 2
φ

. (S32)

Since the values of the packing fraction, φ, are restricted to the range between 0 and 1

(0 < φ < 1), and the range of the cosine function is from -1 to 1, there is no possible solution

for (−φ + 2)/(φ) because (−φ + 2)/(φ) is always greater than 1. Therefore, for the solution

of eq. (S31) criteria to be valid for the presence of a metastable CB (i.e., with a presence of

energy barrier), only two remaining roots are possible: cos θY = −1 and 0, which corresponds

to θY = 180○ and 90○, respectively. To fulfill the eq. (S31) criteria would require that the

cosine function of the Young’s equation should be −1 < cos θY < 0. In other words, the

solution to eq. (S31) is 90○ < θY < 180○. Consequently, there is an energy barrier observed

for both SH surfaces studied when θY > 90○. In contrast, in the case of θY < 90○, the first

derivative of the free energy with respect to f will be less than 0 (as ∂E/∂f ∣f=φ < 0), and
thus a stable W will always occur at any values of r and φ when θY < 90○.

To locate the metastable regime, we used and calculated the critical point at the CB to

Wenzel wetting transition, which is given by cos θ∗Y = φ−1
r−φ (described in the main text) to

locate the upper boundary, above which a CB state is more stable thermodynamically. For

our two studied surfaces S1 (φ = 0.34 and r = 2.31) and S2 (φ = 0.08 and r = 1.33), the

predicted critical Young angles are θ∗Y = 109.6○ and θ∗Y = 137.4○, respectively. Consequently,

the metastable regime is located between 90○ and θ∗Y (see Fig. 6c in the main text). In this
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θY(CS)-range, there is an energy barrier, and hence a CB state is metastable.
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