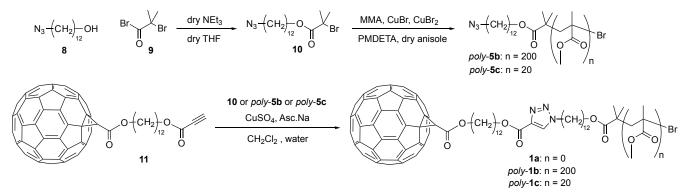
Supporting Information For:

A Supramolecular Approach to Polymer-Shape Transformation via Calixarene-Fullerene Complexation

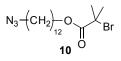
Takehiro Hirao,⁺ Kazushi Fukuta,⁺ and Takeharu Haino^{*}

Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526, Japan

[†]These authors contributed equally.


Contents

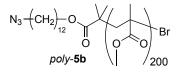
2
8-16
17
18
19
19
20
23


General

All reagents and solvents were commercial reagent grade and were used without further purification unless otherwise noted. Dry anisole and dry triethylamine (NEt₃) were obtained by distillation over CaH₂. ¹H and ¹³C NMR spectra were recorded on a Varian mercury-300 spectrometer, and chemical shifts were reported on the delta scale in ppm relative to residual chloroform (δ = 7.26 and 77.0 for ¹H and ¹³C, respectively). UV/vis absorption spectra were recorded on a JASCO V-560 spectrometer. DOSY experiments were carried out on JEOL JNM-ECA500 spectrometer. Fluorescence spectra were recorded on a JASCO FP-6500 spectrometer. High resolution mass spectra (HRMS) were recorded on a Thermo Scientific LTQ Orbitrap XL hybrid FTMS by electron splay ionization (ESI) methods. Melting points (M.p.) were measured with a Yanagimoto micro melting point apparatus. Infrared (IR) spectra were recorded on a JASCO FT/IR-4600 spectrometer with ZeSe ATR accessory. Solution viscosity were recorded on Anton Paar Microviscometer Lovis 2000ME. Dynamic light scattering (DLS) measurements were carried out using a Zetasizer Nano ZS (Malvern Instruments) setup equip with He-Ne laser (633 nm, 40 mW power), and the scattering angle was 173° in 10×10 mm glass cuvette. Differential scanning calorimetry (DSC) curves were recorded on SEIKO INSTRUMENTS Inc. EXSTAR6000 DSC6200 under a nitrogen atmosphere at the heating rate of 15 °C / min. The specimens were sealed in an aluminum pan. Preparative separations were performed by silica gel gravity column chromatography (Silica Gel 60 N (spherical, neutral)). Recycling preparative GPC-HPLC separations were carried out on JAI LC-908s using preparative JAIGEL-2H, 2H, 1H columns in series. Size exclusion chromatogram was recorded on Shimadzu LC-20AC with CTO-20AC accessory and TOSOH UV-8011 detector using preparative Shodex GPC-K-804, K-803, K-802.5 columns in series. The number-average molecular weights (M_n) of the poly methyl methacrylates (PMMAs) were determined by the size exclusion chromatography (SEC) based on polystyrene standards in chloroform. Previously synthesized 2^[1] and 3^[1] were used for this work. 4^[2], 8^[3], 11^[4], 12^[5], and 13^[6] were synthesized according to reported methods.

Synthesis

Scheme S1. Synthesis of 1a, *poly*-1b, and *poly*-1c. THF = tetrahydrofuran, MMA = methyl methacrylate, PMDETA = N, N, N', N'', N'', pentamethyldiethylenetriamine, Asc.Na = sodium ascorbate.

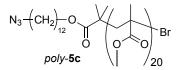


Synthesis of 2-bromo-2-methyl-propionic acid 12-azido-dodecyl ester (10):

To a solution of **8** (5.16 g, 22.7 mmol) and dry NEt₃ (3.50 mL, 25.0 mmol) in dry THF (65 mL) was added **9** (3.09 mL, 25.0 mmol, *TOKYO CHEMICAL INDUSTRY CO., LTD., JAPAN, 98* %) dropwise with stirring at 0 °C under an argon atmosphere. After being stirred for 1 h at 0 °C, the reaction mixture allowed to warm gradually to room temperature. The reaction mixture was further stirred for 12 h at room temperature under an argon atmosphere. The resulting mixture was extracted with ethylacetate. The organic layer was washed with saturated aqueous NaHCO₃, saturated aqueous NaCl, dried over anhydrous Na₂SO₄, and concentrated *in vacuo*. The crude product was purified by column chromatography on silica gel (0-10 % ethylacetate in *n*-hexane, eluent) gave desired product **10** as colorless oil (7.85 g, 92 %).

Compound data for 10:

¹H NMR (300 MHz, CDCl₃): 4.16 (*t*, *J* = 6.8 Hz, 2H), 3.25 (*t*, *J* = 6.8 Hz, 2H), 1.93 (*s*, 6H), 1.61–1.73 (*m*, 2H), 1.51–1.64 (*m*, 2H), 1.23–1.45 (*m*, 16H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 171.7, 66.1, 56.0, 51.5, 30.8, 29.4, 29.1, 28.8, 28.3, 26.7, 25.8 ppm; FTIR-ATR (neat): *v* 2927, 2855, 2094, 1735, 1464, 1386, 1370, 1349, 1275, 1163, 1108, 1012, 982, 923 cm⁻¹; HRMS (ESI⁺) calcd for C₄₀H₄₄N₂O₁₀Na m/z 398.14136 [M+Na]⁺, found m/z 398.14212.

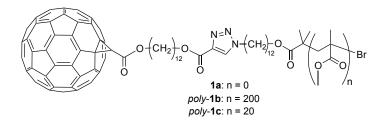


Synthesis of 2-[PMMA]200-2-methyl-propionic acid 12-azido-dodecyl ester poly-5b:

10 (177 mg, 0.469 mmol), dry anisole (10 mL), and methyl methacrylate (MMA) (10.0 mL, 93.9 mmol, *Nacalai Tesque, Inc., JAPAN*, \geq 99%) were placed in Schlenk-flask. After three cycles of freeze-pump-thaw, CuBr (23.5 mg, 0.164 mmol), CuBr₂ (15.7 mg, 0.0704 mmol), and *N*,*N*,*N*'',*N*'',*P*''-pentamethyldiethylenetriamine (PMDETA) (48.9 µL, 0.235 mmol) were added in sequence to the resulting solution under a nitrogen atmosphere. After being stirred for 6 h in the dark at 65 °C, the resulting mixture was further stirred for 1 h at room temperature under an open-air atmosphere. The resulting mixture was diluted with CH₂Cl₂, passed through aluminum oxide 90 (CH₂Cl₂, eluent), and then concentrated *in vacuo*. The crude product was purified by reprecipitation from CH₂Cl₂ solution with methanol to afford desired product *poly*-**5b** as a white sold (3.59 g, 38 %).

Compound data for *poly*-5b:

¹H NMR (300 MHz, CDCl₃): δ 3.77 (m, 2H), 3.60 (m, 3H × n), 3.26 (m, 2H), 1.73–2.04 (m, 6H + 2H × n), 1.06–1.47 (m, 20H), 0.76–1.09 (m, 2H × n) ppm; $M_{n,SEC} = 20069 \text{ g mol}^{-1}$, PDI = 1.10.



Synthesis of 2-[*PMMA*]₂₀-2-methyl-propionic acid 12-azido-dodecyl ester *poly*-5c:

10 (180 mg, 0.477 mmol), dry anisole (10 mL), and MMA (1.02 mL, 9.58 mmol, *Nacalai Tesque, Inc., JAPAN*, \geq 99%) were placed in Schlenk-flask. After three cycles of freeze-pump-thaw, CuBr (23.9 mg, 0.167 mmol), CuBr₂ (16.0 mg, 0.0716 mmol), and PMDETA (49.8 µL, 0.239 mmol) were added in sequence to the resulting solution under a nitrogen atmosphere. After being stirred for 6 h in the dark at 65 °C, the resulting mixture was further stirred for 1 h at room temperature under an open-air atmosphere. The resulting mixture was diluted with CH₂Cl₂, passed through aluminum oxide 90 (CH₂Cl₂, eluent), and then concentrated *in vacuo*. The crude product was purified by reprecipitation from CH₂Cl₂ solution with methanol to yield desired product *poly*-**5c** as a white sold (698 mg, 56 %).

Compound data for *poly*-5c:

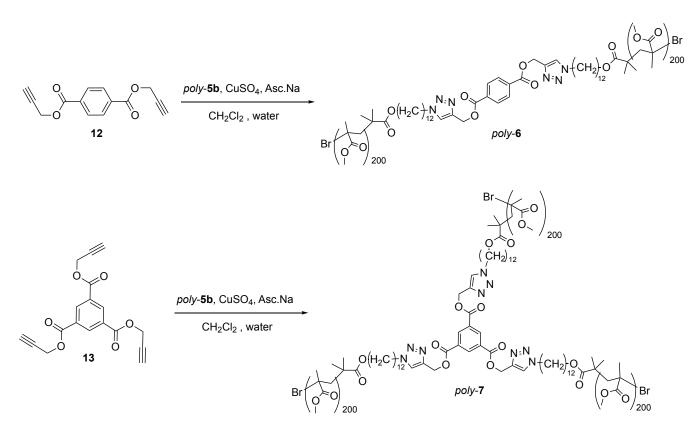
¹H NMR (300 MHz, CDCl₃): δ 3.76 (m, 2H), 3.59 (m, 3H × n), 3.26 (m, 2H), 1.74–2.08 (m, 6H + 2H × n), 0.96–1.40 (m, 20H), 0.74–1.00 (m, 2H × n) ppm; $M_{n,SEC}$ = 2620 g mol⁻¹, PDI = 1.23.

Synthesis of model fullerene 1a:

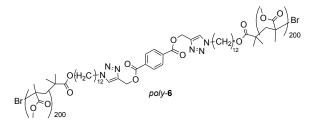
To a solution of **11** (26.5 mg, 26.1 μ mol) in CH₂Cl₂ (5.6 mL) and water (1.9 mL) were added **10** (9.85 mg, 26.1 μ mol), sodium ascorbate (Asc.Na) (5.17 mg, 26.1 μ mol), and CuSO₄ (4.17 mg, 26.1 μ mol). After being stirred for 48 h at room temperature under an argon atmosphere, the reaction mixture was diluted with CH₂Cl₂. The organic layer was washed with water, dried over anhydrous Na₂SO₄, and concentrated *in vacuo*. The crude product was purified by GPC to give desired product **1a** as a brown solid (6.80 mg, 19 %).

poly-1b (a brown solid, 29% yield) and *poly*-1c (a brown solid, 31% yield) were synthesized by the same procedure as that used for the synthesis of 1a using *poly*-5b (1.15g, 57.3 μmol) and *poly*-5c (158mg, 60.2 μmol) as coupling reagents, respectively.

Compound data for **1a**:


M.p. 130–132 °C; ¹H NMR (300 MHz, CDCl₃): δ 8.05 (s, 1H), 4.80 (s, 1H), 4.32–4.50 (m, 6H), 4.16 (t, J = 6.5 Hz, 2H), 1.16–1.94 (m, 46H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ ¹³C NMR (75 MHz, CDCl₃) δ 171.7, 166.5, 148.3, 145.8, 145.6, 145.2, 145.2, 145.2, 145.1, 145.1, 144.7, 144. 6, 144.4, 143.9, 143.7, 143.2, 143.1, 143.0, 142.9, 142.8, 142.4, 142.2, 142.1, 141.1, 140.9, 140.5, 136.3, 70.6, 66.6, 66.1, 65.5, 56.0, 39.1, 30.8, 30.1, 29.5, 29.5, 29.4, 29.3, 29.3, 29.1, 28.9, 28.7, 28.3, 26.4, 26.1, 25. 9, 25.7 ppm; FTIR-ATR (neat): *v* 2919, 2847, 1727, 1537, 1458, 1428, 1269, 1185, 1155, 1106, 1036, 950 cm⁻¹; HRMS (ESI⁺) calcd for C₉₃H₅₇N₃O₆Br m/z 1390.34253 [M+Na]⁺, found m/z 1390.34429.

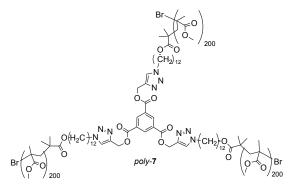
Compound data for fullerene terminated [PMMA]₂₀₀ poly-1b:


¹H NMR (300 MHz, CDCl₃): δ 8.05 (s, 2H), 4.30–4.41 (m, 6H), 3.99 (m, 2H), 3.57 (m, 3H × n), 1.64–2.07 (m, 6H + 2H × n), 1.15–1.48 (m, 20H), 0.72–1.11 (m, 2H × n) ppm; $M_{n,SEC} = 20612 \text{ g mol}^{-1}$, PDI = 1.07.

Compound data for fullerene terminated [PMMA]₂₀ poly-1c:

¹H NMR (300 MHz, CDCl₃): δ 8.06 (s, 2H), 4.80 (s, 2H), 4.30–4.50 (m, 6H), 3.99 (m, 2H), 3.54–3.75 (m, 3H × n), 1.67–2.06 (m, 6H + 2H × n), 1.19–1.48 (m, 20H), 0.72–1.16 (m, 2H × n) ppm; $M_{n,SEC} = 3734$ g mol⁻¹, PDI = . 1.30

Scheme S2. Synthesis of poly-6 and poly-7.



Synthesis of model long PMMA poly-6:

12 (4.07 mg, 16.8 μ mol) was added to the solution of *poly*-**5b** (885 mg, 44.1 μ mol) in CH₂Cl₂. To the resulting mixture was added a solution of Asc.Na (8.32 mg, 42.0 μ mol) and CuSO₄ (6.70 mg, 42.0 μ mol) in water (1.0 mL). After being stirred for 48 h at room temperature under an argon atmosphere, the reaction mixture was diluted with CH₂Cl₂. The organic layer was washed with water, dried over anhydrous Na₂SO₄, and concentrated *in vacuo*. The crude product was passed through GPC to remove unreacted starting materials to afford desired product *poly*-**7** as a white solid (99.6 mg, 11 %).

Compound data for *poly*-6:

¹H NMR (300 MHz, CDCl₃): δ 3.67–3.85 (m, 8H), 3.60 (m, 6H × n), 1.76–2.07 (m, 12H + 4H × n), 1.10–1.48 (m, 40H), 0.73–1.08 (m, 4H × n) ppm; $M_{n,SEC} = 52362$ g mol⁻¹, PDI = 1.08.

Synthesis of model star PMMA poly-7:

13 (3.7 mg, 11 μ mol) was added to the solution of *poly*-5b (970 mg, 48 μ mol) in CH₂Cl₂. To the resulting mixture was added a solution of Asc.Na (9.1 mg, 46 μ mol) and CuSO₄ (7.4 mg, 46 μ mol) in water (4.5 mL). After being stirred for 48 h at room temperature under an argon atmosphere, the reaction mixture was diluted with CH₂Cl₂. The organic layer was washed with water, dried over anhydrous Na₂SO₄, and concentrated *in vacuo*. The crude product was passed through GPC to remove unreacted starting materials to yield desired product *poly*-7 as a white solid (99 mg, 14 %).

Compound data for *poly*-7:

¹H NMR (300 MHz, CDCl₃): δ 3.70–3.86 (m, 12H), 3.59 (m, 9H × n), 1.76–2.09 (m, 18H + 6H × n), 1.08–1.51 (m, 60H), 0.76–1.07 (m, 6H × n) ppm; $M_{n,SEC} = 63182$ g mol⁻¹, PDI = 1.10.

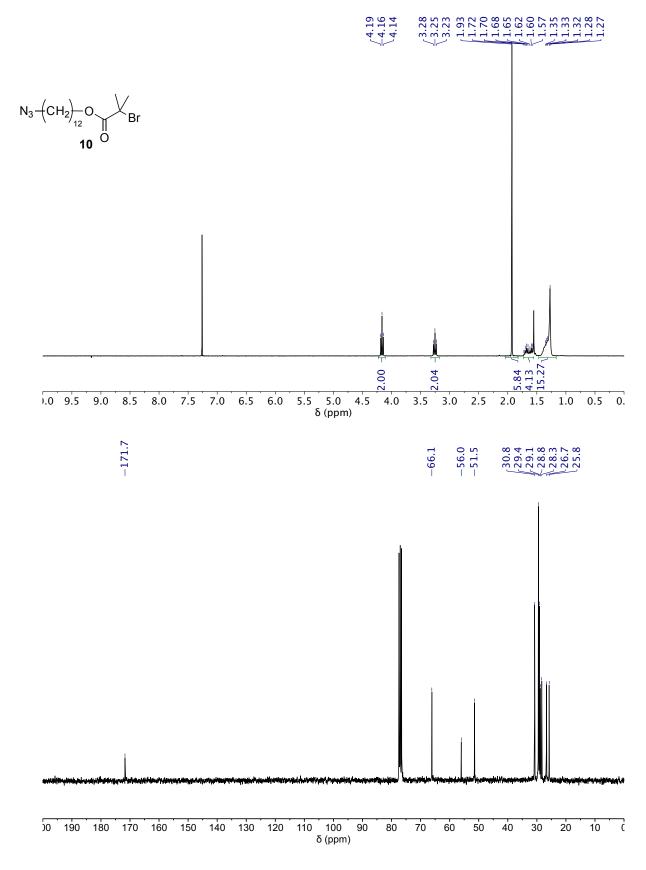


Figure S1. ¹H and ¹³C NMR spectra of 10.

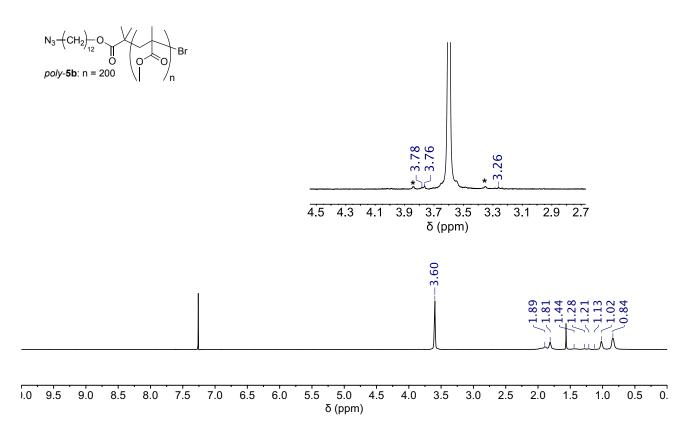


Figure S2. ¹H NMR spectrum of *poly*-5b. The * denotes spinning side band.

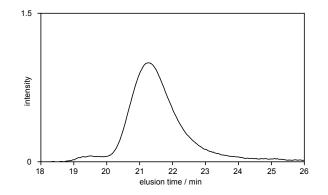
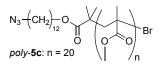



Figure S3. Size-exclusion chromatogram of *poly*-5b (eluent: chloroform).

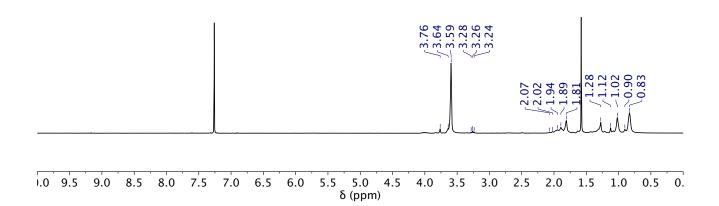


Figure S4. ¹H NMR spectrum of *poly*-5c.

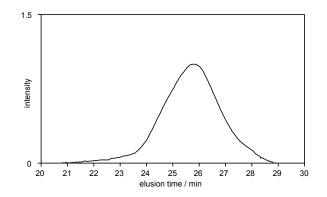
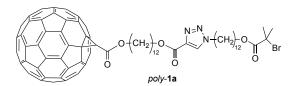



Figure S5. Size-exclusion chromatogram of *poly*-5c (eluent: chloroform).

-8.05

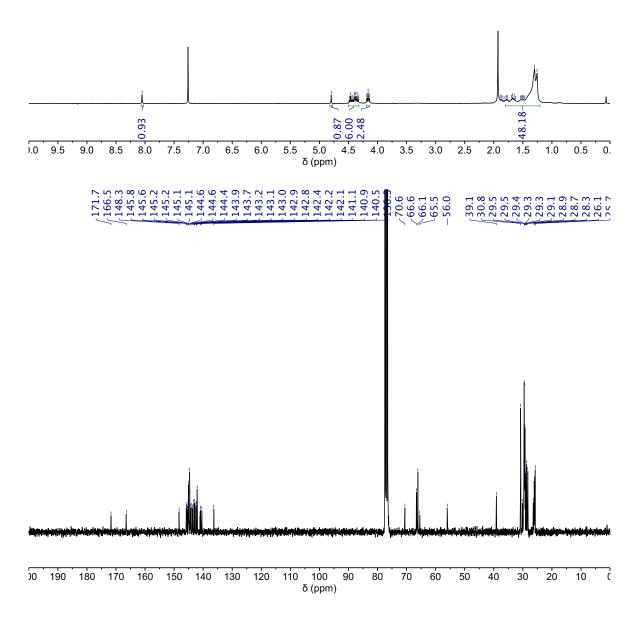


Figure S6. ¹H and ¹³C NMR spectra of 1a.

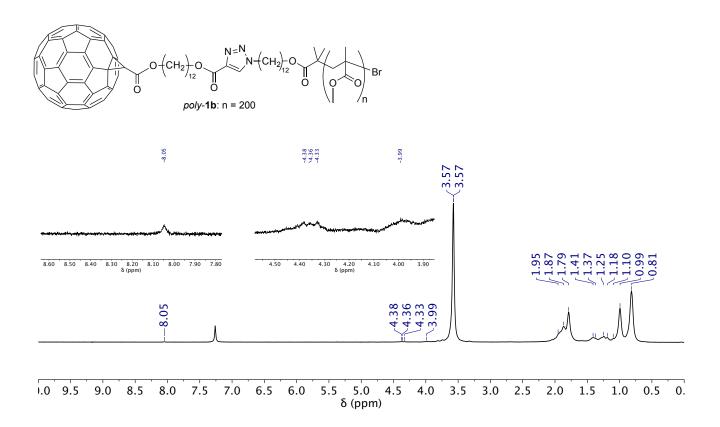


Figure S7. ¹H NMR spectrum of poly-1b.

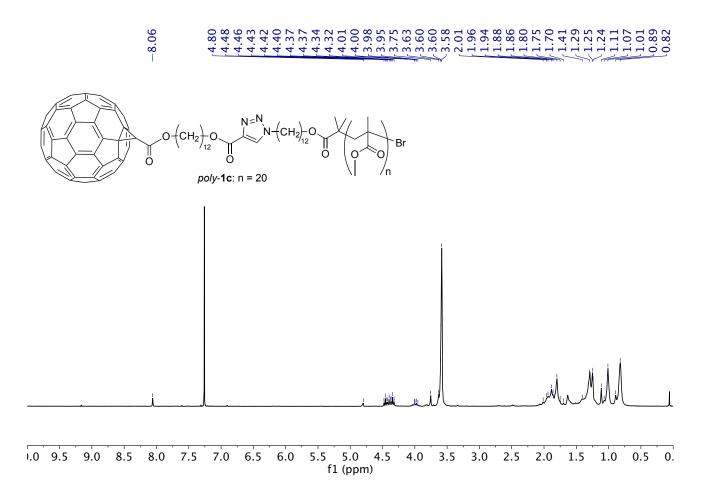


Figure S8. ¹H NMR spectrum of poly-1c.

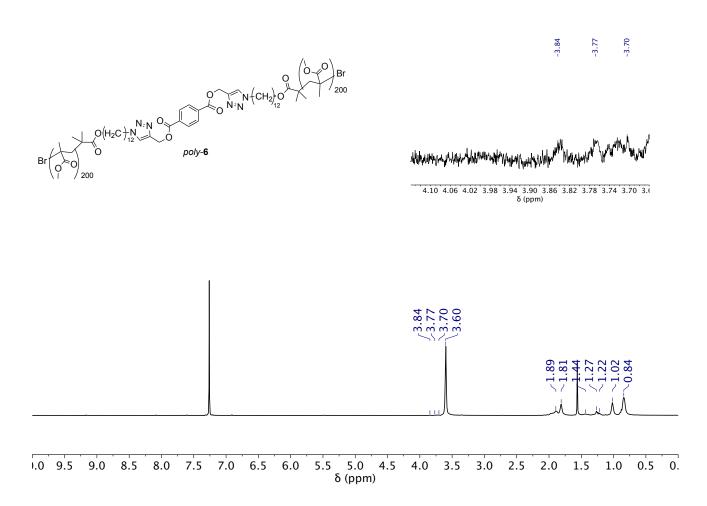


Figure S9. ¹H NMR spectrum of poly-6.

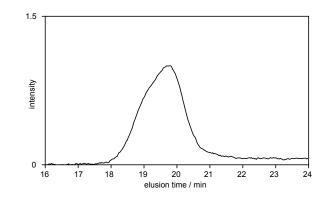


Figure S10. Size-exclusion chromatogram of poly-6 (eluent: chloroform).

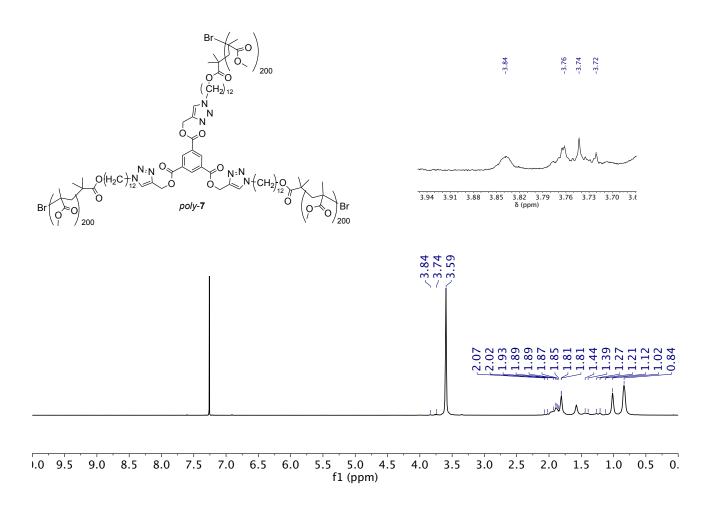


Figure S11. ¹H NMR spectrum of poly-7.

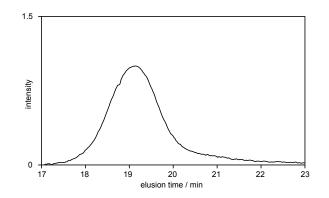


Figure S12. Size-exclusion chromatogram of *poly*-7 (eluent: chloroform).

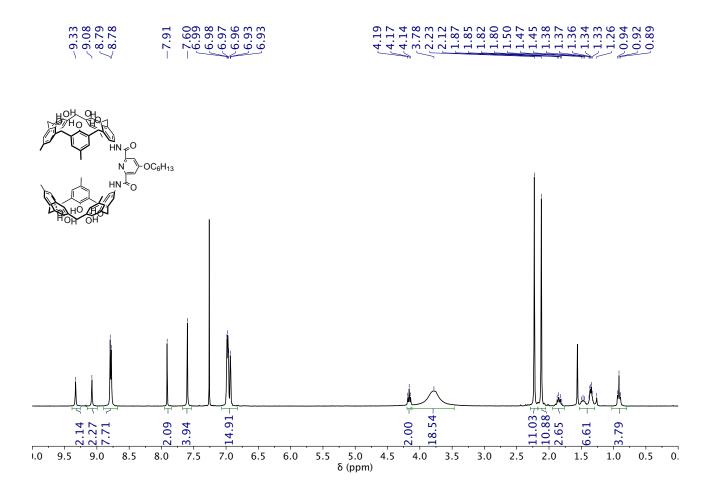
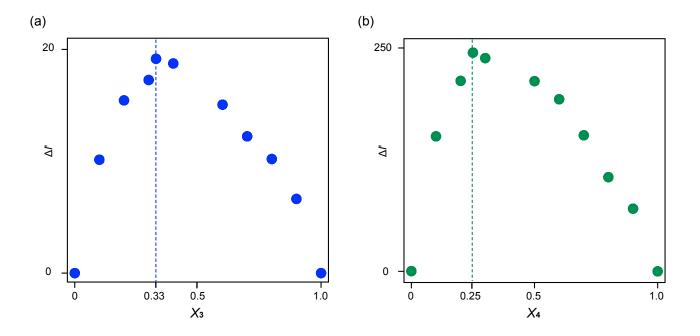
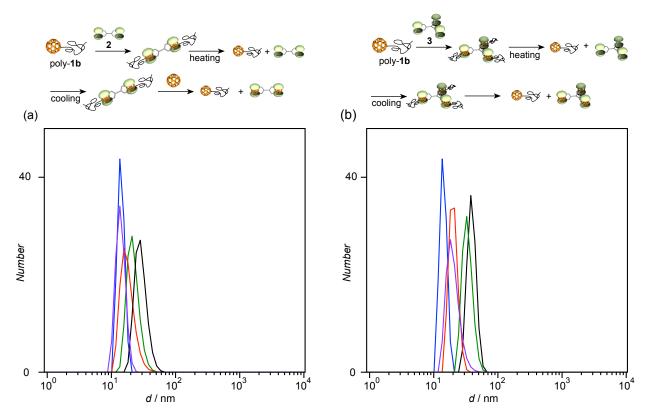




Figure S13. ¹H NMR spectrum of 4.

Figure S14. Job plots for (a) **1a** and **2**, and (b) **1a** and **3**. *X* represents the mole fraction of **2**,**3**. $\Delta I'$ indicates $|I_{obs} - I_0 \cdot X|$, where I_{obs} and I_0 denote observed fluorescence intensity and fluorescence intensity of **2**,**3**, respectively.

Figure S15. Schematic illustrations and the corresponding hydrodynamic diameter (*d*) changes of (a) linear-to-linear and (b) linear-to-star transformations between polymer shapes. The graphs show that the sequential changes of the hydrodynamic diameter (*d*) of (blue) poly-**1b** ($1.0 \times 10^{-5} \text{ mol } \text{L}^{-1}$) at 25 °C in toluene: in the presence of (black) **2** (0.5 equiv.) or **3** (0.33 equiv.); (red) equilibrating at 60 °C, (green) re-equilibrating at 25 °C, and (purple) addition of pristine [60]fullerene molecule (5 equiv.), as inferred form DLS experiments. The expanded graphs are shown in Fig. 6.

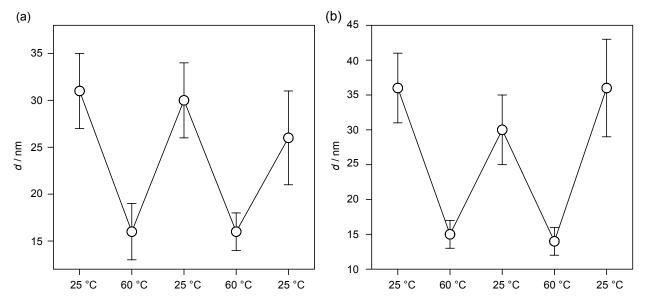
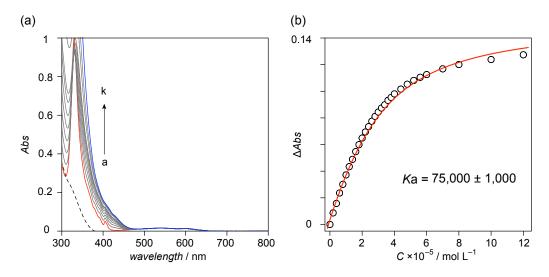
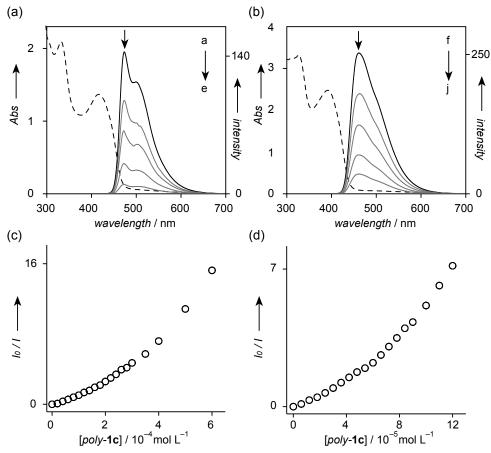




Figure S16. Reversible changes in hydrodynamic diameter (*d*) with heating and cooling the solutions of (a) a mixture of poly-1b ($1.0 \times 10^{-5} \text{ mol } \text{L}^{-1}$) and 2 ($0.5 \times 10^{-5} \text{ mol } \text{L}^{-1}$), and (b) a mixture of poly-1b ($1.0 \times 10^{-5} \text{ mol } \text{L}^{-1}$) and 3 ($0.33 \times 10^{-5} \text{ mol } \text{L}^{-1}$).

Figure S17. (a) Changes in the UV/vis absorption spectrum of [60]fullerene $(2.0 \times 10^{-5} \text{ mol } \text{L}^{-1})$ upon the addition of **4** at 25 °C in chloroform. The concentrations of **4** are a-k: 0.0, 0.6, 1.2, 1.8, 2.4, 3.0, 3.6, 4.0, 6.0, 8.0, $12 \times 10^{-5} \text{ mol } \text{L}^{-1}$. The red line, blue line, and broken line indicate the first point and the last point of the titration, and absorption spectrum of **4** $(2.0 \times 10^{-5} \text{ mol } \text{L}^{-1})$, respectively. (b) Plot of *Abs* (400 nm) against [**4**] and the fitting curve obtained by a 1:1 fitting model.

Figure S18. Changes in the fluorescence spectra of (a) 2 ($1.0 \times 10^{-4} \text{ mol } \text{L}^{-1}$, $\lambda_{\text{ex}} = 420 \text{ nm}$) and (b) 3 ($2.0 \times 10^{-5} \text{ mol } \text{L}^{-1}$, $\lambda_{\text{ex}} = 400 \text{ nm}$) upon the addition of poly-1c (a-e: 0.0, 0.6, 1.2, 2.6, 6 × 10^{-4} \text{ mol } \text{L}^{-1}, f-j: 0.0, 1.8, 3.6, 7.2, 12 × 10⁻⁵ mol L⁻¹) at 25 °C in chloroform. The red line, blue line, and broken line indicate the first point of the titration, the last point of the titration, and absorption spectrum of 2 or 3 ($2.0 \times 10^{-5} \text{ mol } \text{L}^{-1}$), respectively. Stern-Volmer plots for (c) 2 and (d) 3 in the presence of poly-1c. Concentrations of poly-1c were calculated based on its M_n .

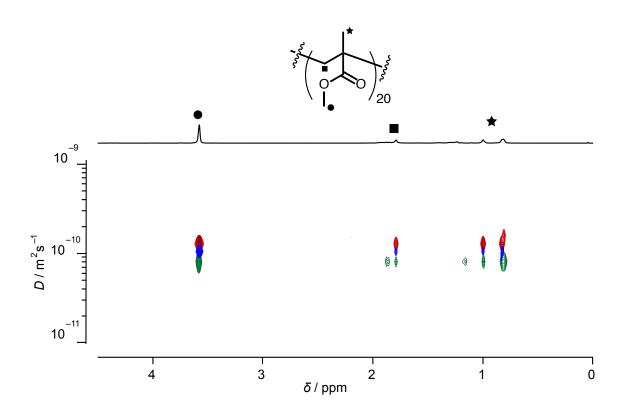


Figure S19. Diffusion coefficients (*Ds*) of poly-1c, as inferred from 2D DOSY measurement in chloroform-*d*. The red line, blue line, and green line denote the spectra obtained from pure poly-1c solution, a 2:1 mixture of poly-1c and 2 and a 3:1 mixture of poly-1c and 3, respectively.

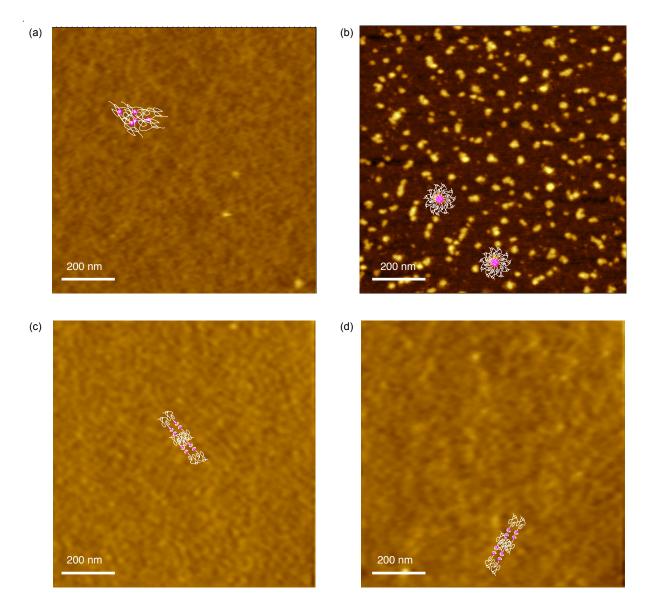


Figure S20. Schematic representation of plausible structures formed from (a) poly-1b, (b) poly-1c, (c) a 2:1 mixture of poly-1b and 2, and (d) a 2:1 mixture of poly-1c and 2.

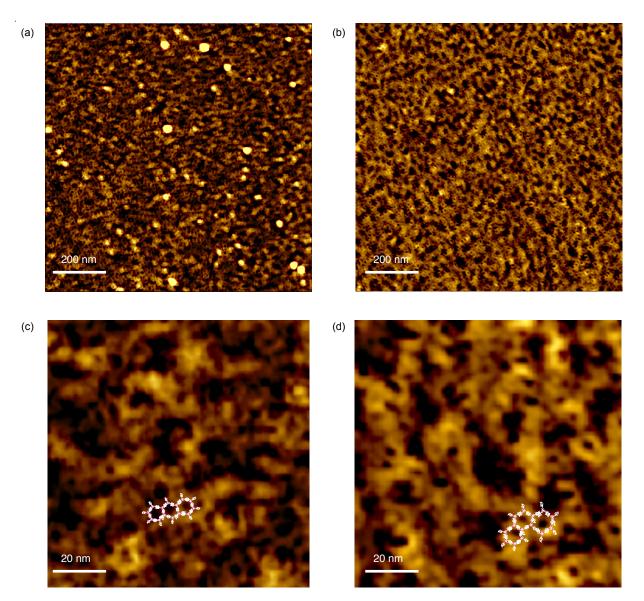


Figure S21. AFM images of cast films of (a) a 3:1 mixture of poly-1b and 3, and (b) a 3:1 mixture of poly-1c and 3 on mica. Schematic representation of plausible structures formed by (c) a 3:1 mixture of poly-1b and 3, and (d) a 3:1 mixture of poly-1c and 3.

References

- [1] T. Hirao, M. Tosaka, S. Yamago, T. Haino, Chem. -Eur. J., 2014, 20, 16138-16146.
- [2] T. Haino, Y. Matsumoto, Y. Fukazawa, J. Am. Chem. Soc., 2005, 127, 8936-8937.
- [3] A. Pinto, J. H. Ciesla, A. Palucci, B. P. Sutliff, C. T. Nomura, ACS Macro Lett., 2016, 5, 215-219.
- [4] H. Yan, S. Chen, M. Lu, X. Zhu, Y. Li, D. Wu, Y. Tu, X. Zhu, Mater. Horiz., 2014, 1, 247-250.
- [5] S. H. Sonawane, M. Anniyappan, J. Athar, S. Banerjee, A. K. Sikder, *RSC Adv.*, **2016**, *6*, 8495-8502.
- [6] G. Chen, J. Kumar, A. Gregory, M. H. Stenzel, Chem. Commun., 2009, 6291-6293.