Supporting information

Methanol Oxidation Catalyzed by Copper Nanoclusters Incorporated in Vacuum-Deposited HKUST-1 Thin Films

Sungmin Han¹, Ryan A. Ciufo¹, Bryan R. Wygant¹, Benjamin K. Keitz², C. Buddie Mullins^{*1,2,3}

¹Department of Chemistry, University of Texas at Austin, Austin, Texas 78712-0231, United

States, ²McKetta Department of Chemical Engineering, University of Texas at Austin, Austin,

Texas 78712-0231, United States, ³Texas Materials Institute, Center for Electrochemistry,

University of Texas at Austin, Austin, Texas 78712-0231, United States

Corresponding Author: C. Buddie Mullins (E-mail: <u>mullins@che.utexas.edu</u>)

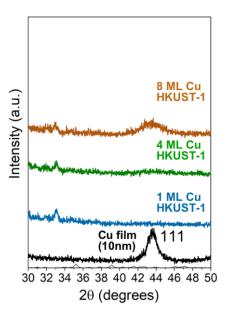


Figure S1. XRD patterns of a polycrystalline Cu film (10 nm thick), 1 ML, 4 ML, and 8 ML Cu-HKUST-1 films in the range of $30^{\circ} - 50^{\circ}$ of 2θ .

(a)	(b)	(c)	(d)
SiO ₂ /Si(100) Substarate	5 cycles of 1 ML Cu-HKUST-1	5 cycles of 4 ML Cu-HKUST-1	5 cycles of 8 ML Cu-HKUST-1

Figure S2. Color variations of 5 cycled HKUST-1 thin films depending on the amount of deposited Cu. (a) $SiO_2/Si(100)$ substrate, (b) 5 cycles of 1 ML Cu-HKUST-1, (c) 5 cycles of 4 ML Cu-HKUST-1, and (d) 5 cycles of 8 ML Cu-HKUST-1.

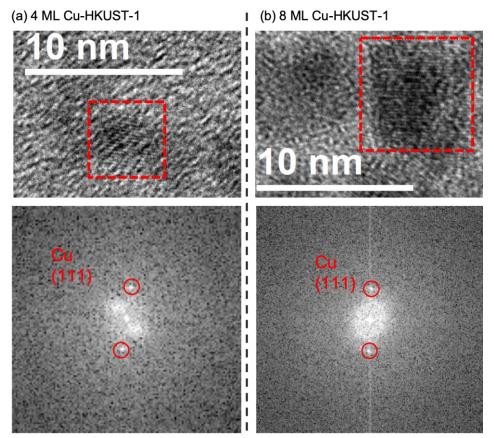


Figure S3. Magnified TEM images of (a) 4 ML Cu-HKUST-1 (b) 8 ML Cu-HKUST-1 with FFT of their lattice fringes (red square box in each TEM images)

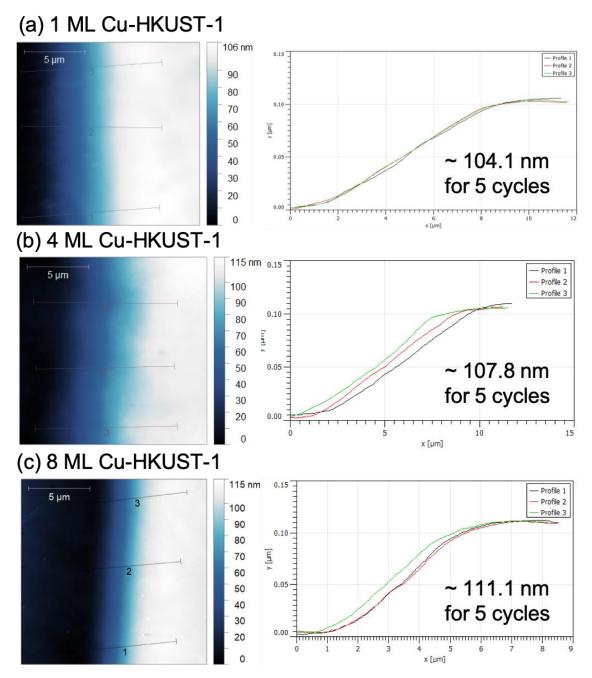


Figure S4. The thickness of (a) 1 ML Cu-HKUST-1, (b) 4 ML Cu-HKUST-1, and (c) 8 ML Cu-HKUST-1 films (5 growth cycles in each film) measured by AFM.

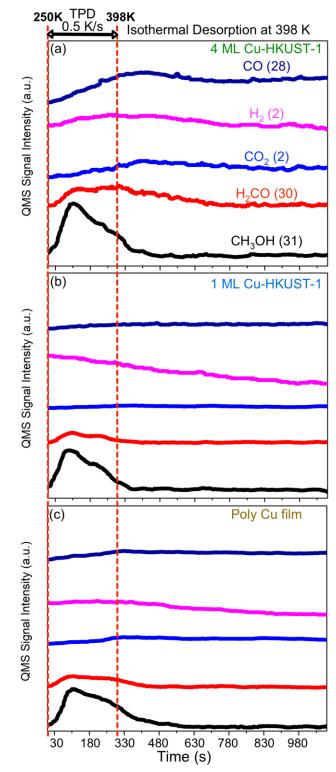


Figure S5. The desorption spectra of CH₃OH (black), H₂CO (red), CO₂ (blue), H₂ (magenta), CO (dark blue) from (a) 4 ML Cu-HKUST-1, (b) 1 ML Cu-HKUST-1 films (5 growth cycles in each), and (c) polycrystalline Cu film (10 nm thick). They were treated with 1.0 x 10^{-6} Torr of O₂ at 300 K for 3 minutes and then were exposed to 5.0 x 10^{-7} Torr of methanol at 250 K for 20 minutes. The sample were heated from 250 K to 398 K at a rate of 0.5 K/s, and they were isothermally held at 398 K for 15 minutes.

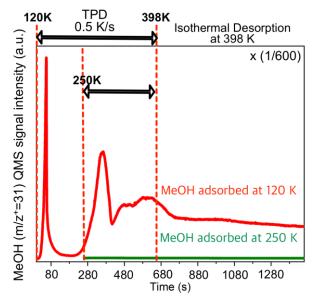


Figure S6. The desorption spectra of CH₃OH from the 5 cycled 4 ML Cu-HKUST-1 thin film. They were treated with 1.0×10^{-6} Torr of O₂ at 300 K for 3 minutes and then were exposed to 5.0×10^{-7} Torr of methanol at 120 K (red) and 250 K (green) for 20 minutes. The sample were heated from 120 K (red) and 250 K (green) to 398 K at a rate of 0.5 K/s, and they were isothermally held at 398 K for 15 minutes. The y-axis scale of this figure is 1/600 compared to other TPD spectra in this study.

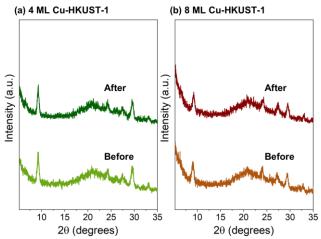


Figure S7. XRD patterns regarding HKUST-1 structures on the 5 cycled 4 ML and 8 ML Cu-HKUST-1 thin films before and after the methanol oxidation experiment.