Supporting Information

Liquid-phase Total Synthesis of Plecanatide Aided by Diphenylphosphinyloxyl Diphenyl Ketone (DDK) Derivatives

Haidi Li, Jie Chao, Zixin Zhang, Guang Tian, Jun Li, Ninghui Chang and Chuanguang Qin*

Shaanxi Key Laboratory of Polymer Science & Technology, OME Key Laboratory of Supernormal Material Physics & Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China.

E-mail: qinchg@nwpu.edu.cn

1. General considerations	S2
2. Abbreviations	S 3
3. Synthesis of diphenylphosphinyloxyl diphenyl ketone (DDK) derivatives	S4
4. DDK derivatives coupled with Fmoc/Boc amino acids	S9
5. Synthesis procedure of Plecanatide	S12
References	S23
NMR Spectra and HRMS (ESI) Spectra	S24

Table of Contents

1. General considerations

All the Fmoc and Boc protected amino acids were obtained from G L Biochem (Shanghai) Ltd, all the reagents were purchased from commercial suppliers and used without further purification. All experiments were carried out using standard methods. The concentration of the samples was performed using the rotary evaporator (RE-52AA, Shanghai) and circulating water multi-purpose vacuum pump (SHB-III, Zhengzhou). The liquid phase stirring reactions were completed using the magnetic stirrer (ST 15 0SA, UK). TLC analysis was performed with the four-use UV analyzer (ZF-8, Shanghai) and silica gel GF₂₅₄ (0.15mm thick, QingDao) plates. The melting point (mp) test was performed with the digital melting-point apparatus (WRS-1B, Shanghai). ¹H NMR (400 MHz), ¹³C NMR (100 MHz) and ³¹P NMR (162 MHz) spectra were recorded on a Bruker NMR spectrometer (Bruker Avance 400 MHz, Germany). Chemical shifts are expressed in ppm, and the coupling constant *J* values are given in Hz (TMS, δ 0.0 ppm). Spectra were obtained in DMSO-*d*₆ (δ_H 2.50 ppm, δ_C 39.52 ppm) or CDCl₃ (δ_H 7.26 ppm, δ_C 77.16 ppm,) or D₂O (δ_H 4.79 ppm). HRMS data were recorded on a Thermo Scientific LTQ Orbitrap XL using ESI ionization. HPLC analyses for the ultimate peptides were performed with LC 3000 HPLC system with CXTH-3000 work station using analysis columns (Kromasil, NC-2546-06251151; 250 × 4.6 mm).

2. Abbreviations

AA:	amino acid					
Boc-Leu-OH:	N-(tert-Butoxycarbonyl)-L-leucine					
Boc-Val-OH:	(S)-2-(tert-butoxycarbonylamino)-3-methylbutyric acid					
DCM:	dichloromethane					
DDK:	diphenylphosphinyloxyl diphenyl Ketone					
DEA:	diethylamine					
DIEA:	N, N-diisopropylethylamine					
DMAP:	4-dimethylaminopyridine					
EA:	ethyl acetate					
EDC·HCl:	1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride					
EDT:	1,2-ethanedithiol					
Fmoc-Ala-OH:	(2S)-2-(9H-fluoren-9-ylmethoxycarbonylamino) propanoic acid					
Fmoc-Asp(tBu)-	OH: (2S)-2-(9H-fluoren-9-ylmethoxycarbonylamino)-4-[(2-methylpropan-2-yl)oxy]-4- oxobutanoic acid					
Fmoc-Asn(Trt)-C	DH: (S)-2-((((9h-fluoren-9-yl)methoxy)carbonyl)amino)-4-oxo-4-(tritylamino)butanoic					
	acid					
Fmoc-Cys(Acm)	-OH: (R)-1-(9h-fluoren-9-yl)-3,10-dioxo-2-oxa-7-thia-4,9-diazaundecane-5-carboxylic acid					
Fmco-Cys(Trt)-C	0H: 2-{[(9H-Fluoren-9-ylmethoxy)carbonyl]amino}-3-(tritylthio)propanoic acid					
Fmoc-Glu(tBu)-G	DH: (2S)-2-(9H-fluoren-9-ylmethoxycarbonylamino)-5-[(2-methylpropan-2-yl)oxy]-5-					
	oxopentanoic acid					
Fmoc-Gly-OH:	2-(9H-fluoren-9-ylmethoxycarbonylamino) acetic acid					
Fmoc-Leu-OH:	(S)-2-((((9h-fluoren-9-yl)methoxy)carbonyl)amino)-4-methylpentanoic acid					
Fmoc-Thr(tBu)-C	DH: (2S,3R)-2-(((9-Fluorenylmethoxy)carbonyl) amino)-3-(tert-butoxy) butanoicacid					
Fmoc-Val-OH:	(2S)-2-(9H-fluoren-9-ylmethoxycarbonylamino)-3-methylbutanoic acid					
HOBt:	1-hydroxybenzotriazole					
MeCN:	acetonitrile					
MeOH:	methanol					
NCS:	N-chlorosuccinimide					
PE:	petroleum ether					
Py:	pyridine					
TEA:	triethylamine					
TFA:	trifluoroacetic acid					
THF:	tetrahydrofuran					
Tis:	triisopropylsilane					

3. Synthesis of diphenylphosphinyloxyl diphenyl ketone (DDK) Derivatives

Synthesis of (**0b**, 4-methoxy-4'-nitrobenzophenone): 4-nitrobenzoyl chloride (1000 mg, 5.4 mmol) and anisole (0.60 mL, 5.5 mmol) were added to a solution of AlCl₃ (1670 mg, 12.5 mmol) in DCM (30 mL) at room temperature and the reaction mixture was refluxed for 8 h. Subsequently, 1.0 mol/L HCl was added to quench the reaction and to obtain the organic phase. The organic phase was washed by 1.0 mol/L NaOH for three times and dried with anhydrous MgSO₄. Then column chromatography was used to obtain the compound 4-methoxy-4'-nitrobenzophenone (**0b**) (1295 mg, 93% yield), pale yellow solid. $R_f = 0.42$ (CH₂Cl₂: MeOH= 60:1), mp 118.4- 121.2 °C.

0b: ¹H NMR (400 MHz, CDCl₃), δ 8.35-8.33 (d, *J*= 8.0 Hz, 2H), 7.90-7.81 (dd, *J*= 8.0 Hz, 4H), 7.02-7.00 (d, *J*= 8.0 Hz, 2H), 3.92 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃), δ 193.4, 164.0, 149.5, 143.8, 132.6, 130.3, 128.9, 123.5, 123.4, 114.0, 55.6 ppm; HRMS (ESI) m/z calcd for C₁₄H₁₂NO₄⁺ (M+H)⁺ 258.0760, found 258.0763.

Synthesis of (**1b**, 4-hydroxy-4'-nitrobenzophenone): **0b** (1600 mg, 6.2 mmol) was added to a solution of 48% HBr (16 mL, 7.0 mmol) in AcOH (50 mL) at room temperature. The reaction mixture was stirred for 24 h at 130 °C and then quenched the reaction by adding ice water. Precipitation appeared after adding 1.0 mol/L NaOH to adjust the pH to 7.0~7.5. The precipitation was filtered to obtain the crude product. Then column chromatography was used to obtain the compound 4-hydroxy, 4'-nitrobenzophenone (**1b**) (1435 mg, 95% yield), pale yellow solid. $R_f = 0.40$ (CH₂Cl₂: MeOH= 40:1), mp 158.8- 162.0 °C.

1b: ¹H NMR (400 MHz, DMSO-*d*₆), δ 10.61 (s, 1H), 8.37-8.35 (d, *J*= 8.0 Hz, 2H), 7.90-7.88 (d, *J*= 8.0 Hz, 2H), 7.71-7.68 (d, *J*= 12.0 Hz, 2H), 6.94-6.92 (d, *J*= 8.0 Hz, 2H) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆), δ 193.3, 163.2, 149.4, 144.3, 133.2, 130.8, 130.6, 127.4, 124.1, 124.0, 116.0 ppm; HRMS (ESI) m/z calcd for

 $C_{13}H_{10}NO_4^+$ (M+H)⁺ 244.0604, found 244.0603.

Synthesis of (**2a**, 4-diphenylphosphinyloxyl benzophenone): 4-Hydroxydiphenylketone (2380 mg, 12 mmol, 1.2 equiv) was added to a solution of Et₃N (1.7 mL, 12 mmol, 1.2 equiv) in THF (100 mL) at 0 °C and stirred at this temperature for 20 min. Subsequently, the reaction mixture was added with diphenylphosphinic chloride (1.9 mL, 10 mmol, 1.0 equiv) dropwise and stirred at room temperature for 2 h. The reaction mixture was quenched with 5 mL 0.1 mol/L H₂SO₄ and concentrated under reduced pressure. The dry residue was then dissolved in 50 mL ethyl acetate and washed with H₂O for three times and dried with MgSO₄. 5 mL ethyl acetate was added to dissolve the sample after concentrated, and 25 mL of petroleum ether ($V_{EA}/V_{PE}=1:5$) was added dropwise and stirred. Precipitate appeared, and the white precipitate was filtered and dried to afford the pure product (**2a**) (3910 mg, 98% yield), white solid. R_f = 0.48 (CH₂Cl₂: MeOH= 60:1), mp 140.4-141.5 °C.

2a: ¹H NMR (400 MHz, CDCl₃), δ 7.95-7.90 (m, 4H), 7.76-7.73 (m, 4H), 7.59-7.55 (m, 3H), 7.52-7.44 (m, 6H), 7.36-7.34 (d, *J* = 8.0 Hz, 2H) ppm; ³¹P NMR (162 MHz, CDCl₃), δ 31.51 ppm; ¹³C NMR (100 MHz, CDCl₃), δ 195.4, 154.4, 137.5, 133.9, 132.8, 132.4, 132.1, 131.8, 131.7, 131.2, 129.9, 128.8, 128.7, 128.3, 120.5 ppm; HRMS (ESI) m/z calcd for C₂₅H₂₀O₃P⁺ (M+H)⁺ 399.1144, found 399.1146.

(2b) and (2c) were synthesized according to the above method of (2a).

(2b, 4-diphenylphosphinyloxyl-4'-nitrobenzophenone): (4215 mg, 95% yield), pale yellow solid, $R_f = 0.45$ (CH₂Cl₂: MeOH = 60:1), mp 151.9-154.8°C, (95% yield). ¹H NMR (400 MHz, CDCl₃), δ 8.34-8.32 (d, *J*= 8.0 Hz, 1H), 7.95-7.89 (m, 2H), 7.82-7.72 (m, 5H), 7.59-7.49 (m, 4H), 7.41-7.38 (m, 6H) ppm; ³¹P NMR

(162 MHz, CDCl₃), δ 28.31 ppm; ¹³C NMR (100 MHz, CDCl₃), δ 193.4, 155.3, 149.8, 142.8, 132.6, 132.2, 131.6, 131.2, 130.5, 128.9, 128.5, 123.6, 120.9 ppm; HRMS (ESI) m/z calcd for C₂₅H₁₉NO₅P⁺ (M+H)⁺ 444.0995, found 444.0998.

(2c, 4,4'-bisdiphenylphosphinyloxyl benzophenone): (6088 mg, 99% yield), white solid, $R_f = 0.52$ (CH₂Cl₂: MeOH = 60:1), mp 137.1-137.8°C, (99% yield). ¹H NMR (400 MHz, CDCl₃), δ 7.94-7.89 (m, 8H), 7.69-7.65 (m, 4H), 7.59-7.55 (m, 4H), 7.52-7.47 (m, 8H), 7.34-7.28 (m, 4H) ppm; ³¹P NMR (162 MHz, CDCl₃), δ 31.56 ppm; ¹³C NMR (100 MHz, CDCl₃), δ 194.2, 154.4, 133.7,

132.8, 132.0, 131.8, 131.7, 131.1, 129.7, 128.9, 128.7, 120.5 ppm; HRMS (ESI) m/z calcd for $C_{37}H_{29}O_5P_2^+$ (M+H)⁺ 615.1484, found 615.1484.

Synthesis of (**3a**, 4-diphenylphosphinyloxyl diphenylmethanol, **DDK-1**): NaBH₄ (456 mg, 12 mmol, 3.0 equiv) divided into three batches was added to a solution of (**2a**) (1600 mg, 4 mmol, 1.0 equiv) in CH₃OH (50 mL) at 0 °C and the reaction mixture was sealed and stirred at this temperature for 1 h. The reaction mixture was quenched by adding with 10 mL saturated NH₄Cl and concentrated to remove the CH₃OH, the residue was dissolved in 30 mL ethyl acetate and washed with H₂O for three times and dried with MgSO₄, 6 mL ethyl acetate was added to dissolve the sample after concentrated, and 42 mL of petroleum ether (V_{EA}/V_{PE} =1:7) was added dropwise and stirred. Precipitate appeared, and the precipitate was filtered and dried to afford the pure product (**3a**, **DDK-1**) (1552 mg, 97% yield). White solid, R_f = 0.45 (CH₂Cl₂: MeOH= 40:1), mp 160.1-160.8 °C.

3a: ¹H NMR (400 MHz, CDCl₃), δ 7.89-7.84 (m, 4 H), 7.56-7.52 (m, 2H), 7.48-7.43 (m, 4H), 7.31-7.23 (m, 7H), 7.14-7.12 (d, *J*= 8.0 Hz, 2H), 5.74 (s, 1H), 2.99 (s, 1H) ppm; ³¹P NMR (162 MHz, CDCl₃), δ 30.58 ppm; ¹³C NMR (100 MHz, CDCl₃), δ 150.0, 143.9, 140.6, 132.5, 131.8, 131.7, 130.1, 128.7, 128.6, 128.4, 128.0, 127.4, 126.6, 120.6, 75.4 ppm; HRMS (ESI) m/z calcd for C₂₅H₂₂O₃P⁺

(M+H)⁺ 401.1301, found 401.1298.

(3b) and (3c) were synthesized according to the above method of (3a).

(**3b**, 4-diphenylphosphinyloxyl-4'-nitrodiphenylmethanol, **DDK-3**): (1605 mg, 90% yield), pale yellow solid, $R_f = 0.40$ (CH₂Cl₂: MeOH= 40:1), mp 182.2-184.1 °C, (90% yield). ¹H NMR (400 MHz, DMSO-*d*₆), δ 8.17-8.15 (d, *J*= 8.0 Hz, 2H), 7.92-7.86 (dd, *J*= 8.0 Hz, 4H), 7.63-7.51 (m, 8H), 7.35-7.22 (dd, *J*= 8.0 Hz, 4H), 6.23-

6.22 (d, J= 4.0 Hz, 1H), 5.81-5.80 (d, J= 4.0 Hz, 1H) ppm; ³¹P NMR (162 MHz, DMSO- d_6), δ 29.18 ppm; ¹³C NMR (100 MHz, DMSO- d_6), δ 153.4, 150.2, 146.8, 141.4, 133.2, 132.0, 130.6, 129.4, 128.3, 127.6, 123.9, 120.9, 73.2 ppm; HRMS (ESI) m/z calcd for C₂₅H₂₁NO₅P⁺ (M+H)⁺ 446.1152, found 446.1153.

(3c, 4,4'-bisdiphenylphosphinyloxyl diphenylmethanol, DDK-5): (2442 mg, 99% yield), white solid, $R_f = 0.50$ (CH₂Cl₂: MeOH= 40:1), mp 187.2-189.3°C, (99% yield). ¹H NMR (400 MHz, CDCl₃), δ 7.87-7.82 (m, 8H), 7.53-7.50 (m, 4H), 7.46-7.41 (m, 8H), 7.15-7.13 (d, *J*= 8.0 Hz, 4H), 7.07-7.05 (d, *J*= 8.0 Hz, 4H), 5.62 (s, 1H) ppm; ³¹P NMR (162 MHz, CDCl₃), δ 30.54 ppm; ¹³C NMR

 $(100 \text{ MHz}, \text{CDCl}_3), \delta 140.5, 132.5, 131.8, 131.7, 131.5, 130.1, 128.7, 128.6, 128.0, 120.4, 74.5 \text{ ppm}; \text{HRMS} (ESI) \text{ m/z} \text{ calcd for } C_{37}\text{H}_{31}\text{O}_5\text{P}_2^+ (\text{M}+\text{H})^+ 617.1641, \text{ found } 617.1641.$

Synthesis of (**4a**, 4-diphenylphosphinyloxyl benzophenone oxime, **DDK-2**): NH₂OH·HCl (165 mg, 2.4 mmol, 1.2 equiv) was added to a solution of (**2a**) (800 mg, 2 mmol, 1.0 equiv) in pyridine and ethanol (33 mL, V_{*Ethanol:Pyridine* =10:1) and refluxed for 4 h. The reaction mixture was concentrated under reduced pressure. The residue was dissolved in 30 mL ethyl acetate and washed with 0.1 mol/L HCl, dried with MgSO₄. Subsequently, 5 mL ethyl acetate was added to dissolve the sample after concentrated, and 30 mL of petroleum ether (V_{EA}/V_{PE} =1:6) was added dropwise and stirred. Precipitate appeared, and the precipitate was filtered and dried to afford the pure product (**4a**, **DDK-2**) (780 mg, 95% yield). White solid, R_f = 0.47 (CH₂Cl₂: MeOH = 40:1), mp 168.1-169.2°C.}

4a: ¹H NMR (400 MHz, CDCl₃), δ 9.50 (s, 1H), 7.99-7.90 (m, 4H), 7.59-7.28 (m, 14H), 7.22-7.20 (m, 1H) ppm; ³¹P NMR (162 MHz, CDCl₃), δ 31.09 ppm; ¹³C NMR (100 MHz, CDCl₃), δ 156.5, 151.3, 136.4, 132.7, 131.9, 131.3, 130.0, 129.8, 129.3, 129.0, 128.8, 128.6, 128.3, 128.0, 120.4 ppm; HRMS (ESI) m/z calcd for C₂₅H₂₁NO₃P⁺ (M+H)⁺ 414.1253, found 414.1254.

(4b) and (4c) were synthesized according to the above method of (4a).

(4b, 4-diphenylphosphinyloxyl-4'-nitrobenzophenone oxime, DDK-4): (805 mg, 88% yield), pale yellow solid, $R_f = 0.45$ (CH₂Cl₂: MeOH= 40:1), mp 162.6-165.3°C, (88% yield). ¹H NMR (400 MHz, DMSO- d_6), δ 11.98 (s, 1H), 8.30-8.20 (dd, J= 8.0 Hz, 2H), 7.98-7.90 (m, 4H), 7.65-7.53 (m, 8H), 7.41-7.31 (m,

4H) ppm; ³¹P NMR (162 MHz, DMSO-*d*₆), δ 29.76 ppm; ¹³C NMR (100 MHz, DMSO-*d*₆), δ 153.5, 147.9, 143.3, 140.5, 133.3, 132.7, 132.0, 131.9, 131.7, 131.6, 131.3, 130.8, 130.6, 129.5, 129.4, 129.3, 129.2, 128.8, 128.5, 124.1, 120.9 ppm; HRMS (ESI) m/z calcd for C₂₅H₂₀N₂O₅P⁺ (M+H)⁺ 459.1104, found 459.1102.

(4c, 4,4'-bisdiphenylphosphinyloxyl benzophenone oxime, **DDK-6**): (1191 mg, 95% yield), white solid, $R_f = 0.48$ (CH₂Cl₂: MeOH= 40:1), mp 152.4-154.1°C, (95% yield). ¹H NMR (400 MHz, CDCl₃), δ 10.68 (s, 1H), 7.96-7.87 (m, 8H), 7.57-7.43 (m, 12H), 7.32-7.30 (m, 6H), 7.21-7.19 (d, *J*= 8.0 Hz, 2H) ppm; ³¹P NMR (162 MHz, CDCl₃), δ 30.99 ppm; ¹³C NMR (100 MHz, CDCl₃), δ 154.8,

151.4, 151.0, 133.5, 132.7, 131.9, 131.8, 131.3, 131.2, 131.0, 130.0, 129.6, 129.3, 129.1, 128.8, 128.7, 120.4, 120.2 ppm; HRMS (ESI) m/z calcd for $C_{37}H_{30}NO_5P_2^+$ (M+H)⁺ 630.1593, found 630.1590.

Synthesis of (**5a**, 4-diphenylphosphinyloxyl diphenylmethyl chloride, **DDK-7**): SOCl₂ (1 mL) was added dropwise to a solution of (**3a**) (400 mg, 1 mmol, 1 equiv) in dichloromethane (10 mL) at room temperature, then the reaction mixture was stirred for 4 h at room temperature. The reaction mixture was concentrated under reduced pressure at 40 °C, then 3 mL ethyl acetate was added to the residue to dissolve the sample, and 18 mL of petroleum ether ($V_{EA}/V_{PE}=1:6$) was added dropwise and stirred. Precipitate appeared, and the precipitate was filtered and dried to afford the pure product (**5a**, **DDK-7**) (405 mg, 97% yield), white solid, $R_f = 0.40$ (CH₂Cl₂: MeOH= 60:1), mp 78.3-79.6 °C.

5a: ¹H NMR (400 MHz, CDCl₃), δ 7.90-7.85 (dd, *J*= 8.0 Hz, 4H), 7.48-7.39 (m, 6H), 7.32-7.16 (m, 9H), 6.02 (s, 1H) ppm; ³¹P NMR (162 MHz, CDCl₃), δ 30.98 ppm; ¹³C NMR (100 MHz, CDCl₃), δ 150.6, 140.8, 137.4, 132.7, 131.7, 129.3, 128.8, 128.6, 128.2, 127.8, 120.8, 63.6; HRMS (ESI) m/z calcd for C₂₅H₂₁ClO₂P⁺ (M+H)⁺ 419.0962, found 419.0960.

(5c, DDK-8) were synthesized according to the above method of (5a).

(5c, 4,4'-bisdiphenylphosphinyloxyl diphenylmethyl chloride, **DDK-8**): (620 mg, 98% yield), white solid, $R_f = 0.45$ (CH₂Cl₂: MeOH= 60:1), mp 153.5-156.1 °C, (98% yield). ¹H NMR (400 MHz, CDCl₃), δ 7.90-7.85 (dd, *J*= 8.0 Hz, 8H), 7.51-7.40 (m, 12H), 7.20-7.14 (m, 8H), 5.95 (s, 1H) ppm; ³¹P NMR (162 MHz, CDCl₃), δ 31.00 ppm; ¹³C NMR (100 MHz, CDCl₃), δ 150.6, 137.0,

132.7, 131.8, 131.4, 130.0, 129.2, 128.6, 120.8, 62.9; HRMS (ESI) m/z calcd for $C_{37}H_{30}ClO_4P_2^+$ (M+H)⁺ 635.1302, found 635.1301.

4. DDK derivatives coupled with Fmoc/Boc Amino acids

Synthesis of **Fmoc/Boc-AA-DDK-***n*: DCC (250 mg, 1.2 mmol, 1.2 equiv) and DMAP (15 mg, 0.12 mmol, 0.12 equiv) were added to a solution of Fmoc-Val-OH (or Boc-Val-OH) (1.2 mmol, 1.2 equiv) in dichloromethane (20 mL) at 0 °C and stirred at this temperature for 10 min. The reaction mixture was added with DDK-*n* (1.0 mmol, 1.0 equiv) and stirred at room temperature for 1 h. Subsequently, the insoluble was filtered out, and the solution was washed with saturated NH₄Cl for twice times and dried with anhydrous MgSO₄. 2 mL ethyl acetate was added to dissolve the sample after concentrated, and 18 mL of petroleum ether (V_{EA}/V_{PE} = 1:9) was added dropwise and stirred. Precipitate appeared, and the precipitate was filtered and dried to afford the pure product as follows:

3a-1, Fmoc-Val-DDK-1: White solid, $R_f = 0.45$ (CH₂Cl₂: MeOH= 60:1), (730 mg, 98% yield). ¹H NMR (400 MHz, CDCl₃), δ 7.89-7.84 (m, 4H), 7.76-7.74 (d, *J*= 8.0 Hz, 2H), 7.59-7.36 (m, 10H), 7.30-7.26 (m, 2H), 7.30-7.15 (m, 12H), 6.84 (s, 1H), 5.38-5.35 (d, *J*= 12.0 Hz 1H), 4.43-4.36 (m, 3H), 4.22-4.19 (m, 1H), 2.21-2.16 (m, 1H), 0.91-0.87 (dd, *J*= 8.0 Hz, 3H), 0.76-0.70 (dd, *J*= 8.0 Hz, 3H) ppm; ³¹P NMR (162 MHz, CDCl₃), δ 30.57 ppm; ¹³C NMR (100 MHz, CDCl₃), δ 171.2, 156.3,

150.5, 143.8, 141.3, 139.1, 135.9, 132.6, 131.8, 130.1, 129.0, 128.6, 128.3, 127.7, 127.1, 125.2, 120.8, 120.0, 77.3, 67.1, 59.0, 47.2, 31.3, 19.1, 17.2 ppm; HRMS (ESI) m/z calcd for $C_{45}H_{40}NO_6PNa^+$ (M+Na)⁺ 744.2486, found 744.2489.

3a-2, Boc-Val-DDK-1: White solid, $R_f = 0.43$ (CH₂Cl₂: MeOH= 60:1), (615 mg, 99% yield). ¹H NMR (400 MHz, CDCl₃), δ 7.92-7.86 (m, 4H), 7.56-7.44 (m, 6H), 7.32-7.17 (m, 8H), 6.85 (s, 1H), 5.07-5.05 (d, *J*= 8.0 Hz, 1H), 4.35-4.33 (m, 1H), 2.18-2.14 (m, 1H), 1.44 (s, 9H), 0.91-0.88 (dd, *J*= 8.0 Hz, 3H), 0.75-0.69 (dd, *J*= 8.0 Hz, 3H) ppm; ³¹P NMR (162 MHz, CDCl₃), δ 30.64 ppm; ¹³C NMR (100 MHz, CDCl₃), δ 171.5, 155.7, 150.6, 139.4, 136.1, 132.6, 131.8, 131.5, 130.1, 128.6, 128.2, 126.9, 120.8, 79.8, 77.0, 58.6, 31.2, 28.3, 19.1, 17.2 ppm; HRMS (ESI) m/z calcd for

 $C_{35}H_{38}NO_6PNa^+$ (M+Na)⁺ 622.2329, found 622.2328.

4a-1, Fmoc-Val-DDK-2: White solid, $R_f = 0.42$ (CH₂Cl₂: MeOH= 60:1), (712mg, 97% yield). ¹H NMR (400 MHz, CDCl₃), δ 7.95-7.89 (m, 4H), 7.79-7.78 (d, *J*= 8.0 Hz, 2H), 7.62-7.25 (m, 21H), 5.36-5.31 (m, 1H), 4.43-4.39 (m, 2H), 4.29-4.23 (m, 2H), 2.01-1.99 (m, 1H), 0.98-0.80 (dd, *J*= 8.0 Hz, 6H) ppm; ³¹P NMR (162 MHz, CDCl₃), δ 30.56 ppm; ¹³C NMR (100 MHz, CDCl₃), δ 169.6, 165.2, 156.1, 152.1, 143.7, 141.3, 134.1, 132.7, 131.8, 131.7, 131.3,

130.7, 130.6, 129.8, 129.2, 128.8, 128.7, 128.5, 128.3, 127.7, 127.1, 125.1, 120.7, 120.0, 67.1, 58.2, 47.2, 31.6, 22.7, 17.6 ppm; HRMS (ESI) m/z calcd for $C_{45}H_{40}N_2O_6P^+$ (M+H)⁺ 735.2618, found 735.2617.

4a-2, Boc-Val-DDK-2: White solid, $R_f = 0.43$ (CH₂Cl₂: MeOH= 60:1), (600 mg, 98% yield). ¹H NMR (400 MHz, CDCl₃), δ 7.97-7.87 (m, 4H), 7.61-7.21 (m, 15H), 5.04-5.02 (m, 1H), 4.20-4.17 (m, 1H), 1.95-1.90 (m, 1H), 1.45 (s, 9H), 0.88-0.77 (dd, *J*= 8.0 Hz, 6H) ppm; ³¹P NMR (162 MHz, CDCl₃), δ 30.66 ppm; ¹³C NMR (100 MHz, CDCl₃), δ 169.9, 164.9, 155.5, 151.9, 134.2, 132.7, 132.1, 131.8, 131.7, 131.2, 130.6, 129.8, 129.1, 128.8, 128.7, 128.4, 128.3, 120.5, 79.9, 57.7, 31.3, 28.3,

18.8, 17.6 ppm; HRMS (ESI) m/z calcd for C₃₅H₃₈N₂O₆P⁺ (M+H)⁺ 613.2462, found 613.2461.

3b-1, Fmoc-Leu-DDK-3: White solid, $R_f = 0.40$ (CH₂Cl₂: MeOH= 60:1), (770mg, 99% yield). ¹H NMR (400 MHz, CDCl₃), δ 8.16-8.14 (d, J= 8.0 Hz, 2H), 7.92-7.78 (m, 6H), 7.59-7.39 (m, 12H), 7.32-7.19 (m, 6H), 6.87 (s, 1H), 5.19-5.16 (m, 1H), 4.50-4.41 (m, 3H), 4.23-4.19 (m, 1H), 1.67-1.53 (m, 3H), 0.94-0.89 (dd, J= 8.0 Hz, 6H) ppm; ³¹P NMR (162 MHz, CDCl₃), δ 31.18 ppm; ¹³C NMR (100 MHz, CDCl₃), δ 171.8, 156.0, 151.0, 147.6, 146.4, 146.3, 143.7, 141.3, 134.4, 132.6,

131.8, 129.0, 128.8, 128.6, 127.8, 127.5, 127.1, 125.0, 123.9, 121.2, 120.0, 76.2, 67.1, 52.7, 47.1, 41.3, 24.8, 22.9, 21.8 ppm; HRMS (ESI) m/z calcd for $C_{46}H_{42}N_2O_8P^+$ (M+H)⁺ 781.2673, found 781.2678.

3b-2, Boc-Leu-DDK-3: White solid, $R_f = 0.45$ (CH₂Cl₂: MeOH= 60:1), (660mg, 97% yield). ¹H NMR (400 MHz, CDCl₃), δ 8.18-8.16 (m, 2H), 7.90-7.85 (m, 4H), 7.57-7.43 (m, 8H), 7.19 (m, 4H), 6.84 (s, 1H), 4.87-4.84 (m, 1H), 4.41-4.34 (m, 1H), 1.66-1.53 (m, 3H), 1.43 (s, 9H), 0.92-0.87 (dd, *J*= 8.0 Hz, 6H) ppm; ³¹P NMR (162 MHz, CDCl₃), δ 31.05 ppm; ¹³C NMR (100 MHz, CDCl₃), δ 172.5, 155.4, 151.1, 147.6, 146.5, 134.6, 132.6, 131.8, 130.1, 128.7, 127.6, 123.8, 121.2, 88.1, 76.0, 52.3, 41.1, 28.3, 24.8, 22.8, 21.8 ppm; HRMS (ESI) m/z calcd for C₃₆H₃₉N₂O₈PNa⁺

 $(M+Na)^+$ 681.2336, found 681.2337.

3c-1, Fmoc-Val-DDK-5: White solid, $R_f = 0.45$ (CH₂Cl₂: MeOH= 60:1), (920mg, 96% yield). ¹H NMR (400 MHz, CDCl₃), δ 7.89-7.83 (m, 8H), 7.76-7.74 (d, *J*= 8.0 Hz, 2H), 7.58-7.36 (m, 16H), 7.30-7.26 (m, 2H), 7.13 (m, 8H), 6.76 (s, 1H), 5.33-5.30 (d, *J*= 12.0 Hz 1H), 4.38-4.34 (m, 3H), 4.22-4.18 (m, 1H), 2.15-2.11 (m, 1H), 0.86-0.84 (dd, *J*= 8.0 Hz, 3H), 0.68-0.66 (dd, *J*= 8.0 Hz, 3H) ppm; ³¹P NMR (162 MHz, CDCl₃), δ 30.52 ppm; ¹³C NMR (100 MHz, CDCl₃), δ 171.1, 156.3, 150.6,

143.9, 141.3, 135.6, 132.6, 131.8, 128.7, 128.5, 127.7, 127.1, 125.1, 120.8, 120.0, 76.6, 67.1, 58.9, 47.2, 31.3, 19.0, 17.2 ppm; HRMS (ESI) m/z calcd for C₄₉H₅₀NO₈P₂Na⁺ (M+Na)⁺ 960.2825, found 960.2820.

3c-2, Boc-Val-DDK-5: White solid, $R_f = 0.47$ (CH₂Cl₂: MeOH= 60:1), (805 mg, 99% yield). ¹H NMR (400 MHz, CDCl₃), δ 7.90-7.83 (m, 8H), 7.54-7.43 (m, 12H), 7.14 (m, 8H), 6.75 (s, 1H), 5.01-4.99 (d, *J*= 8.0 Hz, 1H), 4.27-4.24 (m, 1H), 2.11-2.06 (m, 1H), 1.41 (s, 9H), 0.84-0.83 (dd, *J*= 8.0 Hz, 3H), 0.65-0.63 (d, *J*= 8.0 Hz, 3H) ppm; ³¹P NMR (162 MHz, CDCl₃), δ 30.69 ppm; ¹³C NMR (100 MHz, CDCl₃), δ 171.4, 155.7, 150.6, 135.7, 132.6, 131.8, 131.4, 130.1, 128.7, 120.7, 79.8,

76.4, 58.5, 31.1, 28.3, 19.0, 17.2 ppm; HRMS (ESI) m/z calcd for $C_{47}H_{48}NO_8P_2^+$ (M+H)⁺ 816.2849, found 816.2845.

4c-1, Fmoc-Phe-DDK-6: White solid, $R_f = 0.45$ (CH₂Cl₂: MeOH= 60:1), (950 mg, 95% yield). ¹H NMR (400 MHz, CDCl₃), δ 7.94-7.88 (m, 8H), 7.79-7.77 (d, J= 8.0 Hz, 2H), 7.59-7.54 (m, 6H), 7.52-7.45 (m, 8H), 7.43-7.39 (m, 4H), 7.33-7.22 (m, 9H), 7.04-6.98 (m, 4H), 5.33-5.30 (d, J= 12.0 Hz,1H), 4.62-4.57 (m, 1H), 4.43-4.32 (m, 2H), 4.23-4.19 (m, 1H), 3.04-2.91 (m, 2H) ppm; ³¹P NMR (162 MHz, CDCl₃), δ 30.74 ppm; ¹³C NMR (100 MHz, CDCl₃), δ 169.1, 164.2, 155.4, 153.5, 152.1, 143.7, 141.3, 135.3, 132.7, 131.8, 131.2, 130.8, 130.6,

130.5, 129.8, 129.4, 128.8, 128.7, 127.7, 127.1, 125.1, 120.8, 120.0, 67.1, 54.2, 47.1, 38.5 ppm; HRMS (ESI) m/z calcd for $C_{61}H_{49}N_2O_8P_2^+$ (M+H)⁺ 999.2958, found 999.2956.

4c-2, Fmoc-Val-DDK-6: White solid, $R_f = 0.47$ (CH₂Cl₂: MeOH= 60:1), (920 mg, 97% yield). ¹H NMR (400 MHz, CDCl₃), δ 7.93-7.88 (m, 8H), 7.78-7.76 (d, *J*= 8.0 Hz, 2H), 7.62-7.55 (m, 6H), 7.51-7.39 (m, 12H), 7.34-7.29 (m, 4H), 7.24-7.16 (m, 4H), 5.34-5.31 (d, *J*= 12.0 Hz, 1H), 4.41-4.40 (d, *J*= 4.0 Hz, 2H), 4.25-4.21 (m, 2H), 2.01-1.93 (m, 1H), 0.87-0.85 (d, *J*= 8.0 Hz, 3H), 0.79-0.78 (d, *J*= 8.0 Hz, 3H) ppm; ³¹P NMR (162 MHz, CDCl₃), δ 30.79 ppm; ¹³C NMR (100 MHz,

CDCl₃), δ 169.5, 164.4, 156.1, 153.5, 152.1, 143.7, 141.3, 132.7, 131.8, 131.7, 131.2, 130.7, 130.5, 129.9, 129.8, 128.8, 128.7, 128.2, 127.7, 127.1, 125.1, 120.8, 120.7, 120.0, 67.1, 58.2, 47.2, 31.3, 18.8, 17.6 ppm; HRMS (ESI) m/z calcd for C₅₇H₄₉N₂O₈P₂⁺ (M+H)⁺ 951.2958, found 951.2960.

4c-3, Boc-Val-DDK-6: White solid, $R_f = 0.48$ (CH₂Cl₂: MeOH= 60:1), (780 mg, 94% yield). ¹H NMR (400 MHz, CDCl₃), δ 7.95-7.86 (m, 8 H), 7.61-7.41 (m, 14 H), 7.31-7.29 (m, 2 H), 7.22-7.16 (m, 4 H), 5.01-4.98 (d, 1 H), 4.16-4.12 (m, 1 H), 1.92-1.88 (m, 1 H), 1.43 (s, 9 H), 0.85-0.83 (d, 3 H), 0.76-0.75 (d, 3 H) ppm; ³¹P NMR (162 MHz, CDCl₃), δ 30.77 ppm; ¹³C NMR (100 MHz, CDCl₃), δ 169.8, 164.1, 155.5, 153.3, 152.0, 132.8, 131.8, 131.2, 130.7, 129.8, 128.8, 128.2, 120.7, 79.9, 57.7,

31.2, 28.3, 18.8, 17.6 ppm; HRMS (ESI) m/z calcd for $C_{47}H_{47}N_2O_8P_2^+$ (M+H)⁺ 829.2802, found 829.2805.

5. Synthesis procedure of Plecanatide

Synthesis of **Fmoc-Leu-DDK-5**: EDC-HCl (1146 mg, 6.0 mmol, 1.2 equiv) and DMAP (45 mg, 0.6 mmol, 0.12 equiv) were added to a solution of Fmoc-Leu-OH (2118 mg, 6.0 mmol, 1.2 equiv) in DCM (30 mL) at 0 °C and stirred for 10 min. The reaction mixture was added with (**3c**, **DDK-5**) (3085 mg, 5.0 mmol, 1.0 equiv) and stirred at room temperature for 1 h. The mixture was then washed with saturated NH₄Cl and Na₂CO₃ orderly and dried with MgSO₄. 4.0 mL ethyl acetate was added to dissolve the sample after concentrated, and 25 mL of petroleum ether (V_{EA}/V_{PE} =1:6) was added dropwise and stirred. Precipitate appeared, and the precipitate was filtered and dried to afford the product **Fmoc-Leu-DDK-5** (4662 mg, 98% yield) Then the above **Fmoc-Leu-DDK-5** was added in 25% DEA/MeCN for 1 h to obtain the *de*-Fmoc product **H-Leu-DDK-5** for the next use.

3c-3, Fmoc-Leu-DDK-5: White solid, $R_f = 0.42$ (CH₂Cl₂: MeOH= 60:1), (4662 mg, 4.9 mmol, 98% yield). ¹H NMR (400 MHz, CDCl₃), δ 7.88-7.83 (m, 8H), 7.75-7.74 (m, 2H), 7.58-7.50 (m, 6H), 7.39-7.35 (m, 10H), 7.29-7.25 (m, 2H), 7.11 (m, 8H), 6.74 (s, 1H), 5.22-5.20 (d, *J*= 8.0 Hz, 1H), 4.43-4.35 (m, 3H), 4.20-4.16 (m, 1H), 1.59-1.44 (m, 3H), 0.88-0.84 (dd, *J*= 8.0 Hz, 6H) ppm; ³¹P NMR (162 MHz, CDCl₃), δ 29.75 ppm; ¹³C NMR (100 MHz, CDCl₃), δ 172.0, 155.9,

150.6, 143.7, 141.3, 135.5, 132.5, 131.8, 131.7, 130.2, 128.7, 128.6, 128.5, 127.7, 127.1, 125.1, 120.8, 120.0, 76.6, 67.0, 52.6, 47.2, 41.4, 24.7, 22.8, 21.8 ppm; HRMS (ESI) m/z calcd for $C_{58}H_{52}NO_8P_2^+$ (M+H)⁺ 952.3162, found 952.3164.

Synthesis of **Fmoc-Cys(Trt)-Leu-DDK-5:** EDC·HCl (1123 mg, 5.88 mmol, 1.2 equiv) and DIEA (1.0 mL, 5.88 mmol, 1.2 equiv) were added to a solution of H-Leu-DDK-5 (4662 mg, 4.9 mmol, 1.0 equiv), Fmoc-Cys(Trt)-OH (3439 mg, 5.88 mmol, 1.2 equiv), and HOBt (793 mg, 5.88 mmol, 1.2 equiv) in DCM (60 mL) at 0 °C and stirred for 1.0 h. The mixture was then washed with saturated Na₂CO₃, dried with MgSO₄. 5.0 mL ethyl acetate was added to dissolve the

sample after concentrated, and 30 mL of petroleum ether ($V_{EA}/V_{PE}=1:6$) was added dropwise and stirred. Precipitate appeared, and the precipitate was filtered and dried to afford the product **Fmoc-Cys(Trt)-Leu-DDK-5**.

3c-4, Fmoc-Cys(Trt)-Leu-DDK-5: White solid, $R_f = 0.42$ (CH₂Cl₂: MeOH= 60:1), (6156 mg, 4.75 mmol, 97% yield). ¹H NMR (400 MHz, CDCl₃), δ 7.89-7.83 (m, 8H), 7.75-7.71 (m, 2H), 7.54-7.50 (m, 6H), 7.46-7.35 (m, 15H), 7.25-7.03 (m, 20H), 6.69 (m, 1H), 6.14-6.12 (d, *J*= 8.0 Hz, 1H), 5.00-4.98 (d, *J*= 8.0 Hz, 1H), 4.54-4.50 (m, 1H), 4.35-4.34 (d, *J*= 4.0 Hz, 2H), 4.18-4.15 (m,

1H), 3.72-3.70 (m, 1H), 2.72-2.51 (m, 2H), 1.53-1.36 (m, 3H), 0.78-0.74 (dd, J= 4.0 Hz, 6H) ppm; ³¹P NMR (162 MHz, CDCl₃), δ 29.95 ppm; ¹³C NMR (100 MHz, CDCl₃), δ 171.1, 169.8, 150.7, 144.3, 143.7, 141.3, 135.5, 132.6, 131.7, 130.2, 129.6, 128.7, 128.6, 128.1, 127.8, 126.9, 125.1, 120.8, 120.0, 76.5, 67.4, 67.1, 54.0, 50.9, 47.1, 41.0, 24.7, 22.7, 21.9 ppm; HRMS (ESI) m/z calcd for C₈₀H₇₁N₂O₉P₂S⁺ (M+H)⁺ 1297.4350, found 1297.4357.

Extension of DDK attached linear Plecanatide: Using the above coupling reagent system EDC•HCl/ HOBt/DIEA and the above *de*-Fmoc reagent system 25% DEA in MeCN to extend the DDK attached Plecanatide linear-chain and to obtain the intermediate peptide products as follows, [The intermediates of L-DDK-5~ACTGCL-DDK-5 were precipitated by using the EA/PE solvent system, The DDK-5 attached intermediates of VACTGCL-DDK-5~NDECELCVNVACTGCL-DDK-5 were precipitated by using the EA/PE solvent system, The DDK-5 attached intermediates of VACTGCL-DDK-5~NDECELCVNVACTGCL-DDK-5 were precipitated by using the EA/ACN solvent system].

3c-5, Fmoc-Gly-Cys(Trt)-Leu-DDK-5: White solid, $R_f = 0.40$ (CH₂Cl₂: MeOH= 60:1), (6304 mg, 4.66 mmol, 98% yield). ¹H NMR (400 MHz, CDCl₃), δ 7.88-7.81 (m, 8H), 7.75-7.72 (m, 2H), 7.58-7.50 (m, 6H), 7.45-7.34 (m, 15H), 7.26-7.22 (m, 8H), 7.18-7.08 (m, 12H), 6.83-6.81 (d, *J*= 8.0 Hz, 1H), 6.66 (s, 1H), 6.50-6.47 (m, 1H), 6.34-6.32 (d, *J*= 8.0 Hz, 1H), 4.62-

4.57 (m, 1H), 4.26-3.94 (m, 4 H), 3.65-3.64 (m, J= 4.0 Hz, 2H), 2.97-2.92 (m, 1 H), 2.44-2.40 (m, 1 H), 1.59-1.52 (m, 3H), 0.82-0.80 (m, 6H) ppm; ³¹P NMR (162 MHz, CDCl₃), δ 29.85 ppm; ¹³C NMR (100 MHz, CDCl₃), δ 170.9, 169.4, 168.9, 157.1, 150.5, 144.3, 143.8, 141.2, 135.7, 132.5, 131.6, 130.1, 129.5, 128.6, 128.1, 127.6, 126.9, 125.2, 120.7, 119.9, 76.3, 67.2, 52.1, 50.8, 46.9, 45.0, 40.4, 33.3, 24.6, 22.9, 21.7 ppm; HRMS (ESI) m/z calcd for C₈₂H₇₄N₃O₁₀P₂S⁺ (M+H)⁺ 1354.4564, found 1354.4563.

3c-6, Fmoc-Thr(*t***Bu**)-**Gly-Cys**(**Trt**)-**Leu-DDK-5:** White solid, $R_f = 0.40$ (CH₂Cl₂: MeOH= 50:1), (6863 mg, 4.48 mmol, 96% yield). ¹H NMR (400 MHz, CDCl₃), δ 7.88-7.83 (m, 8H), 7.76-7.74 (d, *J*= 8.0 Hz, 2H), 7.60-7.50 (m, 6H), 7.46-7.36 (m, 15H), 7.30-7.17 (m, 12H), 7.10-7.07 (m, 9H), 6.69 (s, 1H), 6.42-6.37 (m, 2H), 5.92-5.91 (m, 1H), 4.50-4.37 (m, 3H), 4.22-4.13 (m,

3H), 3.90-3.73 (m, 2H), 3.65 (s, 1H), 2.85-2.80 (m, 1H), 2.50-2.45 (m, 1H), 1.54-1.41 (m, 3H), 1.24 (s, 9H), 1.02-1.01 (d, J= 4.0 Hz, 3H), 0.80-0.79 (m, 6H) ppm; ³¹P NMR (162 MHz, CDCl₃), δ 29.99 ppm; ¹³C NMR (100 MHz, CDCl₃), δ 171.1, 170.3, 169.4, 168.3, 156.1, 150.5, 144.4, 143.7, 141.3, 135.7. 132.6, 131.7, 130.2, 129.6, 128.7, 128.5, 128.1,

127.7, 126.9, 125.2, 120.7, 120.0, 77.3, 76.4, 75.6, 67.3, 64.5, 59.0, 52.4, 51.1, 47.2, 43.4, 40.9, 33.2, 28.2, 24.7, 22.8, 21.9, 17.5 ppm; HRMS (ESI) m/z calcd for C₉₀H₈₈N₄O₁₂P₂SNa⁺ (M+Na)⁺ 1533.5486, found 1533.5483.

3c-7, Fmoc-Cys(Acm)-Thr(*t***Bu)-Gly-Cys(Trt)-Leu-DDK-5:** White solid, $R_f = 0.38$ (CH₂Cl₂: MeOH= 50:1), (7330 mg, 4.35 mmol, 97% yield). ¹H NMR (400 MHz, CDCl₃), δ 7.88-7.83 (m, 8H), 7.76-7.74 (d, J= 8.0 Hz, 2H), 7.63-7.51 (m, 8H), 7.46-7.35 (m, 15H), 7.29-7.27 (m, 1H), 7.24-7.20 (m, 8H), 7.17-7.15 (m, 12H), 6.78-6.77 (m, 1H), 6.66

(s, 1H), 6.47-6.42 (m, 2H), 4.61-4.59 (m, 1H), 4.47-4.12 (m, 8H), 3.95-3.75 (m, 2H), 3.66 (s, 1H), 3.02-2.80 (m, 3H), 2.55-2.51 (m, 1H), 1.92 (s, 3H), 1.49-1.47 (m, 3H), 1.17 (s, 9H), 1.09-1.07 (d, J= 8.0 Hz, 3H), 0.80-0.77 (m, 6H) ppm; ³¹P NMR (162 MHz, CDCl₃), δ 29.49 ppm; ¹³C NMR (100 MHz, CDCl₃), δ 171.5, 171.1, 170.6, 169.6, 168.6, 156.7, 150.5, 144.4, 143.8, 141.3, 135.7. 132.6, 131.8, 130.1, 129.6, 128.8, 128.1, 127.8, 127.1, 126.9, 125.3, 120.7, 120.0, 77.3, 76.3, 75.1, 67.2, 66.2, 64.6, 63.8, 59.1, 54.7, 52.8, 51.3, 47.1, 43.2, 40.6, 33.4, 28.2, 24.6, 23.1, 22.8, 21.8, 19.2 ppm; HRMS (ESI) m/z calcd for C₉₆H₉₉N₆O₁₄P₂S₂⁺ (M+H)⁺ 1685.6130, found 1685.6136.

3c-8, Fmoc-Ala-Cys(Acm)-Thr(*t***Bu)-Gly-Cys(Trt)-Leu-DDK-5**: White solid, $R_f = 0.45$ (CH₂Cl₂: MeOH= 40:1), (7283 mg, 4.15 mmol, 95% yield). ¹H NMR (400 MHz, DMSO-*d*₆), δ 8.53-8.50 (m, 1H), 8.38-8.37 (m, 1H), 8.32-8.26 (m, 4H), 7.90-7.84 (m, 10H), 7.76-7.72 (m, 2H), 7.63-7.53 (m, 13H),

7.43-7.40 (m, 2H), 7.35-7.10 (m, 25H), 6.64 (s, 1 H), 4.66-4.63 (m, 1H), 4.52-4.46 (m, 1H), 4.34-4.14 (m, 9H), 3.98-3.80 (m, 2H), 2.99-2.71 (m, 2H), 2.42-2.29 (m, 2H), 1.85 (s, 3H), 1.52-1.42 (m, 3H), 1.28-1.26 (m, J= 8.0 Hz, 3H), 1.10 (s, 9H), 1.00-0.99 (d, J= 4.0 Hz, 3H), 0.78-0.71 (dd, J= 8.0 Hz, 6H) ppm; ³¹P NMR (162 MHz, DMSO- d_6), δ 29.45 ppm; ¹³C NMR (100 MHz, DMSO- d_6), δ 173.3, 171.1, 170.7, 170.3, 170.1, 169.7, 168.6, 156.1, 150.5, 144.7, 144.2, 141.2, 136.7, 133.3, 131.9, 130.6, 129.5, 128.5, 128.1, 127.5, 127.2, 125.8, 120.9, 120.6, 75.9, 74.3, 67.3, 66.3, 66.2, 65.5, 63.3, 58.0, 53.0, 51.7, 51.1, 50.4, 47.1, 28.4, 24.5, 23.1, 23.0, 21.8, 19.4, 18.9 ppm; HRMS (ESI) m/z calcd for C₉₉H₁₀₄N₇O₁₅P₂S₂⁺ (M+H)⁺ 1756.6501, found 1756.6502.

3c-9, Fmoc-Val-Ala-Cys(Acm)-Thr(*t***Bu)-Gly-Cys** (**Trt)-Leu-DDK-5**: White solid, $R_f = 0.40$ (CH₂Cl₂: MeOH= 40:1), (7382 mg, 3.98 mmol, 96% yield). ¹H NMR (400 MHz, DMSO-*d*₆), δ 8.54-8.51 (m, 1H), 8.39-8.28 (m, 5H), 8.07-8.05 (m, 1H), 7.90-7.86 (m,

10H), 7.77-7.73 (m, 2H), 7.61-7.40 (m, 15H), 7.34-7.10 (m,25 H), 6.64 (s, 1 H), 4.68-4.62 (m, 1 H), 4.51-4.49 (m, 2 H), 4.43-4.20 (m, 8H), 3.98-3.80 (m, 3H), 2.99-2.69 (m, 2H), 2.42-2.30 (m, 2H), 2.04-1.99 (m, 1H), 1.86 (s, 3H), 1.52-1.42 (m, 3H), 1.26-1.25 (m, 3H), 1.10 (s, 9H), 1.01-0.99 (d, J= 4.0 Hz, 3H), 0.89-0.85 (m, 6H), 0.78-0.71 (m, 6H) ppm; ³¹P NMR (162 MHz, DMSO- d_6), δ 29.47 ppm; ¹³C NMR (100 MHz, DMSO- d_6), δ 172.8, 171.2, 171.1, 170.6, 170.3, 170.1, 169.7, 168.6, 156.6, 150.5, 144.7, 141.2, 139.9, 137.9, 136.7, 133.2, 131.9, 130.6, 129.5, 128.5, 128.1, 127.7, 127.5, 127.2, 125.8, 121.8, 120.9, 120.5, 75.9, 74.3, 67.3, 66.3, 65.5, 63.3, 60.5, 58.0, 51.7, 51.1, 48.4, 47.2, 120.5, 128.5,

32.5, 30.9, 28.4, 24.5, 23.0, 21.8, 19.8, 19.4, 19.1, 18.6 ppm; HRMS (ESI) m/z calcd for $C_{104}H_{113}N_8O_{16}P_2S_2^+$ (M+H)⁺ 1855.7185, found 1855.7175.

3c-10, Fmoc-Asn(Trt)-Val-Ala-Cys(Acm)-Thr (*t***Bu)-Gly-Cys(Trt)-Leu-DDK-5**: White solid, $R_f = 0.42$ (CH₂Cl₂: MeOH= 30:1), (8287 mg, 3.75 mmol, 94% yield). ¹H NMR (400 MHz, DMSO-*d*₆), δ 8.57-8.51 (m, 2H), 8.39-8.15 (m,

7H), 7.91-7.86 (m, 11H), 7.74-7.72 (m, 3H), 7.61-7.53 (m, 13H), 7.42-7.41 (m, 2H), 7.26-7.16 (m, 38H), 6.64 (s, 1H), 4.65-4.64 (m, 1H), 4.48-4.24 (m, 11H), 3.97-3.81 (m, 3H), 2.96-2.60 (m, 4H), 2.39-2.32 (m, 2H), 2.00-1.98 (m, 1H), 1.85 (s, 3H), 1.48-1.44 (m, 3H), 1.26-1.21 (m, 3H), 1.10 (s, 9H), 1.00-0.99 (d, J= 4.0 Hz, 3H), 0.86-0.71 (m, 12H) ppm; ³¹P NMR (162 MHz, DMSO- d_6), δ 29.77 ppm; ¹³C NMR (100 MHz, DMSO- d_6), δ 172.8, 171.6, 171.1, 170.8, 170.6, 170.3, 170.1, 169.7, 169.3, 168.6, 156.3, 150.5, 145.2, 144.7, 144.2, 141.2, 136.8, 133.2, 131.9, 131.8, 130.6, 129.5, 129.3, 129.0, 128.5, 128.1, 127.9, 127.6, 127.2, 126.8, 125.8, 120.9, 120.6, 75.9, 74.3, 69.9, 67.2, 66.3, 65.5, 63.3, 57.9, 57.7, 52.8, 51.7, 51.1, 48.5, 47.1, 31.3, 28.4, 24.5, 23.1, 21.8, 19.7, 19.4, 18.8, 18.3 ppm; HRMS (ESI) m/z calcd for C₁₂₇H₁₃₃N₁₀O₁₈P₂S₂+ (M+H)+ 2211.8710, found 2211.8728.

3c-11, Fmoc-Val-Asn(Trt)-Val-Ala-Cys (**Acm)-Thr(***t***Bu)-Gly-Cys(Trt)-Leu-DDK-5**: White solid, $R_f = 0.40$ (CH₂Cl₂: MeOH= 30:1), (8058 mg, 3.49 mmol, 93% yield). ¹H NMR (400 MHz, DMSO-*d*₆), δ 8.63-8.51

(m, 2H), 8.39-8.13 (m, 8H), 7.90-7.86 (m, 11H), 7.76-7.74 (m, 2H), 7.61-7.54 (m, 13H), 7.42-7.40 (m, 3H), 7.26-7.16 (m, 38H), 6.64 (s, 1H), 4.65-4.63 (m, 1H), 4.49-4.20 (m, 12H), 4.02-3.81 (m, 4H), 2.96-2.66 (m, 4H), 2.39-2.32 (m, 2H), 2.01-1.95 (m, 2H), 1.85 (s, 3H), 1.48-1.44 (m, 3H), 1.23-1.19 (m, 3H), 1.11 (s, 9H), 1.00-0.99 (d, J= 4.0 Hz, 3H), 0.90-0.71 (m, 18H) ppm; ³¹P NMR (162 MHz, DMSO- d_6), δ 29.97 ppm; ¹³C NMR (100 MHz, DMSO- d_6), δ 172.8, 171.6, 171.1, 170.8, 170.6, 170.4, 170.3, 170.1, 169.7, 169.3, 168.6, 156.3, 150.5, 145.2, 144.7, 144.2, 141.2, 136.7, 133.2, 131.9, 131.8, 130.6, 129.5, 129.3, 129.0, 128.5, 128.1, 127.9, 127.5, 127.2, 126.7, 125.9, 120.9, 120.5, 75.9, 74.3, 69.9, 67.3, 66.3, 65.5, 63.3, 58.0, 57.6, 52.8, 51.7, 51.1, 48.5, 47.1, 31.3, 28.4, 24.5, 23.0, 21.8, 19.6, 19.4, 18.7, 18.5, 18.3 ppm; HRMS (ESI) m/z calcd for C₁₃₂H₁₄₂N₁₁O₁₉P₂S₂⁺ (M+H)⁺ 2310.9394, found 2310.9387.

3c-12, Fmoc-Cys(Trt)-Val-Asn(Trt)-Val-Ala-Cys(Acm)-Thr(*t***Bu)-Gly-Cys(Trt)-Leu-DDK-5**: White solid, $R_f = 0.38$ (CH₂Cl₂: MeOH= 20:1), (9078 mg, 3.39 mmol, 97% yield). ¹H NMR (400 MHz, DMSO-*d*₆), δ 8.64-8.53 (m, 2H), 8.43-8.12 (m, 8H), 7.90-7.86 (m, 11H), 7.73-7.71 (m, 2H), 7.61-7.52 (m, 13H), 7.41-7.10 (m, 57H), 6.64 (s, 1H), 4.67-4.47 (m, 3H), 4.34-4.16 (m, 10H), 3.98-3.80 (m, 4H), 2.98-2.93 (m, 1H), 2.74-2.54 (m, 3H), 2.46-2.30 (m, 3H), 2.00-

1.85 (m, 5H), 1.55-1.42 (m, 3H), 1.23-1.17 (m, 4H), 1.11 (s, 9H), 1.01-0.99 (d, J= 8.0 Hz, 3H), 0.83-0.69 (m, 18H) ppm; ³¹P NMR (162 MHz, DMSO- d_6), δ 29.91 ppm; ¹³C NMR (100 MHz, DMSO- d_6), δ 172.8, 171.1, 170.8, 170.7, 170.6, 170.3, 170.1, 169.9, 169.7, 169.2, 168.6, 156.2, 150.5, 145.1, 144.7, 144.3, 141.2, 136.8, 133.2, 131.9, 130.6, 129.5, 129.3, 129.0, 128.5, 128.1, 127.9, 127.5, 127.2, 126.7, 125.7, 120.9, 120.5, 75.9, 74.3, 69.8, 67.3, 66.5, 66.3, 58.0, 51.8, 47.1, 32.2, 31.3, 28.4, 24.5, 23.1, 21.8, 19.8, 19.6, 19.4, 18.8, 18.3, 17.6 ppm; HRMS (ESI) m/z calcd for C₁₅₄H₁₆₀N₁₂O₂₀P₂S₃Na⁺ (M+Na)⁺ 2678.0401, found 2678.0356.

3c-13, Fmoc-Leu-Cys(Trt)-Val-Asn(Trt)-Val-Ala-Cys(Acm)-Thr(*t***Bu)-Gly-Cys(Trt)-Leu-DDK-5**: White solid, $R_f = 0.40$ (CH₂Cl₂: MeOH= 20:1), (9070 mg, 3.25 mmol, 96% yield). ¹H NMR (400 MHz, DMSO-*d*₆), δ 8.66-8.19 (m, 8H), 7.96-7.85 (m, 9H), 7.63-7.53 (m, 12H), 7.30-7.16 (m, 60H), 6.62 (s, 1H), 4.63-3.79 (m, 18H), 2.96-2.93 (m, 1H), 2.68 (m, 3H), 2.41-2.34 (m, 3H), 1.99-1.84 (m, 8H), 1.49-1.44 (m, 4H), 1.23-1.16 (m, 8H), 1.09 (s, 9H), 0.99-0.98 (m, 3H), 0.82-0.76 (m, 24H) ppm; ³¹P NMR (162 MHz, DMSO-*d*₆), δ 29.61 ppm; HRMS (ESI) m/z calcd for C₁₆₀H₁₇₁N₁₃O₂₁P₂S₃Na⁺ (M+Na)⁺ 2791.1242, found 2791.1145.

3c-14, Fmoc-Glu(*t***Bu**)-Leu-Cys(Trt)-Val-Asn(Trt)-Val-Ala-Cys(Acm)-Thr(*t***Bu**)-Gly-Cys(Trt)-Leu-DDK-5: White solid, $R_f = 0.50$ (CH₂Cl₂: MeOH= 10:1), (9160 mg, 3.08 mmol, 95% yield). ¹H NMR (400 MHz, DMSO-*d*₆), δ 8.63-8.60 (m, 2H), 8.44-8.16 (m, 8H), 7.96-7.85 (m, 13H), 7.73-7.71 (m, 2H), 7.63-7.52 (m, 14H), 7.42-7.09 (m, 56H), 6.62 (s, 1H), 4.63 (m, 2H), 4.47-3.79 (m, 17H), 2.96-2.89 (m, 2H), 2.73-2.64 (m, 3H), 2.41-2.24 (m, 5H), 2.00-1.84 (m, 7H), 1.67 (m, 2H), 1.52-1.35 (m, 8H), 1.23-1.16 (m, 8H), 1.09 (s, 9H), 0.99-0.98 (d, *J*= 4.0 Hz, 3H), 0.86-0.68 (m, 24H) ppm; ³¹P NMR (162 MHz, DMSO-*d*₆), δ 29.91 ppm; HRMS (ESI) m/z calcd for C₁₆₉H₁₈₆N₁₄O₂₄P₂S₃Na⁺ (M+Na)⁺ 2976.2294, found 2976.2203.

3c-15, Fmoc-Cys(Acm)-Glu(*t***Bu)-Leu-Cys(Trt)-Val-Asn(Trt)-Val-Ala-Cys(Acm)-Thr**(*t***Bu)-Gly-Cys(Trt)-Leu-DDK-5**: White solid, $R_f = 0.52$ (CH₂Cl₂: MeOH= 10:1), (9135 mg, 2.90 mmol, 94% yield). ¹H NMR (400 MHz, DMSO-*d*₆), δ 8.63-8.15 (m, 7H), 7.90-7.83 (m, 11H), 7.74-7.72 (m, 2H), 7.61-7.53 (m, 14H), 7.43-7.39 (m, 2H), 7.29-

7.15 (m, 56H), 6.62 (s, 1H), 4.63-3.79 (m, 22H), 2.96-2.64 (m, 5H), 2.39-2.33 (m, 6H), 1.99-1.84 (m, 10H), 1.44-1.34 (m, 8H), 1.23-1.15 (m, 8H), 1.09 (s, 12H), 0.98 (d, J= 8.0 Hz, 3H), 0.82-0.70 (m, 24H) ppm; ³¹P NMR (162 MHz, DMSO- d_6), δ 29.76 ppm; HRMS (ESI) m/z calcd for C₁₇₅H₁₉₆N₁₆O₂₆P₂S₄Na⁺ (M+Na)⁺ 3150.2757, found 3150.2719.

3c-16, Fmoc-Glu(*t***Bu**)-**Cys**(**Acm**)-**Glu**(*t***Bu**)-Leu-**Cys**(**Trt**)-Val-Asn(**Trt**)-Val-Ala-**Cys**(**Acm**)-**Thr**(*t***Bu**)-**Gly**-**Cys**(**Trt**)-Leu-**DDK-5**: White solid, $R_f = 0.50$ (CH₂Cl₂: MeOH= 10:1), (9000 mg, 2.70 mmol, 93% yield). ¹H NMR (400 MHz, DMSO-*d*₆), δ 8.66-8.17 (m, 4H), 7.90-7.85 (m, 6H), 7.63-7.53 (m, 9H), 7.30-7.09 (m, 66H), 6.62 (s, 1H), 4.65-3.79 (m, 22H), 2.96-2.63 (m, 4H), 2.37-2.31 (m, 6H), 2.02-1.84 (m, 12H), 1.38-1.36 (m, 12H), 1.24-1.16 (m, 10H), 1.09 (s, 12H), 1.00-0.98 (m, 3H), 0.87-0.70 (m, 24H) ppm; ³¹P NMR (162 MHz, DMSO-*d*₆), δ 29.36 ppm; HRMS (ESI) m/z calcd for C₁₈₄H₂₁₁N₁₇O₂₉P₂S₄Na⁺ (M+Na)⁺ 3335.3809, found 3335.3854.

3c-17, Fmoc-Asn(Trt)-Asp(tBu)-Glu(tBu)-Cys(Acm)-Glu(tBu)-Leu-Cys(Trt)-Val-Asn(Trt)-Val-Ala-Cys(Acm)-Thr(tBu)-Gly-Cys(Trt)-Leu-DDK-5: White solid, $R_f = 0.60$ (CH₂Cl₂: MeOH= 10:1), (9890 mg, 2.57 mmol, 95% yield). ¹H NMR (400 MHz, DMSO-*d*₆), δ 8.64-8.15 (m, 6H), 7.96-7.84 (m, 11H), 7.75-7.72 (m, 2H), 7.61-7.52 (m, 14H), 7.44-7.35 (m, 5H), 7.30-7.09 (m, 71H), 6.63 (s, 1H), 4.62 (m, 2H), 4.48-4.20 (m, 16H), 3.95-3.79 (m, 5H), 2.97-2.93 (m, 2H), 2.74-2.68 (m, 3H), 2.39-2.19 (m, 8H), 2.04-1.83 (m, 12H), 1.65 (m, 2H), 1.48-1.34 (m, 15H), 1.24-1.09 (m, 27H), 1.00-0.98 (m, 6H), 0.85-0.70 (m, 32H) ppm; ³¹P NMR (162 MHz, DMSO-*d*₆), δ 29.36 ppm; HRMS (ESI) m/z calcd for C₂₁₄H₂₄₂N₂₀O₃₄P₂S₄Na⁺ (M+Na)⁺ 3848.6076, found 3848.6069.

3c-18, (*de-Fmoc*) **H-Asn(Trt)-Asp(tBu)-Glu(tBu)-Cys(Acm)-Glu(tBu)-Leu-Cys(Trt)-Val-Asn(Trt)-Val-Ala-Cys(Acm)-Thr(tBu)-Gly-Cys(Trt)-Leu-DDK-5:** White solid, $R_f = 0.30$ (CH₂Cl₂: MeOH= 10:1), (9250 mg, 2.54 mmol, 99% yield). ¹H NMR (400 MHz, DMSO-*d*₆), δ 8.63-8.15 (m, 15H), 7.89-7.73 (m, 6H), 7.61-7.54 (m, 8H), 7.30-7.10 (m, 78H), 6.64 (s, 1H), 4.66-4.51 (m, 3H), 4.35-4.08 (m, 16H), 3.97-3.82 (m, 5H), 3.19-2.94 (m, 2H), 2.70

(m, 4H), 2.40-2.09 (m, 7H), 1.97-1.86 (m, 12H), 1.58-1.38 (m, 11H), 1.21-1.01 (m, 30H), 0.84-0.71 (m, 36H) ppm; ³¹P NMR (162 MHz, DMSO-*d*₆), δ 29.40 ppm; HRMS (ESI) m/z calcd for C₂₀₀H₂₃₄N₂₀O₃₂P₂S₄Na⁺ (M+Na)⁺ 3640.5548, found 3640.5588.

Figure S1 TLC analysis of DDK attached peptide chain (CHCl₃:CH₃OH=10:1).

- a: Fmoc-ELCVNVACTGCL-DDK-5 TLC analysis;
- b: Fmoc-CELCVNVACTGCL-DDK-5 TLC analysis;
- c: Fmoc-ECELCVNVACTGCL-DDK-5 TLC analysis;
- d: Fmoc-DNCELCVNVACTGCL-DDK-5 TLC analysis;

Figure S2 Optical photos of (A) DDK-attached Plecanatide precipitation and (B) linear Plecanatide precipitation by diethyl ether after shearing from the DDK support.

Figure S3 Optical photos of (A) DDK support attached peptide gelation and (B) Gelation

phenomenon eimination after adjusting the group.

Shearing of DDK-5/Trt/tBu group: The H-NDEC(Acm)ELCVNVAC(Acm)TGCL-**DDK-5** (730 mg, 0.2mmol) was added to the mixed solution of TFA/ Thioanisole/ EDT/ Phenol/ H₂O (3 mL, *v/v*, 87.5/5/2.5/2.5/2.5) at room temperature and stirred at this temperature for 3 h. The reaction mixture was then concentrated and added with cold diethyl ether (repeat 3 times) accompanied by ultrasound to afford the crude linear Plecanatide precipitate, and the precipitate was centrifuged to obtain the linear Plecanatide H-NDEC(Acm)ELCVNVAC(Acm)TGCL-OH (340 mg, 94% yield). The diethyl ether phase was collected to attain the DDK-5 residue (112 mg, 90 yield).

[Regeneration of **DDK**-5-residue: **DDK**-5 residue was added to a solution of NCS (or NBS) in chloroform and refluxed, then the reaction mixture was stirred at this condition for 5 h to obtained the regenerated DDK derivative.]

3c-19, Linear Plecanatide: H-Asn-Asp-Glu-Cys(Acm)-Glu-Leu-Cys-Val-Asn-Val-Ala-Cys(Acm)-Thr-Gly-Cys-Leu-OH: ¹H NMR (400 MHz, DMSO-*d*₆), δ 12.46 (s, 4H), 8.54-7.73 (m, 19H), 7.43-7.33 (m, 5H), 6.97 (s, 1H), 5.02-3.80 (m, 22H), 3.38 (m, 5H), 2.93-2.71 (m, 10H), 2.28 (m, 5H), 1.98-1.87 (m, 8H), 1.65-1.46 (m, 6H), 1.24 (m, 6H), 1.05 (m, 3H), 0.89-0.84 (m, 24H) ppm; HRMS (ESI) m/z calcd for C₇₁H₁₁₉N₂₀O₂₈S₄⁺ (M+H)⁺ 1827.7380, found 1827.7375.

3c-0, DDK-5 Residue: White solid, $R_f = 0.35$ (CH₂Cl₂: MeOH= 60:1), mp 137.8-139.0 °C. ¹H NMR (400 MHz, DMSO-*d*₆), δ 7.91-7.86 (m, 8H), 7.59-7.50 (m, 12H), 7.17-7.06 (dd, *J*= 8.0 Hz, 8H), 3.75 (s, 2H) ppm; ³¹P NMR (162 MHz, DMSO-*d*₆), δ 29.11 ppm; ¹³C NMR (100 MHz, CDCl₃), δ 148.8, 137.4,

132.9, 131.9, 130.1, 128.8, 120.7, 40.2 ppm; HRMS (ESI) m/z calcd for $C_{37}H_{30}O_4P_2Na^+$ (M+Na)⁺ 623.1511, found 623.1510.

Orthogonal oxidation formation of intramolecularly disulfide bonds: The linear Plecanatide peptide H-NDEC(Acm)ELCVNVAC(Acm)TGCL-OH (180 mg, 0.1 mmol) was dissolved in 10 mL DMSO/H₂O (V_{DMSO} : V_{H2O} = 0.05:0.95), and the pH was adjusted to 8.0 with dilute NH₃·H₂O. The reaction mixture was stirred for 24 h at room temperature and lyophilized for next use. Subsequently, the above lyophilized powder was dissolved in 20 ml 50% AcOH/H₂O solution, and then 1.5 mL of I₂/MeOH (0.1 mol/L) was added to the reaction mixture dropwise. The reaction mixture was stirred for 1 h and quenched by adding the ascorbic acid (1 mol/L, 1.5 mL). The reaction mixture was concentrated and directly subjected to RP-HPLC to obtain the target Plecanatide (96 mg, 53%).

3c-20, Plecanatide: H-Asn-Asp-Glu-Cys^[4,12]-Glu-Leu-Cys^[7,15]-Val-Asn-Val-Ala-Cys^[4,12]-Thr-Gly-Cys^[7,15]-Leu-OH: ¹H NMR (400 MHz, D₂O), δ 4.66-4.59 (dd, *J*= 28.0 Hz, 6H), 4.55-4.47 (m, 2H), 4.27-4.15 (s, 6H), 4.10-4.01 (m, 3H), 3.95-3.88 (m, 2H), 3.81-3.77 (d, *J*=16.0 Hz, 1H), 3.27-2.64 (m, 16H), 2.36-2.31 (m, 4H), 2.08-1.90 (m, 7H), 1.54-1.41 (m, 6H), 1.25-1.23 (d, *J*=8.0 Hz, 3H), 1.08-1.06 (d, *J*=8.0 Hz, 3H), 0.83-0.70 (m, 24H), ppm; ¹³C NMR (100 MHz, D₂O), 177.6, 177.4, 177.2, 175.1, 174.4, 174.3, 173.9, 173.8, 173.1, 172.8, 172.6, 172.5, 172.2, 171.8, 171.7, 171.2, 168.8, 66.6, 60.2, 59.8, 54.3, 53.8, 53.4, 53.1, 52.7, 52.0, 50.8, 49.7, 42.6, 41.0, 39.9, 39.4, 38.9, 37.7, 36.4, 36.2, 34.8, 30.4, 30.1, 29.7, 25.8, 25.6, 24.4, 24.2, 22.3, 22.1, 20.7, 20.6, 18.7, 18.3, 17.6, 17.3, 15.8 ppm; HRMS (ESI) m/z calcd for HRMS (ESI) m/z calcd for C₆₅H₁₀₅N₁₈O₂₆S₄⁺ (M+H)⁺ 1681.6324, found 1681.6325.

Figure S3 HPLC analysis of linear Plecanatide and Plecanatide. HPLC conditions: column, Kromasil, NC-2546-06251151; 250×4.6 mm; 25 °C.

Т	Flow Rate	Elution		UV detection
(min)	(mL/min)	H ₂ O (0.1% TFA)	CH ₃ OH	λ (nm)
0.0	1.0	95	5	
5.0	1.0	90	10	220
30.0	1.0	10	90	220
40.0	1.0	95	5	

References

- [1] Degrado, W. F.; Kaiser, E T. Polymer-bound oxime esters as supports for solid-phase peptide synthesis. preparation of protected peptide fragments. *J. Org. Chem.* **1980**, *45*, 1295-1300.
- [2] Degrad, W. F.; Kaiser, E. T. Solid-phase synthesis of protected peptides on a polymer-bound oxime: preparation of segments comprising the sequence of a cytotoxic. *J. Org. Chem.* **1982**, *14*, 3258-3261.
- [3] Postma, T. M.; Giraud, M.; Albericio, F. Trimethoxyphenylthio as a highly labile replacement for tert-Butylthio cysteine protection in Fmoc solid phase synthesis. *Org. Lett.* **2012**, *14*, 5468-5471.
- [4] Postma, T. M.; Albericio, F. N-Chlorosuccinimide, an efficient reagent for on-resin disulfide formation in solidphase peptide synthesis. *Org. Lett.* 2013, 45, 616-619.
- [5] Mochizuki, M.; Tsuda, S.; Tanimura, K.; Nishiuchi, Y. Regioselective formation of multiple disulfide bonds with the aid of postsynthetic S-Tritylation. *Org. Lett.* **2015**, *17*, 2202-2205.
- [6] Cuthbertson, A.; Indrevoll. B. Regioselective formation, using orthogonal cysteine protection, of an α-Conotoxin dimer peptide containing four disulfide bonds. *Org. Lett.* 2003, *5*, 2955-2957.
- [7] Wu, F.; Mayer, J. P.; Gelfanov, V. M. *et al.* Synthesis of four-disulfide insulin analogs via sequential disulfide bond formation. *J. Org. Chem.* **2017**, *82*, 3506-3512.
- [8] Tam, J. P.; C. Wu, R.; Liu, W.; Zhang, J. W. Disulfide bond formation in peptides by dimethyl sulfoxide. Scope and applications. *J. Am. Chem.Soc.* **1991**, *113*, 6657-6662.
- [9] He, C.; Zhang, X. H.; Huang, R. F.; Pan, J.; Li, J. Q.; Ling, X. G.; Xiong, Y.; Zhu, X. M. Synthesis of structurally diverse diarylketones through the diarylmethyl sp³C-H oxidation, *Tetrahedron Lett.* 2014, 55, 4458-4462.

NMR Spectra and HRMS (ESI) Spectra

DDK derivatives Synthesis NMR and HRMS (ESI)

SUPPORTING INFORMATION 20180816-1 ihaidan 1.m. FN 0

140 130 120 110

100

80 70 60 50 40

90

- 31.51

30 20 f1 (ppm) 10 0

-10 -20

-30

-40 -50 -60 -70 -80

-90

2a HRMS (ESI)

2b 1 H NMR (400 MHz, CDCl₃)

2b ³¹P NMR (162 MHz, CDCl₃)

2

140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 f1 (ppm)

3a ³¹P NMR (162 MHz, CDCl₃)

3a HRMS (ESI)

3b HRMS (ESI)

4a ³¹P NMR (162 MHz, CDCl₃)

468

30-

20-

10-

0-

20181109-lihaid

10.68

7.96

4c HRMS (ESI)

DDK derivates Coupling with Amino Acid NMR and HRMS (ESI)

4a-1, Fmoc-Val-DDK-2 ¹H NMR (400 MHz, CDCl₃)

、2.98回転回 、2.98回転回 、2.98回転回 、2.98回転回 、2.98回転回 、2.58回転回 、2.59回転回 、2

SUPPORTING INFORMATION 4.38 4.36 4.35 4.23 4.23 3.01 3.01 2.99 2.96 2.94 201 1 4.58 4.40 4.4

4c-2, Fmoc-Val-DDK-6 HRMS (ESI)

3c-6, Fmoc-Thr(tBu)-Gly-Cys(Trt)-Leu-DDK-5 HRMS (ESI)

190

180

170

160

150

140

120

110

130

1.17 1.09 1.07 0.80 0.78 0.77 20 1 1.49 1.47 1.42 7.35 7.28 2.1 7.20 2.09 .08 1.43 5 3.78 3.66 1.92 2 2 2.7 7.15 0.7

100 90 f1 (ppm) 3c-7, Fmoc-Cys(Acm)-Thr(tBu)-Gly-Cys(Trt)-Leu-DDK-5¹³C NMR (100 MHz, CDCl₃)

80

60

50

70

30

40

20

3c-7, Fmoc-Cys(Acm)-Thr(tBu)-Gly-Cys(Trt)-Leu-DDK-5 HRMS (ESI)

3c-8, Fmoc-Ala-Cys(Acm)-Thr(tBu)-Gly-Cys(Trt)-Leu-DDK-5 ¹H NMR (400 MHz, DMSO-d₆)

SUPPORTING INFORMA Т 1 73.28 68.59 128.09 127.54 120.94 120.55 125.80 79.65 75.92 74.28 67.25 66.29 66.16 65.46 63.29 53.00 51.74 47.12 28.40 23.05 21.77 57.97 51.12 24.45 23.02 170.7 69.7 70. 33. 27. 20. ŝ. 44. 29. 5 28 0 NH N۲ S C ΗŃ ⊥ Trt 0 0

CHa

19.41 18.92

3c-8, Fmoc-Ala-Cys(Acm)-Thr(tBu)-Gly-Cys(Trt)-Leu-DDK-5 HRMS (ESI)

3c-9, Fmoc-Val-Ala-Cys(Acm)-Thr(tBu)-Gly-Cys(Trt)-Leu-DDK-5¹³C NMR (100 MHz, DMSO-d₆)

3c-9, Fmoc-Val-Ala-Cys(Acm)-Thr(tBu)-Gly-Cys(Trt)-Leu-DDK-5 HRMS (ESI)

3c-10, Fmoc-Asn(Trt)-Val-Ala-Cys(Acm)-Thr(tBu)-Gly-Cys(Trt)-Leu-DDK-5 1H NMR (400 MHz, DMSO-

 $d_6)$

3c-10, Fmoc-Asn(Trt)-Val-Ala-Cys(Acm)-Thr(tBu)-Gly-Cys(Trt)-Leu-DDK-5 HRMS (ESI)

DMSO-d₆)

DMSO- d_6)

3c-11, Fmoc-Val-Asn(Trt)-Val-Ala-Cys(Acm)-Thr(tBu)-Gly-Cys(Trt)-Leu-DDK-5 HRMS (ESI)

3c-12, Fmoc-Cys(Trt)-Val-Asn(Trt)-Val-Ala-Cys(Acm)-Thr(tBu)-Gly-Cys(Trt)-Leu-DDK-5 ¹H NMR (400

MHz, DMSO-d₆)

 $\label{eq:2.1} \begin{array}{l} \textbf{3c-12, Fmoc-Cys(Trt)-Val-Asn(Trt)-Val-Ala-Cys(Acm)-Thr(tBu)-Gly-Cys(Trt)-Leu-DDK-5} \\ \textbf{m/z calcd for $C_{154}H_{160}N_{12}O_{20}P_2S_3Na^+$ (M+Na)^+$ 2678.04014, found 2678.03564.} \end{array}$

3c-13, Fmoc-Leu-Cys(Trt)-Val-Asn(Trt)-Val-Ala-Cys(Acm)-Thr(tBu)-Gly-Cys(Trt)-Leu-DDK-5 ¹H NMR (400 MHz, DMSO-*d*₆)

3c-13, Fmoc-Leu-Cys(Trt)-Val-Asn(Trt)-Val-Ala-Cys(Acm)-Thr(tBu)-Gly-Cys(Trt)-Leu-DDK-5 HRMS (ESI) m/z calcd for $C_{160}H_{171}N_{13}O_{21}P_2S_3Na^+$ (M+Na)⁺ 2791.12421, found 2791.11450.

3c-14, Fmoc-Glu(tBu)-Leu-Cys(Trt)-Val-Asn(Trt)-Val-Ala-Cys(Acm)-Thr(tBu)-Gly-Cys(Trt)-Leu-DDK-5 ¹H NMR (400 MHz, DMSO-*d*₆)

3c-15, Fmoc-Cys(Acm)-Glu(tBu)-Leu-Cys(Trt)-Val-Asn(Trt)-Val-Ala-Cys(Acm)-Thr(tBu)-Gly-Cys(Trt)-Leu-DDK-5 ¹H NMR (400 MHz, DMSO-*d*₆)

Leu-DDK-5 HRMS (ESI) m/z calcd for C₁₇₅H₁₉₆N₁₆O₂₆P₂S₄Na⁺ (M+Na)⁺ 3150.27570, found 3150.27197.

3c-16, Fmoc-Glu(tBu)-Cys(Acm)-Glu(tBu)-Leu-Cys(Trt)-Val-Asn(Trt)-Val-Ala-Cys(Acm)-Thr(tBu)-Gly-Cys(Trt)-Leu-DDK-5 ¹H NMR (400 MHz, DMSO-d₆)

3c-17, Fmoc-Asn(Trt)-Asp(tBu)-Glu(tBu)-Cys(Acm)-Glu(tBu)-Leu-Cys(Trt)-Val-Asn(Trt)-Val-Ala-Cys(Acm)-Thr(tBu)-Gly-Cys(Trt)-Leu-DDK-5 ¹H NMR (400 MHz, DMSO-*d*₆)

3c-17, Fmoc-Asn(Trt)-Asp(tBu)-Glu(tBu)-Cys(Acm)-Glu(tBu)-Leu-Cys(Trt)-Val-Asn(Trt)-Val-Ala-Cys(Acm)-Thr(tBu)-Gly-Cys(Trt)-Leu-DDK-5 ³¹P NMR (162 MHz, DMSO-d₆)

3c-18, (*de*-Fmoc-16) H-Asn(Trt)-Asp(tBu)-Glu(tBu)-Cys(Acm)-Glu(tBu)-Leu-Cys(Trt)-Val-Asn(Trt)-V

3c-18, (*de*-Fmoc-16) H-Asn(Trt)-Asp(tBu)-Glu(tBu)-Cys(Acm)-Glu(tBu)-Leu-Cys(Trt)-Val-Asn(Trt)-Val-Ala-Cys(Acm)-Thr(tBu)-Gly-Cys(Trt)-Leu-DDK-5: HRMS (ESI) m/z calcd for C₂₀₀H₂₃₄N₂₀O₃₂P₂S₄Na⁺ (M+Na)⁺ 3640.55483, found 3640.55884.

MHz, DMSO-*d*₆)

H-Asn-Asp-Glu-Cys (Acm)-Glu-Leu-Cys-Val-Asn-Val-Ala-Cys (Acm)-Thr-Gly-Cys-Leu-OH

HRMS (ESI) m/z calcd for $C_{71}H_{119}N_{20}O_{28}S_4^+$ (M+H)⁺ 1827.73800, found 1827.73759.

177.55 177.16 174.27 173.79 173.13 177.39 175.05 172.59 172.53 172.20 171.24 168.83 172.78 171.69 174.44 54.29 60.21 53.80 66.61 53.40 52.68 51.98 50.82 49.65 39.37 36.35 36.20 34.75 30.38 30.07 29.71 25.78 25.59 24.41 24.23 22.26 22.11 22.11 22.68 20.55 18.69 18.30 17.56 17.28 15.84 39.94

Plecanatide: NDEC^[4,12]ELC^[7,15]VNVAC^[4,12]TGC^[7,15]L ¹H-¹H COSY (400 MHz, D₂O)

SUPPORTING INFORMATION

Plecanatide: NDEC^[4,12]ELC^[7,15]VNVAC^[4,12]TGC^[7,15]L ¹H-¹H ROSEY (400 MHz, D₂O)

Plecanatide: NDEC^[4,12]ELC^[7,15]VNVAC^[4,12]TGC^[7,15]L

HRMS (ESI) m/z calcd for $C_{65}H_{105}N_{18}O_{26}S_4^+$ (M+H)⁺ 1681.63247, found 1681.63257.

GPS5-Residue ³¹P NMR (162 MHz, DMSO-*d*₆)

GPS5-Residue HRMS (ESI)