Electronic Supplementary Information (ESI) for

Cobalt-Tetraamide-Phthalocyanine immobilized on Fe_3O_4 /Chitosan Microspheres as an Efficient Catalyst for the Baeyer-Villiger Oxidation

Zhilin Tang, Jin Xiao, Fei Li, Zhanhu Ma, Li Wang, Fanfan Niu and Xiaoling Sun*

School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China

E-mail address: xiaolingsun1@msn.com (X. Sun).

Experimental Section

Materials

The chemical reagents used were 1,2,4-benzeneticarboxylic anhydride, urea, cobalt(II) chloride hexahydrate, ammonium molybdate(VI) tetrahydrate, methanol, acetone, ferrous sulfate heptahydrate, ethanol, iron(III) chloride hexahydrate (FeCl₃•6H₂O), 2,2,6,6-tetramethylpiperidine-1-oxyl (Tempo), ammonium hydroxide(NH₃·H₂O), chitosan, glutaraldehyde, paraffin, acetic acid, ammonium chloride, cyclohexanone, 1,2-dichloroethane, benzaldehyde and N,N-

Dimethylformamide (DMF). All chemical reagents were of analytical grade and were used as received without further purification.

Characterization method of the catalyst CoTaPc-Fe₃O₄/CTO

Fourier transform infrared (FT-IR) spectra of catalysts were obtained from a Magana-IR 500 FT-IR spectrometer (Nicolet, USA). The IR spectra of catalysts were obtained by the KBr tableting method; UV-Vis absorption spectra were recorded on a CARY-100 ultraviolet-visible spectrophotometer (Agilent, USA). Powder X-ray diffraction (XRD) patterns were recorded with a Rigaku Ultimate IV powder diffractometer, using Cu K α radiation. SEM images was recorded on a Hitachi S-4800 (Chiyoda-ku, Tokyo, Japan) operated under high vacuum with an accelerating voltage of 20 Kv. Column chromatography was generally performed on silica gel (200-300 mesh) and TLC inspections were carried out on silica gel GF254 plates. GC analysis was performed on an GC9790-II with a hydrogen flame ionization detector and an PEG-20M column (0.32 mm×30 m, film: 0.5 um)

Table S1 Screening of solvents^a

Entry	Solvent	Tomporatura	Amount of	Time	Conversion
Entry	Solvent	Temperature	catalyst	Time	Conversion

	1	EtOAc	15℃	5%	12h	84.2%
	2	MeCN	15°C	5%	12h	83.5%
	3	DIOX	15℃	5%	12h	6.2%
	4	DCE	15°C	5%	12h	94.5%
a	Reaction	condition:	cyclohexanone	0.025	mol, O ₂	24 ml/min,
n(Benzaldehyde) : n(cyclohexanone)=2: 1, solvent amount 25 ml						

^b The conversation and selectivity were determined by GC on the basis of the internal standard method (chlorobenzene).

Entry	Amount of solvent	Temperature	Amount of catalyst	Time	Conversion ^b
1	0	15°C	5%	12h	22.6%
2	10	15℃	5%	12h	78.0%
3	15	15℃	5%	12h	86.9%
4	20	15°C	5%	12h	88.8%

Table S2 Effect of solvent amount on reaction^a

a	Reaction	condition:	cyclohexanone	0.025	mol,	O_2	24	ml/min,	solvent	DCE,
	6	30	15°C		5%	ó		12h	9(0.3%
	5	25	15°C		5%)		12h	94	4.5%

n(Benzaldehyde) : n(cyclohexanone)=2 : 1

^b The conversation and selectivity were determined by GC on the basis of the internal standard method (chlorobenzene).

Fntry	Amount of	Temperature	Amount of	Time	Conversion ^b
Liftiy	bezaldehyde	remperature	catalyst	Time	Conversion
1	1:1	15°C	5%	12h	69.4%
2	1.5:1	15°C	5%	12h	87.0%
3	2.5:1	15℃	5%	12h	85.1%
4	3:1	15°C	5%	12h	79.5%

Table S3. Effect of the benzaldehyde on the reaction^a

^a Reaction condition: cyclohexanone 0.025 mol, O₂ 24 ml/min, solvent DCE, solvent amount: 25ml

^b The conversation and selectivity were determined by GC on the basis of the internal standard method (chlorobenzene).

Table S4

Name	TON	TOF		
CoTaPc-Fe ₃ O ₄ /CTO	292	24.3 h-1		

Figure S1. Oxidation of cyclohexanone by O_2 /benzaldehyde (cyclohexanone 0.025 mol, catalyst 0.12 g, 15°C, 2 equiv. of benzaldehyde)

Figure S2. Oxidation of cyclohexanone by m-chloroperbenzoic acid (substrate 2 mmol, catalyst 10 mg, 15°C, 2 equiv. of m-chloroperbenzoic acid)

1. ε-caprolactone. ¹H NMR (500 MHz, CDCl₃) δ: 4.22 (m, 2H), 2.62 (m, 2H), 1.84 (m, 2H), 1.75 (m, 4H). ¹³C NMR (125 MHz, CDCl₃) δ: 25.8, 30.9, 33.7, 35.7, 41.2, 73.1, 178.9.

2. 4-Methyl-ε-caprolactone. ¹H NMR (500 MHz, CDCl₃) δ: 4.26 (m, 2H), 2.66 (m, 2H),

1.85 (m, 3H), 1.51 (m, 1H), 1.35(m, 1H), 1.01(d, J=6.6 Hz, 3H). ¹³C-NMR (125 MHz, CDCl₃) δ: 176.25, 68.12, 37.20, 35.22, 33.18, 30.74, 22.08.

3. 6-Methyl-ε-caprolactone. ¹H NMR (500 MHz, CDCl₃) δ: 4.44-4.63 (m, 1H) , 2.59-2.70 (m, 2H), 1.88-1.93 (m, 2H), 1.58-1.71 (m, 4H), 1.36 (d, 3H, J=5.9 Hz). ¹³C NMR (125 MHz, CDCl₃) δ: 175.57, 68.38, 36.22, 35.01, 28.28, 22.89, 22.58.

4. 4-Ethyl-ε-caprolactone. ¹H NMR (600 MHz, CDCl₃) δ: 4.31 (ddd, J = 12.7, 5.9, 1.6 Hz, 1H) , 4.18 (dd, J = 12.8, 10.1 Hz, 1H) , 2.69 (ddd, J = 14.1, 7.6, 1.7 Hz, 1H) , 2.61 (ddd, J = 14.1, 12.4, 2.1 Hz, 1H) , 2.03–1.96 (m, 1H) , 1.93 (dddt, J = 15.1, 7.5, 3.6, 2.0 Hz, 1H) , 1.57–1.43 (m, 2H) , 1.40–1.28 (m, 3H) ,0.92 (t, J = 7.5 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ: 176.01, 68.05, 41.73, 34.83, 33.02, 28.98, 28.38, 11.14.

5. δ-Valerolactone. ¹H NMR (500 MHz, CDCl₃) δ: 4.35 (t, J = 5.6 Hz, 2H), 2.56 (t, J = 7.0 Hz, 2H), 1.89 (m, 4H). ¹³C NMR (125 MHz, CDCl₃) δ: 171.42, 69.47, 29.84, 22.31, 19.06.

6. δ-Butyrolactone. ¹H NMR (500 MHz, CDCl₃) δ: 4.27 (t, J = 7.4 Hz, 2H) , 2.38–
2.44 (m, 2H), 2.13–2.24 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ: 178.1, 68.8, 28.0,

7. 4-Oxatricyclo[4.3.1.13.8]undecan-5-one. ¹H NMR (300 MHz, CDCl₃) δ: 4.39–4.52 (m, 1H) , 3.01–3.12 (m, 1H), 1.70–2.15 (m, 12H). ¹³C NMR (125 MHz, CDCl₃) δ: 178.9, 73.1, 41.2, 35.7, 33.7, 30.9, 25.8