Supporting Information

Synthesis of Intermetallic Pt-based Catalysts by Lithium Naphthalenide - Driven Reduction for Selective Hydrogenation of
Cinnamaldehyde

Xiao Chen,^a He Cao,^a Xiaozhen Chen,^a Yan Du,^a Ji Qi,^a Jingjie Luo,^a Marc Armbrüster ^b and Changhai Liang *^a

- a. State Key Laboratory of Fine Chemicals, Laboratory of Advanced Materials and Catalytic Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China. E-mail: changhai@dlut.edu.cn.
- b. Faculty of Natural Sciences, Institute of Chemistry, Materials for Innovative Energy Concepts, Chemnitz University of Technology, Chemnitz 09107, Germany

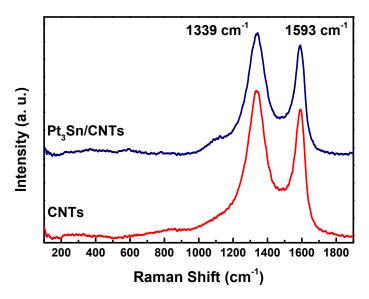


Figure S1 Raman spectra of CNTs with and without depositing Pt₃Sn.

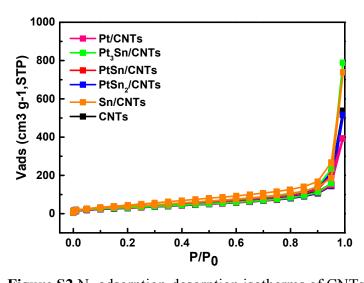
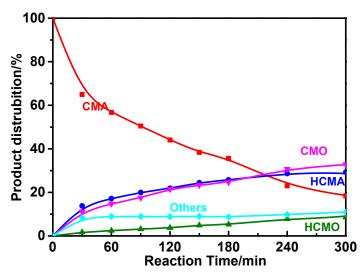
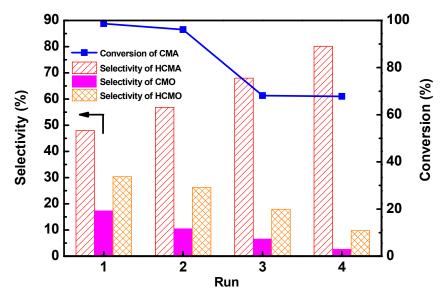




Figure S2 N_2 adsorption-desorption isotherms of CNTs and Pt-Sn/CNTs samples.

Figure S3 The variation of the relative concentration with time for the hydrogenation of CMA over $Pt_3Sn/CNTs$ catalyst prepared by traditional impregnation method (2 MPa H_2 , 80 °C).

Figure S4 The stability results of Pt/CNTs catalyst for the hydrogenation of CMA.

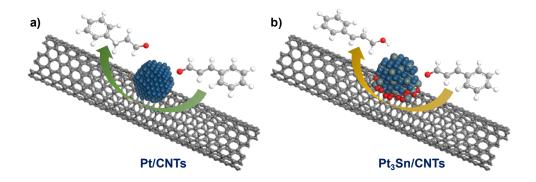


Figure S5 Schematic representation of the chemoselective hydrogenation of CMA over (a) Pt/CNTs and (b) $Pt_3Sn/CNTs$ catalysts prepared by LiNaph-driven reduction.

Table S1 XPS analysis results of Pt 4f and Sn 3d spectra in aspreapred Pt-Sn/CNTs samples.

Catalyst	Relative atomic percentage (%)			
	Pt ^{0→δ} -	Pt-O-Sn	SnO _x /Sn	SnO_2
Pt/CNTs	100	0	-	-
$Pt_3Sn/CNTs$	65.6	34.4	50.7	49.3
Pt-Sn/CNTs	69.6	30.4	49.3	50.7
PtSn ₂ /CNTs	100	0	39.6	60.37
Sn/CNTs	-	-	0	100

 $\textbf{Table S2} \ \text{ICP-AES} \ results \ of \ Pt/CNTs \ and \ Pt_3Sn/CNTs \ catalysts.$

Catalyst —	Pt loadin	Pt loading (wt.%)		Pt:Sn atom ratios	
	Fresh	Spent	Fresh	Spent	
Pt/CNTs	0.68	0.32	-	-	
Pt ₃ Sn/CNTs	0.53	0.49	3.13	3.06	