HPHT annealing of Ni-containing nitrogen-rich synthetic diamonds and the formation of NE8 centre

Liangchao Chen, Weixia Shen, Chao Fang*, Yuewen Zhang, Peiyang Mu, Guangtong Zhou, Qianqian Wang, Zhuangfei Zhang*, Xiaopeng Jia

Key Laboratory of Material Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University

Corresponding Author:*Email: fangchao1989@zzu.edu.cn; zhangzf@zzu.edu.cn.

The nitrogen concentrations in Table 2 are determined using the formula as follows:

The concentration of nitrogen only in the C-centre form $\left(\mathrm{N}_{\mathrm{C}}\right)$ in diamond can be calculated from the absorption coefficient $\alpha_{\mathrm{C}} / \mathrm{cm}^{-1}$ of the peak at $1130 \mathrm{~cm}^{-1[1]}$ to be

$$
\begin{equation*}
\mathrm{N}_{\mathrm{C}} / 10^{-6}=25 \alpha_{\mathrm{C}} \tag{1}
\end{equation*}
$$

The concentration of aggregated nitrogen only in the A-centre form $\left(\mathrm{N}_{\mathrm{A}}\right)$ is determined by measuring the absorption coefficient $\alpha_{\mathrm{A}} / \mathrm{cm}^{-1}$ of the peak at 1282 $\mathrm{cm}^{-1[2]}$ to be

$$
\begin{equation*}
\mathrm{N}_{\mathrm{A}} / 10^{-6}=16.5 \alpha_{\mathrm{A}} \tag{2}
\end{equation*}
$$

On the assumption that spectra are linearly overlapped, the concentration of A-centres and C-centres in mixed type of diamond $\mathrm{IaA}+\mathrm{Ib}$ is still determined by the absorption coefficients α_{C} and α_{A} which are expressed in the terms of α_{1130} and $\alpha_{1282}{ }^{[3]}$ to be

$$
\begin{align*}
& \alpha_{\mathrm{C}}=1.1 \alpha_{1130}-0.2 \alpha_{1282} \tag{3}\\
& \alpha_{\mathrm{A}}=1.1 \alpha_{1282}-0.2 \alpha_{1130} \tag{4}
\end{align*}
$$

where α_{1130} and α_{1282} are absorption coefficients of the peaks at $1130 \mathrm{~cm}^{-1}$ and 1282 cm^{-1}, respectively. The absorption coefficient of the peak at $2000 \mathrm{~cm}^{-1}$ is well known to be $12.3 \mathrm{~cm}^{-1}$, so α_{1130} and α_{1282} can be obtained by comparing their absorption intensity (μ) with that of the peak at $2000 \mathrm{~cm}^{-1}$ as follows:

$$
\begin{align*}
& \alpha_{1130}=\mu\left(1130 \mathrm{~cm}^{-1}\right) / \mu\left(2000 \mathrm{~cm}^{-1}\right) \times 12.3 \tag{5}\\
& \alpha_{1282}=\mu\left(1282 \mathrm{~cm}^{-1}\right) / \mu\left(2000 \mathrm{~cm}^{-1}\right) \times 12.3 \tag{6}
\end{align*}
$$

The values of absorption intensity are calculated according to the recorded value A in IR spectra to be

$$
\begin{align*}
& \mu\left(1130 \mathrm{~cm}^{-1}\right)=\mathrm{A}\left(1130 \mathrm{~cm}^{-1}\right)-\mathrm{A}\left(1370 \mathrm{~cm}^{-1}\right) \tag{7}\\
& \mu\left(2000 \mathrm{~cm}^{-1}\right)=\mathrm{A}\left(2000 \mathrm{~cm}^{-1}\right)-\mathrm{A}\left(1370 \mathrm{~cm}^{-1}\right) \tag{8}\\
& \mu\left(1282 \mathrm{~cm}^{-1}\right)=\mathrm{A}\left(1282 \mathrm{~cm}^{-1}\right)-\mathrm{A}\left(1370 \mathrm{~cm}^{-1}\right) \tag{9}
\end{align*}
$$

Using equations motioned above, NA and NC can be calculated. The calculated results with an uncertainty less than 5%.

References

[1] Kiflawi, I.; Mayer, A. E.; Spear, P. M.; Van Wyk, J. A.; Woods, G. S. Infrared absorption by the single nitrogen and A defect centres in diamond. Philos. Mag. B. 1994, 69, 1141-1147.
[2] Boyd, S. R.; Kiflawi, I.; Woods, G. S. Infrared absorption by the B nitrogen aggregate in diamond. Phil. Mag. B. 1995, 72, 351-361.
[3] Chepurov, A. A.; Dereppe, J. M.; Fedorov, I. I.; Chepurov, A. I. The change of $\mathrm{Fe}-\mathrm{Ni}$ alloy inclusions in synthetic diamond crystals due to annealing. Diamond Relat. Mater. 2000, 9, 1374-1379.

