Supporting Information

Triethanolamine Mediated Covalent Adaptable Epoxy Network: Excellent Mechanical Properties, Fast Repairing and Easy Recycling

Cheng Hao, Tuan Liu,* Shuai Zhang, Wangcheng Liu, Yingfa Shan, Jinwen Zhang*

Scheme S1. The possible TEOA induced polyetherification of epoxy.

Table S1. Formulations of DER-NMA-TEOA curing systems				
Commission 100	DER	NMA	TEOA	
Samples	[g]	[g]	[mg]	[wt%] ^{a)}
DER-NMA-0.05TEOA	1	0.908	38	2.0
DER-NMA-0.1TEOA	1	0.908	76	3.8
DER-NMA-0.15TEOA	1	0.908	114	5.6
DER-NMA-0.2TEOA	1	0.908	152	7.4

^{a)} Weight percent of TEOA in the curing system.

Table S2. The activation energies of different DER-NMA-TEOA curing systems	from non-
isothermal DSC scanning	

Samples	$E_{\rm a}/{\rm kJ}~{\rm mol}^{-1}$ a)	
DER-NMA-0.05TEOA	98.4	
DER-NMA-0.1TEOA	93.5	
DER-NMA-0.15TEOA	90.5	
DER-NMA-0.2TEOA	80.7	

^{a)}Calculated from Arrhenius equation.

Table S3. Formulations of different DER-TEOA compositions					
Commiss	Epoxy/TEOA	DER	Т	TEOA	
Samples	[mol/mol]	[g]	[mg]	$[wt\%]^{a)}$	
DER-0.05TEOA	1/0.05	1	38	3.7	
DER-0.1TEOA	1/0.1	1	73	6.8	
DER-0.15TEOA	1/0.15	1	114	10.2	
DER-0.2TEOA	1/0.2	1	152	13.2	

 Table S3. Formulations of different DER-TEOA compositions

a) Weight percent of TEOA in the curing system.

Table S4. TGA results of the cured DER-NMA-TEOAs and DER-NMA-2E4MI			
Samples	$T_{i}^{a} [^{\circ}C]$	$T_{d5}^{b)}[^{\circ}C]$	
DER-NMA-0.05TEOA	219	280	
DER-NMA-0.1TEOA	216	280	
DER-NMA-0.15TEOA	217	283	
DER-NMA-0.2TEOA	230	280	
DER-NMA-2E4MI	239	297	

a) The initial weight loss temperature; b) the temperature at 5% weight loss.

Starting materials	Stress relaxation time/h ^{a)}	Repairing temperature/°C	T _g /°C
Epoxidized soybean oil, citric acid ¹	3.2 at 160 °C	>150	0 - 30
Dimer and trimer acids, BPA epoxy ²	0.8 at 190 °C	>130	0 - 20
Succinic anhydride, BPA epoxy ³	1.3 at 180 °C	>130	60 - 80
Diphenyl epoxy, sebacic acid ⁴	0.7 at 190 °C	>160	55
Bisphenolic compound, carboxylic acid ⁵	0.1 at 120 °C	>100	11 - 23
ENR, Dithiol-bearing boronic ester ⁶	Not reported	>150	0 - 20
BPA epoxy, adipic acid ⁷	Not reported	>240	39
BPA epoxy, dicarboxylic and tricarboxylic fatty acids ⁸	Not reported	>150	15
BPA epoxy, C18 fatty acids derivatives ⁹	0.1 at 190 °C	200	30 - 37
BPA epoxy, fatty acids Pripol 1040 ¹⁰	0.18 at 180 °C	180	30

Table S5. Summary of the reported epoxy vitrimers based on transesterification mechanism

 $\overline{}^{a)}$ Time when the relaxation modulus (G) decreased to 1/e of the initial modulus (G₀).

Samples	<i>T</i> _g [°C]	<i>E'</i> [M	E' [MPa]	
Sumples		$E_{g}^{a)}$	$E_{\rm r}^{\rm b)}$	
DER-NMA-0.1TEOA	134.9	2251	17	
DER-NMA-0.1TEOA-10GR	132.3	2089	14	
DER-NMA-0.1TEOA-20GR	132.0	1808	13	
DER-NMA-0.1TEOA-30GR	129.7	1661	11	
DER-NMA-0.1TEOA-10DR	129.7	2100	10	
DER-NMA-0.1TEOA-20DR	125.6	2021	8	
DER-NMA-0.1TEOA-30DR	124.3	2019	3	

Table S6. Effect of recyclate (GR or DR) content on the properties of epoxy vitrimer.

a) Storage modulus at 50 °C; b) Storage modulus at 170 °C.

Figure S1. DSC non-isothermal thermogram of the mixture of DER and NMA without catalyst. The heating rate of 5 K min⁻¹. The drop of curve is due to the evaporation of NMA at high temperature.

Figure S2. Effect of TEOA content on curing conversion of DER-NMA-TEOA during nonisothermal curing at a heating rate of 5 K min⁻¹.

Figure S3. The plots of $1/(T_p)$ vs ln(ϕ) of the DER-NMA-TEOAs, where ϕ is the heating rate, and T_p is the peak temperature at that heating rate. Data was collected at different heating rates (1, 3, 5, 10 K min⁻¹). Activation energy (E_a) can be calculated from the slope of each curve.

Figure S4. DSC non-isothermal thermograms of DER-TEOA curing systems with different contents of TEOA. Heating rate was 5 K min⁻¹.

Figure S5. FTIR spectra of DER-0.2TEOA before and after reaction at 150 °C for 3 h.

Figure S6. Fitting of relaxation time (τ^*) to Arrhenius equation and the calculated activation energy of DER-NMA-0.1TEOA.

Figure S7. Stress relaxation curves of DER-NMA-0.1TEOA and DER-NMA-2E4MI at 190 °C.

Figure S8. FTIR spectra of the cured DER-NMA-0.1TEOA and DER-NMA-2E4MI.

Figure S9. TGA curves of the cured DER-NMA-TEOA samples. TGA was performed under nitrogen atmosphere with a heating rate of 10 K min⁻¹.

Figure S10. Weight loss of the cured DER-NMA-0.1TEOA and DER-NMA-2E4MI at 190 °C. Residue weight percent for each material at its relaxation time is labelled. Relaxation time for DER-NMA-0.1TEOA is ~1.17 h, and DER-NMA-2E4MI can't relax within ~6 h.

Figure S11. The sample setup for repairing test of the cured DER-NMA-TEOAs. Samples were placed between the two metal plates and held by clips, and the healing was conducted in a convection oven at 190 $^{\circ}$ C.

Figure S12. Images showing the self-healing of DER-NMA-2E4MI at 190 °C.

Figures S13. Schematic of electrochemical test device for corrosion resistance.

Figure S14. GPC curve of depolymerized DER-NMA-0.1TEOA sample (degradation conditions was performed in a 1.5 wt% HPW/water solution at 190 °C for 5 h).

Figure S15. FTIR spectra of the DER-NMA-0.1TEOA sample before and after degradation. The degradation process was conducted in a 1.5 wt% HPW/water solution at 190 °C for 5 h.

Figure S16. DSC curves of pristine, grinded resin and degraded resin. T_g 's are labeled in figure.

Reference

1. Altuna, F. I.; Pettarin, V.; Williams, R. J. Self-healable polymer networks based on the cross-linking of epoxidised soybean oil by an aqueous citric acid solution. *Green Chem.* **2013**, 15 (12), 3360-3366.

2. Montarnal, D.; Capelot, M.; Tournilhac, F.; Leibler, L. Silica-like malleable materials from permanent organic networks. *Science* **2011**, 334 (6058), 965-968.

3. Han, J.; Liu, T.; Hao, C.; Zhang, S.; Guo, B.; Zhang, J. A Catalyst-Free Epoxy Vitrimer System Based on Multifunctional Hyperbranched Polymer. *Macromolecules* **2018**, 51 (17), 6789-6799.

4. Pei, Z.; Yang, Y.; Chen, Q.; Terentjev, E. M.; Wei, Y.; Ji, Y. Mouldable liquidcrystalline elastomer actuators with exchangeable covalent bonds. *Nat. Mater.* **2014**, 13 (1), 36.

5. Zhao, S.; Abu-Omar, M. M. Catechol-Mediated Glycidylation toward Epoxy Vitrimers/Polymers with Tunable Properties. *Macromolecules* **2019**, 52 (10), 3646-3654.

6. Chen, Y.; Tang, Z. H.; Liu, Y. J.; Wu, S. W.; Guo, B. C. Mechanically Robust, Self-Healable, and Reprocessable Elastomers Enabled by Dynamic Dual Cross-Links. *Macromolecules* **2019**, 52 (10), 3805-3812.

7. Yang, Y.; Pei, Z.; Zhang, X.; Tao, L.; Wei, Y.; Ji, Y. Carbon nanotube–vitrimer composite for facile and efficient photo-welding of epoxy. *Chem. Sci.* **2014**, 5 (9), 3486-3492.

8. Capelot, M.; Montarnal, D.; Tournilhac, F.; Leibler, L. Metal-catalyzed transesterification for healing and assembling of thermosets. *J. Am. Chem. Soc.* **2012**, 134 (18), 7664-7.

9. Legrand, A. I.; Soulié-Ziakovic, C. Silica–epoxy vitrimer nanocomposites. *Macromolecules* **2016**, 49 (16), 5893-5902.

10. Shi, Q.; Yu, K.; Kuang, X.; Mu, X.; Dunn, C. K.; Dunn, M. L.; Wang, T.; Qi, H. J. Recyclable 3D printing of vitrimer epoxy. *Mater. Horizons* **2017**, 4 (4), 598-607.