Supporting Information

Choline Chloride-Modified SnO₂ Achieving High Output Voltage in MAPbI₃ Perovskite Solar Cells

Jingjing Yan[†], Zhichao Lin^{*†}, Qingbin Cai, Xiaoning Wen, and Cheng Mu^{*}

Department of Chemistry Renmin University of China, Beijing, 100872, P. R. China.

[†]These authors contributed equally.

*Correspondence should be addressed to:

E-mail: cmu@ruc.edu.cn (Cheng Mu).

E-mail: linzc@stu.shzu.edu.cn (Zhichao Lin).

Figure S1. XRD patterns of perovskites were deposited on SnO₂ and Chol-SnO₂.

Figure S2. Grain size distribution of perovskite films deposited on a) SnO₂, b) Chol-SnO₂.

Figure S3. AFM images: Surface morphology of perovskite film deposited on a, c) SnO₂ and b, d)

Chol-SnO₂.

Figure S4. XPS fine spectrum of a) N 1s and b) Cl 2p on the SnO₂ and Chol-SnO₂.

Figure S5. XPS curve of SnO₂ and Chol-SnO₂ at O 1s level.

Figure S6. UV-vis spectra of SnO₂ and Chol-SnO₂.

Figure S7. J-V curves of the devices having a) SnO₂ and b) Chol-SnO₂ for forward and reverse

scanning.

Samples	$E_{g}(eV)$	$E_{\text{cutoff}} \left(\text{eV} \right)$	$E_{\rm F}({ m eV})$	$E_{\rm VB}~({\rm eV})$	$E_{\rm CB}~({\rm eV})$
SnO ₂	3.64	16.34	4.88	7.90	4.26
Chol-SnO ₂	3.81	16.59	4.63	7.80	3.99

Table S1. Band gaps (E_g), secondary–electron cutoff (E_{cutoff}), fermi level (E_F), valence band (E_{VB}) and conduction band (E_{CB}) for bare SnO₂ film and Chol-SnO₂ film.

In order to get the Fermi level (E_F), we use $E_F=E_{cutoff} - 21.22$ eV, where E_{cutoff} is cutoff binding energy, and 21.22 eV is emission energy from He irradiation. The E_{cutoff} of SnO₂ and Chol-SnO₂ film are 16.34 and 16.59 eV, respectively. The E_F of SnO₂ and Chol-SnO₂ film are calculated as -4.88 and -4.63 eV, respectively. The E_{VB} of SnO₂ and Chol-SnO₂ film are -7.90 and -7.80 eV, calculating as $E_{VB}=E_F-E_{F, edge}$ (Fermi edge). According to the absorption spectrum and Tauc plot, we get the band gap (E_g) of SnO₂ (3.64 eV) and the Chol-SnO₂ (3.81 eV). Their E_{CB} obtained from E_g and E_{VB} is -4.26 and -3.99 eV, respectively.

Samples	A_1	$ au_1$	A_2	$ au_2$	Average decay time τ (ns) ^a
SnO ₂	0.464	28.07	0.609	366.3	219.9
Chol-SnO ₂	0.208	16.27	0.810	122.1	100.5

Table S2. Fitting parameters of bi–exponential decay function in TRPL spectra.

^a Average decay time is calculated according to the equation: $\tau = (A_1\tau_1 + A_2\tau_2)/(A_1 + A_2)$.

Samples	$R_{\rm s}~(\Omega~{ m cm}^2)$	$R_{ m rec}$ (Ω cm ²)
SnO ₂	0.73	7.94×10^3
Chol-SnO ₂	1.19	1.85×10^4

Table S3. The fitted parameters for EIS measurements acquired under dark based on different samples.