Supporting Information Dual-Modal Photon Upconverting and Downshifting Emissions from Ultra-Stable CsPbBr₃ Perovskite Nanocrystals Triggered by Co-Growth of Tm: NaYbF₄ Nanocrystals in Glass Xiaoyan Li a,b,c,d, Changbin Yang a, Yunlong Yu b,c, Zheng Li a, Jidong Lin a, Xiangfeng Guan b, Zhiqiang Zheng a, d, *, Daqin Chen a, d, e, * - [a] College of Physics and Energy, Fujian Normal University, Fuzhou 350117, China E-mail: zqzheng@fjnu.edu.cn (Z. Q. Zheng); dqchen@fjnu.edu.cn (D. Q. Chen) - [b] College of Electronics and Information Science, Fujian Jiangxia University, Fuzhou 350108, China - [c] Key Laboratory of Green Perovskites Application of Fujian Province Universities, Fujian Jiangxia University, Fuzhou 350108, China - [d] Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering, Fuzhou 350117, China - [e] Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy Storage, Fuzhou 350117, China **Table S1.** Norminal glass compositions (mol%) for preparing dual-phase glasses containing Tm: NaYbF₄ UCNCs and CsPbBr₃ PQDs. The total mole content of glass composition is not fixed to 100% for better comparison throughout the text. | Composition (mol%) | | GeO ₂ | B_2O_3 | ZnO | CaO | Na ₂ O | PbO | CsBr | YbF ₃ | TmF ₃ | |--------------------|-----------|------------------|----------|-----|-----|-------------------|-----|------|------------------|------------------| | Sample | S0 | 50 | 20 | 5 | 3 | 6 | 0 | 12 | 5 | 0.1 | | | S1 | 50 | 20 | 5 | 3 | 6 | 1 | 12 | 5 | 0.1 | | | S2 | 50 | 20 | 5 | 3 | 6 | 3 | 12 | 5 | 0.1 | | | S3 | 50 | 20 | 5 | 3 | 6 | 5 | 12 | 5 | 0.1 | | | S4 | 50 | 20 | 5 | 3 | 6 | 7 | 12 | 5 | 0.1 | | | S5 | 50 | 20 | 5 | 3 | 6 | 3 | 8 | 5 | 0.1 | | | S6 | 50 | 20 | 5 | 3 | 6 | 3 | 16 | 5 | 0.1 | | | S7 | 50 | 20 | 5 | 3 | 6 | 3 | 20 | 5 | 0.1 | | | S8 | 50 | 20 | 5 | 3 | 6 | 3 | 12 | 3 | 0.1 | | | S9 | 50 | 20 | 5 | 3 | 6 | 0 | 12 | 8 | 0.1 | | | S10 | 50 | 20 | 5 | 3 | 6 | 1 | 12 | 8 | 0.1 | | | S11 | 50 | 20 | 5 | 3 | 6 | 3 | 12 | 8 | 0.1 | | | S12 | 50 | 20 | 5 | 3 | 6 | 5 | 12 | 8 | 0.1 | | | S13 | 50 | 20 | 5 | 3 | 6 | 7 | 12 | 8 | 0.1 | | | S14 | 50 | 20 | 5 | 3 | 6 | 3 | 8 | 8 | 0.1 | | | S15 | 50 | 20 | 5 | 3 | 6 | 3 | 16 | 8 | 0.1 | | | S16 | 50 | 20 | 5 | 3 | 6 | 3 | 20 | 8 | 0.1 | The mole contents of PbO (x mol%, x=1, 3, 5, 7), CsBr (y mol%, y=8, 12, 16, 20) and YbF₃ (z mol%, z=3, 5, 8) components in the glasses are modified to achieve dual-phase glasses with desirable crystallization phases and optimal optical performance. **Table S2.** The fitted decay parameters for PL and UC exciton recombination of CsPbBr₃ PQDs in dual-phase glasses with different PbO contents (x=1, 3, 5, 7 mol%, fixed 12 mol% CsBr, 5 mol% YbF₃). | | | A_{I} | τ_1 (ns) | A_2 | $ au_2$ (ns) | A_3 | $ au_3$ (ns) | τ _{ave} (ns) | |----|-----|------------------|----------------------|------------------|--------------------|-------|---------------------|-----------------------| | PL | x=1 | 3752 | 9.67 | 1622 | 50.11 | 258 | 258.82 | 117 | | PL | x=3 | 5390 | 12.11 | 2523 | 62.95 | 479 | 286.72 | 138 | | PL | x=5 | 4357 | 5.40 | 1284 | 36.24 | 140 | 186.56 | 69 | | PL | x=7 | 4540 | 4.32 | 1044 | 24.65 | 129 | 114.26 | 40 | | | | $\overline{A_I}$ | τ_1 (μs) | $\overline{A_2}$ | $ au_2$ (μ s) | A_3 | τ ₃ (μs) | τ_{ave} (us) | | UC | x=3 | 9461 | 185.00 | 1446 | 351.09 | | | 222 | Owing to their non-single-exponential features, PL decay curves of exciton recombination can be described by the following three-exponential expression $$I = A_1 exp\left(-\frac{t}{\tau_1}\right) + A_2 exp\left(-\frac{t}{\tau_2}\right) + A_3 exp\left(-\frac{t}{\tau_3}\right)$$ Where A_1 , A_2 and A_3 are the fitting constants, τ_1 , τ_2 and τ_3 are the corresponding decay times, respectively. The average lifetime can be determined by the following equation $$\tau_{\text{ave}} = (A_1 \tau_1^2 + A_2 \tau_2^2 + A_3 \tau_3^2) / (A_1 \tau_1 + A_2 \tau_2 + A_3 \tau_3)$$ All the values are tabulated in **Table S2**. Similarly, UC decay curves of exciton recombination can be described by the two-exponential expression and the related parameters are also provided in **Table S2** for comparison. ### Derivation of absolute temperature sensitivity and relative sensitivity In the investigeed dual-phase embedded glass, exciton recombination and $Tm^{3+3}F_{2,3} \rightarrow ^3H_6$ transition are temperature detecting signals for their significant temperature-sensitive emissions, while Tm^{3+} : ${}^{1}G_{4} \rightarrow {}^{3}H_{6}$ and ${}^{1}G_{4} \rightarrow {}^{3}F_{4}$ transitions act as the reference signals for their relatively temperature-insensitive emissions. Herein, FIR1 can be easily deduced according to the expression of temperature-dependent exciton recombination [S1,S2] $$FIR 1 = \frac{I_{PQDs em}}{I_{477 nm}} \approx \frac{1}{B + Cexp(-\Delta E/k_BT)}$$ where B and C are constants, T is absolute temperature, k_B is Boltzmann constant. ΔE is nominal thermal quenching activation energy for the CsPbBr₃ PQDs and Tm³⁺ ${}^{1}G_{4} \rightarrow {}^{3}H_{6}$ dual-emitting system. On the other hand, FIR2 data can be well fitted to temperature by the following exponential equation [S3,S4] $$FIR2 = \frac{I_{707 \text{ nm}}}{I_{650 \text{ nm}}} = D + E \times exp(\frac{-F}{T})$$ where D, E and F are constants. According to these two FIR equations, absolute temperature sensitivity (S_a) and relative temperature sensitivity (S_r) can be further derived and expressed by the following equations. #### For FIR1 $$S_{a(523/477)} = \left| \frac{\partial FIR1}{\partial T} \right| = \frac{Cexp(^{-\Delta E}/k_BT)}{\left[B + Cexp(^{-\Delta E}/k_BT) \right]^2} \times \frac{\Delta E}{k_BT^2}$$ $$S_{r(523/477)} = \left| \frac{1}{FIR} \frac{\partial FIR1}{\partial T} \right| \times 100\% = \frac{Cexp(^{-\Delta E}/k_BT)}{B + Cexp(^{-\Delta E}/k_BT)} \times \frac{\Delta E}{k_BT^2} \times 100\%$$ ## For FIR2 $$S_{a(707/650)} = \left| \frac{\partial FIR2}{\partial T} \right| = \exp({^-F}/_T) \times \frac{EF}{T^2}$$ $$S_{r(707/650)} = \left| \frac{1}{FIR} \frac{\partial FIR2}{\partial T} \right| \times 100\% = \frac{\exp({^{-F}}/_T)}{D + E \times \exp({^{-F}}/_T)} \times \frac{EF}{T^2} \times 100\%$$ #### References [S1] Li, X.; Wu, Y.; Zhang, S.; Cai, B.; Gu, Y.; Song, J.; Zeng, H. CsPbX₃ Quantum Dots for Lighting and Displays: Room-Temperature Synthesis, Photoluminescence Superiorities, Underlying Origins and White Light-Emitting Diodes. Adv. Funct. Mater. 2016, 26, 2435-2445. [S2] Yuan, S.; Chen, D.; Li, X.; Zhong, J.; Xu, X. In Situ Crystallization Synthesis of CsPbBr₃ Perovskite Quantum Dot-Embedded Glasses with Improved Stability for Solid-State Lighting and Random Upconverted Lasing. ACS Appl. Mater. Interfaces 2018, 10, 18918-18926. [S3] Chen, D.; Liu, S.; Wan, Z.; Chen, Y. A Highly Sensitive Upconverting Nano-Glass-Ceramic-Based Optical Thermometer. J. Alloys Compd. 2016, 672, 380-385. [S4] Xu, W.; Zhang, Z.; Cao, W. Excellent Optical Thermometry Based on Short-Wavelength Upconversion Emissions in Er³⁺/Yb³⁺ Co-doped CaWO₄. Opt. Lett. **2012**, 37, 4865. **Table S3.** Absolute/relative sensitivities and temperature range of optical temperature sensors based on several typical luminescent materials. | Sensing
materials | FIR | Temperatu
re range
(K) | Maximal S _a (K ⁻¹) | Maximal S _r (% K ⁻¹) | Ref.* | |---|---|------------------------------|---|---|--------------| | Tm ³⁺ : YF ₃ glass ceramic | $I_{(Tm^{3+}:^{3}F_{2,3}\rightarrow^{3}H_{6})}/$ $I_{(Tm^{3+}:^{1}G_{4}\rightarrow^{3}F_{4})}$ | 293-563 | 0.0184 | | [S3] | | Tm ³⁺ /Yb ³⁺ :
Y ₂ Ti ₂ O ₇
phosphor | $I_{(Tm^{3+}:^3F_{2,3}\to^3H_6)}/\\I_{(Tm^{3+}:^1G_4\to^3H_6)}$ | 293-398 | | 0.81 | [S5] | | Tm ³⁺ /Yb ³⁺ :
SrWO ₄ | $I_{(Tm^{3+}: {}^{3}F_{3} \rightarrow {}^{3}H_{6})} / I_{(Tm^{3+}: {}^{3}H_{4} \rightarrow {}^{3}H_{6})}$ | 308-573 | 0.0062 | | [S6] | | Ho ³⁺ /Tm ³⁺ /Yb ³⁺ :
Ba ₃ Y ₄ O ₉ | $I_{(Tm^{3+}:^{3}H_{4}\rightarrow^{3}H_{6})} / I_{(Tm^{3+}:^{1}G_{4}\rightarrow^{3}H_{6})}$ | 293-473 | 0.0552 | 0.34 | [S7] | | Pr ³⁺ :
LaMg _{0.402} Nb _{0.598}
O ₃ | $I_{(Pr^{3+};^{1}D_{2} \rightarrow ^{3}H_{4})}/$ $I_{(Pr^{3+};^{3}P_{0} \rightarrow ^{3}F_{2})}$ | 298-523 | 0.0597 | 0.73 | [S8] | | CD/ RhB | $I_{\mathrm{CD}}/I_{\mathrm{RhB}}$ | 283-373 | 0.0201 | 1.39 | [S9] | | dual-phase glass | $\underset{(Tm^{3+}:\ ^{1}G_{4}\rightarrow ^{3}H_{6})}{I_{PQDs\ em}}/I$ | 77-350 | 0.0474 | 0.98 | This
work | | dual-phase glass | $I_{(Tm^{3+}: {}^{3}F_{2,3} \rightarrow {}^{3}H_{6})} / I_{(Tm^{3+}: {}^{1}G_{4} \rightarrow {}^{3}F_{4})}$ | 300-700 | 0.4381 | 1.35 | This
work | ## *References [S5] Tu, X.; Xu, J.; Li, M.; Xie, T.; Lei, R.; Wang, H.; Xu, S. Color-Tunable Upconversion Luminescence and Temperature Sensing Behavior of Tm³⁺/Yb³⁺ Codoped Y₂Ti₂O₇ Phosphors. *Mater. Res. Bull.* **2019**, *112*, 77-83. [S6] Song, H.; Wang, C.; Han, Q.; Tang, X.; Yan, W.; Chen, Y.; Jiang, J.; Liu, T. Highly Sensitive Tm³⁺/Yb³⁺ Codoped SrWO₄ for Optical Thermometry. *Sensor. Actuat. A Phys.* **2018**, *271*, 278-282. [S7] Liu, S.; Cui, J.; Jia, J.; Fu, J.; You, W.; Zeng, Q.; Yang, Y.; Ye, X. High Sensitive Ln³⁺/Tm³⁺/Yb³⁺ (Ln³⁺= Ho³⁺, Er³⁺) Tri-Doped Ba₃Y₄O₉ Upconverting Optical Thermometric Materials Based on Diverse Thermal Response from Non-Thermally Coupled Energy Levels. *Ceram. Int.* **2019**, *45*, 1-10. [S8] Zhang, H.; Gao, Z.; Li, G.; Zhu, Y.; Liu, S.; Li, K.; Liang, Y. A Ratiometric Optical Thermometer with Multi-Color Emission and High Sensitivity Based on Double Perovskite LaMg_{0.402}Nb_{0.598}O₃: Pr³⁺ Thermochromic Phosphors. *Chem. Eng. J.* **2020**, *380*, 122491. [S9] Zhu, Z.; Sun, Z.; Guo, Z.; Zhang, X.; Wu, Z. chao. A High-Sensitive Ratiometric Luminescent Thermometer Based on Dual-Emission of Carbon Dots/Rhodamine B Nanocomposite. *J. Colloid Interface Sci.* **2019**, *552*, 572-582. **Figure S1.** XRD patterns of a series of dual-phase glass samples: (a) different PbO contents (fixed 12 mol% CsBr and 5 mol% YbF₃), (b) different CsBr contents (fixed 3 mol% PbO and 5 mol% YbF₃), (c) different PbO contents (fixed 12 mol% CsBr and 8 mol% YbF₃) and (d) different CsBr contents (fixed 3 mol% PbO and 8 mol% YbF₃). Bars represent standard diffraction peaks of cubic NaYbF₄ (JCPDS No. 27-0813) and cubic CsPbBr₃ (JCPDS No. 54-0752) crystals. **Figure S2.** HAADF-STEM micrograph for a typical CsPbBr₃ and NaYbF₄ dual-phase embedded glass, showing the co-existence of small-size CsPbBr₃ PNCs (bright contrast) and large-size Tm: NaYbF₄ UCNCs (bright contrast) inside glass matrix (dark contrast). Some of CsPbBr₃ PNCs and Tm: NaYbF₄ UCNCs are marked by circle and rectangle, respectively. **Figure S3.** Quantitative PL spectra of dual-phase glasses with fixed 12 mol% CsBr, fixed 5 mol% YbF₃ and different PbO contents: (a) x=1 mol%, (b) x=3 mol%, (c) x=5 mol% and (d) x=7 mol%. PLQY values, defined as the ratio of emitted photons to absorbed photons, can be accordingly calculated. The reference for PLQY measurement is the blank glass without perovskite components, and the sharp peak at 365 nm is the excitation light (the integrated area represents the absorbed intensity). **Figure S4.** Quantitative PL spectra of dual-phase glasses with fixed 3 mol% PbO, fixed 5 mol% YbF₃ and different CsBr contents: (a) y=8 mol%, (b) x=12 mol%, (c) x=16 mol% and (d) x=20 mol%. PLQY values, defined as the ratio of emitted photons to absorbed photons, can be accordingly calculated. (e) The corresponding PL decay behaviors shows the same variation tendency as PLQYs. **Figure S5.** Quantitative PL spectra of dual-phase glasses with fixed 12 mol% CsBr, fixed 8 mol% YbF₃ and different PbO contents: (a) x=1 mol%, (b) x=3 mol%, (c) x=5 mol% and (d) x=7 mol%. PLQY values, defined as the ratio of emitted photons to absorbed photons, can be accordingly calculated. (e) The corresponding PL decay behaviors shows the same variation tendency as PLQYs. **Figure S6.** Quantitative PL spectra of dual-phase glasses with fixed 3 mol% PbO, fixed 8 mol% YbF₃ and different CsBr contents: (a) y=8 mol%, (b) x=12 mol%, (c) x=16 mol% and (d) x=20 mol%. PLQY values, defined as the ratio of emitted photons to absorbed photons, can be accordingly calculated. **Figure S7.** UC emission spectra of a series of dual-phase glasses under the excitation of 980 nm NIR laser: (a) various PbO contents (1~7 mol%, fixed 12 mol% CsBr and 5 mol% YbF₃), (b) various CsBr contents (8~20 mol%, fixed 3 mol% PbO and 5 mol% YbF₃), (c) various PbO contents (1~7 mol%, fixed 12 mol% CsBr and 8 mol% YbF₃) and (d) various CsBr contents (8~20 mol%, fixed 3 mol% PbO and 8 mol% YbF₃). All the samples show typical 523 nm UC emission band originated from exciton recombination of CsPbBr₃ PQDs inside the glasses. **Figure S8.** UC decay curves for a series of dual-phase glasses by monitoring 349 nm (${}^{1}I_{6} \rightarrow {}^{3}F_{4}$), 363 nm (${}^{1}D_{2} \rightarrow {}^{3}H_{6}$), 450 nm (${}^{1}D_{2} \rightarrow {}^{3}F_{4}$), 477 nm (${}^{1}G_{4} \rightarrow {}^{3}H_{6}$) emissions of Tm³⁺ and 523 nm exciton recombination of CsPbBr₃ PQDs: (a-c) different contents of YbF₃ component (3, 5, 8 mol%) in glasses with fixed 3 mol% PbO and 12 mol% CsBr, and (d) 3 mol% PbO, 16 mol% CsBr and 5 mol% YbF₃ components in the glass. **Figure S9.** UC decay curves for a series of dual-phase glasses with different contents of CsBr component (8~20 mol%, fixed 3 mol% PbO and 5 mol% YbF₃) by monitoring Tm³⁺ 477 nm (${}^{1}G_{4} \rightarrow {}^{3}H_{6}$) emission. As a comparison, UC decay of Tm³⁺ ${}^{1}G_{4}$ emitting state for the glass containing only Tm: NaYbF4 NCs (without CsPbBr₃ PQDs) is provided. Evidently, decay behaviors of Tm³⁺ ${}^{1}G_{4}$ emitting state are almost identical for all the samples. **Figure S10.** Long-term stability test by directly immersing dual-phase glass in water for 30 days and recording (a) PL decays of exciton recombination, (b) UC decays of exciton recombination and (c) UC decay of Tm^{3+} 477 nm ($^{1}G_{4} \rightarrow ^{3}H_{6}$) emission. With elongation of storing time in water, PL decay of exciton recombination and UC radiative kinetics of exciton recombination and $Tm^{3+} {^{1}G_{4}} \rightarrow ^{3}H_{6}$ transition in the dual-phase glass are not remarkably altered. **Figure S11.** Long-term stability test by directly immersing dual-phase glass in water for 30 days and recording the corresponding PL spectra of exciton recombination. With increase of immersing time from 0 to 30 days, no obvious change in PL intensity and spectral profile. **Figure S12.** UC emission spectra for Tm: NaYbF₄ & CsPbBr₃ dual-phase glass under single-modal excitation at 980 nm with different laser power. All the spectra are normalized to Tm³⁺ 477 nm (${}^{1}G_{4} \rightarrow {}^{3}H_{6}$) emission. With increase of NIR laser power, 523 nm UC emission intensity from exciton recombination gradually weakens owing to laser-induced thermal quenching of exciton recombination. **Figure S13.** Normalized UC emission spectra for a series of dual-phase glasses under single-modal excitation at 980 nm with low/high (33 mW or 352 mW) laser power: (a) various PbO contents (1~7 mol%, fixed 12 mol% CsBr and 5 mol% YbF₃), (b) various CsBr contents (8~20 mol%, fixed 3 mol% PbO and 5 mol% YbF₃), (c) various PbO contents (1~7 mol%, fixed 12 mol% CsBr and 8 mol% YbF₃) and (d) various CsBr contents (8~20 mol%, fixed 3 mol% PbO and 8 mol% YbF₃). Compared to the case of low-power laser excitation, 523 nm UC emission intensity from exciton recombination weakens upon high-power laser excitation for all the samples. **Figure S14.** (a) Temperature-dependent PL spectra of dual-phase glass under 365 nm UV light excitation. (b) Integrated emission intensity of CsPbBr₃ PQDs as a function of temperature. The fitted curve and the obtained exciton recombination energy (E_b) are provided in the figure. The important physical parameter of exciton binding energy of CsPbBr₃ PQDs inside glass can be estimated with the following equation ^[7,25] $$I(T) = \frac{I_0}{1 + Aexp^{-E_{b/(k_BT)}}}$$ where I(T) and I_0 are PL intensities at temperature T and 0 K, respectively, T is absolute temperature, A is a pre-exponential constant, k_B is Boltzmann constant and E_b is exciton binding energy. With increase of temperature, the integrated emission intensity of CsPbBr₃ PQDs rapidly decreases, which is caused by temperature quenching. The exciton binding energy is 125 meV by fitting the experimental data with the above-mentioned expression. ^{*}References 7 and 25 are listed in the manuscript. **Figure S15.** Energy level diagrams of Yb³⁺ and Tm³⁺ ions, showing the thermally coupled states of ${}^{3}H_{4}$ and ${}^{3}F_{2,3}$ and the possible energy transfer processes to populate ${}^{3}H_{4}$, ${}^{3}F_{2,3}$ and ${}^{1}G_{4}$ emitting-states of Tm³⁺. The ${}^3F_{2,3}$ and 3H_4 states of Tm³⁺ are eligible to act as thermally coupled states because of the suitable energy gap between them (~ 2000 cm⁻¹). With increase of temperature, the ${}^3F_{2,3}$ states are populated via thermal activation while the 3H_4 state is depopulated. The population of 1G_4 state of Tm³⁺ is originated from 3H_4 one. Therefore, temperature sensitive fluorescence intensity ratio (FIR) of Tm³⁺ between ${}^3F_{2,3} \rightarrow {}^3H_6$ transition (707 nm) and ${}^1G_4 \rightarrow {}^3F_4$ one (650 nm) is expected.