Robust Wavelength-Converting and Lasing Media from Wafer-Scale Inorganic Perovskites Enabled by a Protective Surface Layer

Yinjuan Ren,^{†,‡} Weihua Wang,[†] Ziming Wang,[†] Siyang Xia,^{†,‡} Yue Wang^{†*}

⁺MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

[‡]Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore

* To whom correspondence should be addressed, email: <u>ywang@njust.edu.cn</u>

Methods

Fabrication of CsPbBr₃ wafer: The CsPbBr₃ perovskite crystals were fabricated by reacting CsBr (42.6 g) and PbBr₂ (73.4 g) in a fused silica ampoule. The CsPbBr₃ polycrystalline was firstly synthesized for uniform reaction. After that, the ampoule was put into the Bridgman furnace with the aim to grow the perovskite ingot. The furnace temperature was set as 60 °C higher than the melting point of CsPbBr₃. Therefore, the convex solid-liquid interface can be obtained. Finally, the CsPbBr₃ ingot was cut into wafers with thickness of ~1 mm.

Optical characterization: Stimulated emission from CsPbBr₃ wafer was measured by a home-build optical system, where the excitation wavelength can be tuned from 260 nm to 2.6 μ m. The pump fluence was adjusted by an attenuator. The emission signal was collected by an optical fiber and detected by a charge-coupled device (CCD) equipped with a monochromator. The emission dynamics was measured by a streak camera system. The temporal resolution of the system was ~30 ps.

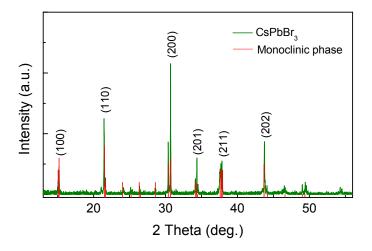
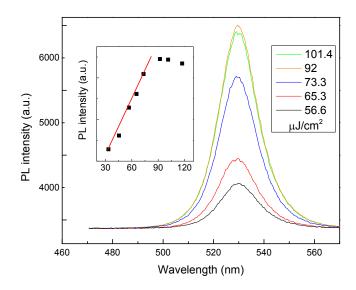

Fabrication of wavelength-converting and laser device: The device was built by sandwiching the CsPbBr₃ bulk crystals between two parallel and highly reflective mirrors which served as the cavity resonator. The pump source at optical wavelength of 800 nm was directed on the device in the vertical direction. The pump fluence was adjusted by an attenuator. The emission signal was collected by an optical fiber and detected by a charge-coupled device (CCD) equipped with a monochromator.

Figure S1. Photograph of the fabricated CsPbBr₃ perovskite crystals or ingot.


Figure S2. Photograph of the sub-centimeter-sized CsPbBr₃ crystals obtained by breaking the CsPbBr₃ wafer.

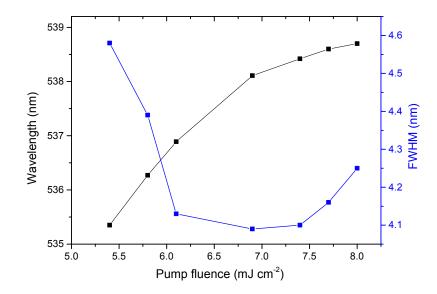

Figure S3. X-ray diffraction pattern of the fabricated CsPbBr₃ crystal, exhibiting the monoclinic phase.

Figure S4. (a) Plot of n- κ diagram of the fabricated CsPbBr₃ crystal. (b) Absorption spectrum obtained from the n- κ diagram of CsPbBr₃ crystal. (c) PL spectrum of the fabricated CsPbBr₃ crystal.

Figure S5. PL spectra from CsPbBr₃ crystal under excitation wavelength of 400 nm and varied pump fluences.

Figure S6. Variation of stimulated emission peak wavelength and linewidth as a function of pump fluence.

Table S1. Summary of stimulated emission (SE) and lasing performance f	rom
inorganic lead halide perovskites (ILHPs) by two photon pumping.	

ILHPs	SE threshold	Lasing threshold	Stability
Colloidal quantum dots ¹⁻³	12 mJ cm ⁻²	0.9 mJ cm^{-2}	< 2 hour
Nano/microwire/nanorods ⁴		0.63 mJ cm^{-2}	
Microplates ⁵		16.5 mJ cm^{-2}	
Perovskite wafer (this work)	5.2 mJ cm ⁻²	3.7 mJ cm ⁻²	>4 hours

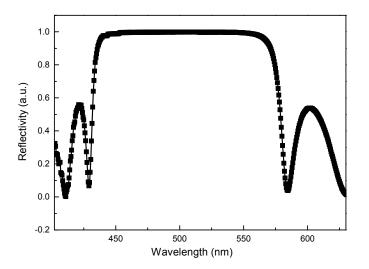


Figure S7. The wide-band reflection spectrum of the mirror used for the laser construction.

References

1. Pan, J.; Sarmah, S. P.; Murali, B.; Dursun, I.; Peng, W.; Parida, M. R.; Liu, J.; Sinatra, L.; Alyami, N.; Zhao, C.; Alarousu, E.; Ng, T. K.; Ooi, B. S.; Bakr, O. M.; Mohammed, O. F., Air-Stable Surface-Passivated Perovskite Quantum Dots for Ultra-Robust, Single- and Two-Photon-Induced Amplified Spontaneous Emission. *The Journal of Physical Chemistry Letters* **2015**, *6*, 5027-5033.

2. Xu, Y.; Chen, Q.; Zhang, C.; Wang, R.; Wu, H.; Zhang, X.; Xing, G.; Yu, W. W.; Wang, X.; Zhang, Y.; Xiao, M., Two-Photon-Pumped Perovskite Semiconductor Nanocrystal Lasers. *Journal of the American Chemical Society* **2016**, *138*, 3761-3768.

3. Wang, Y.; Li, X.; Zhao, X.; Xiao, L.; Zeng, H.; Sun, H., Nonlinear Absorption and Low-Threshold Multiphoton Pumped Stimulated Emission from All-Inorganic Perovskite Nanocrystals. *Nano Letters* **2016**, *16*, 448-453.

4. Wang, X.; Zhou, H.; Yuan, S.; Zheng, W.; Jiang, Y.; Zhuang, X.; Liu, H.; Zhang, Q.; Zhu, X.; Wang, X.; Pan, A., Cesium lead halide perovskite triangular nanorods as high-gain medium and effective cavities for multiphoton-pumped lasing. *Nano Research* **2017**, *10*, 3385-3395.

5. He, H.; Ma, E.; Chen, X.; Yang, D.; Chen, B.; Qian, G., Single Crystal Perovskite Microplate for High-Order Multiphoton Excitation. *Small Methods* **2019**, *3*, 1900396.