Supporting Information for Controlled Polymerization of β-Pinadiene: Accessing Unusual Polymer Architectures with Biomass-Derived Monomers

Alan D. Fried and Johnathan N. Brantley* Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37916 Email: jbrant13@utk.edu

Table of Contents

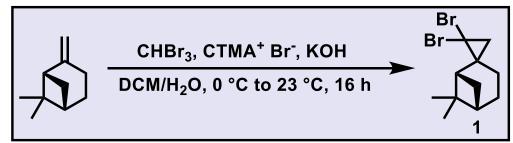
1	General Considerations	S5
	1.1. Materials and Methods	S5
2	Monomer Synthesis	S5
	2.1. Synthesis of 1	S5
	Scheme S1: Synthesis of 1	S5
	2.2. Synthesis of 2	S6
	Scheme S2: Synthesis of 2	S6
3	Polymerization Studies and Material Characterization	S6
	3.1 General Procedure for the Vinyl-Addition Polymerization of 2 using 4	S6
	Scheme S3: Generation of 4 in situ and Synthesis of 3	S6
	Table S1: Representative Range of Molecular Weights Accessible Using 4	S7
	Figure S1: Selected GPC Data for 3	S7
	3.1.1 Confirmation of Fused-Ring Structure of 3	S8
	3.2. Procedure for the Vinyl-Addition Polymerization of 2 Using 5	S8
	Scheme S4: Vinyl-Addition Polymerization of 2 Using 5	S8
	Figure S2: GPC Data for the Vinyl-Addition Polymerization of 2 Using 5	S9
	3.3 Procedure for the Vinyl-Addition Polymerization of 2 Using 6	S9
	Scheme S5: Vinyl-Addition Polymerization of 2 Using 6	S9
	Figure S3: GPC Data for the Vinyl-Addition Polymerization of 2 Using 6	S10
	3.4 Initiator Screen for Other Polymerizations of 2	S10
	3.4.1 General Procedure for the Uncontrolled Radical Ring-C	Opening
	Polymerization of 2	S10
	3.4.2 General Procedure for the Controlled Radical Ring-Opening Polyme	rization
	of 2	S10

	3.4.3 General Procedure for the Anionic Ring-Opening Polymerization of 2	S11
	3.4.4 General Procedure for the Cationic Ring-Opening Polymerization of 2	S11
	3.4.5 Cationic Ring-Opening Polymerization of 2 with AICI ₃ OPh ₂	S11
	Scheme S6: Cationic Ring-Opening Polymerization of ${\bf 2}$ with AICI ₃ OPh ₂	S11
	Figure S4: GPC Data for the Ring-Opening Polymerization of 2	S12
	Table S2: Initiator Screen for the Ring-Opening Polymerization of 2	S12
	3.5 Procedure for the Preparation of 7	S12
	Scheme S7: Preparation of 7	S12
	Figure S5: GPC Data for 7	S13
	3.6 Thermomechanical Data	S13
	3.6.1 TGA and DMA Data for 3	S13
	Figure S6: Representative TGA Thermogram of 3	S14
	Figure S7: Representative Powder DMA of 3	S14
	3.6.2 TGA and DMA Data for 7	S14
	Figure S8: Representative TGA Thermogram of 7	S15
	Figure S9: Representative Powder DMA of 7	S15
	3.6.3 WAXS Measurements of 3	S15
	Figure S10: WAXS Spectrum of Low Molecular Weight 3	S16
	Figure S11: WAXS Spectrum of High Molecular Weight 3	S16
	Figure S12: WAXS Spectrum of Annealed 3	S17
	Table S3: WAXS Data for 3	S17
	3.6.4 WAXS Measurements of 7	S17
	Figure S13: WAXS Spectrum of 7	S18
	Figure S14: WAXS Spectrum of Annealed 7	S18
	Table S4: WAXS Data for 7	S19
4	Determination of Living Character	S19
	4.1 Molecular Weight as a Function of Monomer Conversion	S19
	Table S5: Living Plot Molecular Weight and Conversion Data	S19
	4.2 Chain Extension Experiment	S19
	Table S6: Molecular Weight Data for Chain Extension of 3	S20
5	NMR Spectroscopic Data	S20

	Figure S15: ¹ H NMR Spectrum of 1	S20				
	Figure S16: 13C NMR Spectrum of 1	S21				
	Figure S17: ¹ H NMR Spectrum of 2	S21				
	Figure S18: ¹³ C NMR Spectrum of 2	S22				
	Figure S19: ¹ H- ¹³ C HSQC NMR Spectrum of 2	S22				
	Figure S20: ¹ H- ¹ H COSY NMR Spectrum of 2	S23				
	Figure S21: ¹ H NMR Spectrum for 3	S23				
	Figure S22: ¹³ C NMR Spectrum for 3	S24				
	Figure S23: ¹ H- ¹ H COSY NMR Spectrum for 3	S24				
	Figure S24: ¹ H- ¹³ C HSQC NMR Spectrum for 3	S25				
	Figure S25: 1H NMR Spectrum for the Polymerization of 2 Using 5	S25				
	Figure S26: 1H NMR Spectrum for the Polymerization of 2 Using 6	S26				
	Figure S27: ¹ H NMR Spectrum for Cationic Ring-Opening Polymerization of 2	S26				
	Figure S28: ¹ H NMR Spectrum for 7	S27				
	Figure S29: ¹³ C NMR Spectrum for 7	S27				
6	Raw GPC Data	S28				
	Figure S30: Raw GPC Data for Table S1 Entry 1	S28				
	Figure S31: Raw GPC Data for Table S1 Entry 2	S28				
	Figure S32: Raw GPC Data for Table S1 Entry 3	S29				
	Figure S33: Raw GPC Data for Table S1 Entry 4	S29				
	Figure S34: Raw GPC Data for Table S1 Entry 5	S30				
	Figure S35: Raw GPC Data for Table S1 Entry 6	S30				
	Figure S36: Raw GPC Data for the Vinyl-Addition Polymerization of 2 With 5	S31				
	Figure S37: Raw GPC Data for the Vinyl-Addition Polymerization of 2 With 6	S31				
	Figure S38: Raw GPC Data for the Cationic Ring-Opening Polymerization of (1	S)-(-)-				
β-pinene S32						
Figure S39: Raw GPC Data for the Polymerization of 2 With 4 in Toluene (for Solvent						
Screen) S32						
Figure S40: Raw GPC Data for the Polymerization of 2 With 4 in Toluene at 35 °C (for						
S	Solvent Screen) S33					

S3

Figure S41: Raw GPC Data for the Polymerization of 2 With 4 in Et ₂ O (for S	olvent						
Screen) S33							
Figure S42: Raw GPC Data for the Polymerization of 2 With 4 in THF (for S	olvent						
Screen)	S34						
Figure S43: Raw GPC Data for the Polymerization of 2 With 4 in DCM (for S	olvent						
Screen)	S34						
Figure S44: Raw GPC Data for Table S5 Entry 2	S35						
Figure S45: Raw GPC Data for Table S5 Entry 3	S35						
Figure S46: Raw GPC Data for Table S5 Entry 4	S36						
Figure S47: Raw GPC Data for Table S5 Entry 5	S36						
Figure S48: Raw GPC Data for Table S5 Entry 6	S37						
Figure S49: Raw GPC Data for Table S5 Entry 7	S37						
Figure S50: Raw GPC Data for Table S5 Entry 8	S38						
Figure S51: Raw GPC Data for Table S5 Entry 9	S38						
Figure S52: Raw GPC Data for Table S5 Entry 10	S39						
Figure S53: Raw GPC Data for Table S6 Entry 1	S39						
Figure S54: Raw GPC Data for Table S6 Entry 2	S40						
Figure S55: Raw GPC Data for Table S6 Entry 3	S40						
7 References	S41						

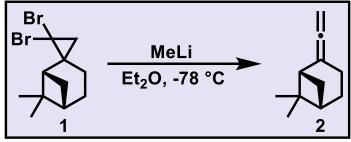

1 General Considerations

1.1 Materials and Methods

Unless otherwise noted, solvents were dried on an MBraun solvent purification system with 3Å molecular sieves and degassed with three freeze pump thaw cycles. All other reagents were obtained from commercial sources and used without further purification. Oxygen and water sensitive manipulations were performed in a nitrogen filled MBraun glovebox or using standard Schlenk techniques. All polymerizations were performed in a N₂ filled glovebox. ¹H and ¹³C NMR data were collected on a Varian 600 MHz NMR, Varian 500 MHz NMR, or Varian 300 MHz NMR spectrometer. Chemical shifts (δ) are reported in ppm using the residual solvent as reference. Thermogravimetric analysis (TGA) was performed on a TA Instruments TGA Q500 and Dynamic Mechanical Analysis (DMA) data was collected on a TA Instruments DMA Q800 with a powder clamp. Gel Permeation Chromatography (GPC) data was collected on an Omnisec Resolve and Omisec Reveal System using triple detection with detectors in series: UV, light scattering, viscometer, and refractive index and three Viscotek styrene divinylbenzene copolymer columns (in series T3000, T4000, and T5000) at a flow rate of 1 mL/min and thermostatted to 30 °C using either tetrahydrofuran (THF) or chloroform (CHCl₃) as the eluent. Molecular weight and dispersity data were determined using triple detection. Wide angle X-ray scattering (WAXS) of powder samples was performed on a Malvern Panalytical Empyrian X-ray diffractometer with a Cu anode and $k(\alpha)$ wavelength of 1.5406 Å.

2 Monomer Synthesis

2.1 Synthesis of 1^{1,2}

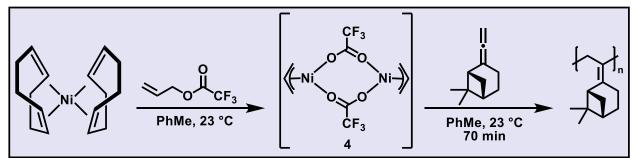


Scheme S1: Synthesis of 1

A 500 mL round bottom flask was charged with a Teflon stir bar, (1S)-(-)- β -pinene (8.71 g, 63.86 mmol), dichloromethane (DCM, 100 mL), bromoform (CHBr₃, 12.27 mL, 127.72 mmol), and cetyltrimethylammonium bromide (CTMA⁺ Br-, 465.5 mg, 1.28 mmol). The mixture was cooled to 0 °C, and KOH (50% w/w in water) was added dropwise (21.5 g, 383.16 mmol). The resulting mixture was left to stir for 16 h while warming to room temperature. The reaction mixture was then neutralized with 2 M HCl and diluted with water (75 mL). The organic phase was separated, and the aqueous phase was extracted with DCM (2 x 50 mL). The combined organic layers were washed with brine (2 x 100 mL), dried over sodium sulfate, and filtered. The solvent was removed under vacuum,

after which the crude product was dissolved in hexanes and filtered through a plug of silica gel. Subsequent solvent removal under vacuum afforded **1** as a colorless oil (18.35 g, 93% yield). ¹H NMR (300 MHz, CDCI₃): δ 2.51-2.36 (1H, m), 2.26 (1H, dt, J = 10 Hz, J = 6 Hz), 2.00-1.86 (4H, m), 1.58-1.48 (3H, m), 1.43-1.31 (1H, m), 1.24 (3H, s), 0.91 (3H, s). ¹³C NMR (75 MHz, CDCI₃): δ 50.13, 40.24, 40.08, 39.72, 26.88, 24.41, 26.06, 23.82, 21.78. Spectral data are shown in Figures S15 and S16.

2.2 Synthesis of 2



Scheme S2: Synthesis of 2

A 100 mL flame dried Schlenk flask was charged with a Teflon stir bar, **1** (6.16 g, 20.00 mmol), and diethyl ether (Et₂O, 40 mL) before cooling the solution to -78 °C (10 min isotherm). Methyllithium (1.6 M in Et₂O, 14.40 mL, 23.04 mmol) was then added dropwise, and the reaction was stirred at -78 °C for 45 min. The reaction mixture was then warmed to 0 °C and quenched with water (15 mL). The mixture was then warmed to room temperature and further diluted with water (10 mL). The organic phase was separated, and the aqueous layer was extracted with Et₂O (3 x 15 mL). The combined organic layers were washed with brine (2 x 20 mL), dried over sodium sulfate, filtered, and concentrated under vacuum. Vacuum distillation at 65 °C afforded **2** as a colorless oil (2.51 g, 84.7% yield). Spectral data were consistent with literature reports.^{1,2} **2** was further characterized by ¹³C, ¹H-¹H COSY, and ¹H-¹³C HSQC NMR spectroscopy (see section 3.1.1 for additional details). Spectral data are shown in Figures S17 – S20.

3 Polymerization Studies and Material Characterization

3.1 General Procedure for the Vinyl-Addition Polymerization of 2 Using 4

Scheme S3: Generation of 4 in situ and Synthesis of 3

In an N₂ filled glovebox, bis(1,5-cyclooctadiene)nickel(0) (10 mg, 0.036 mmol) was dissolved in toluene (1.38 mL). To this solution was added allyltrifluoroacetate (4.7 μ L, 0.036 mmol), which generated **4** *in situ*. This freshly prepared stock solution of **4** ([Ni] = 0.026 M) was subsequently used in polymerization studies. An aliquot of the catalyst stock solution was added to a solution of **2** in toluene (0.25 M). The amount of catalyst solution added was dictated by the desired [**2**]₀:[**Ni**]₀ ratios (Table S1). Polymerizations were conducted at 23 °C for 70 min unless otherwise noted in Table 1. Polymerizations were quenched by precipitation into methanol. The precipitated solids were filtered and then dried under vacuum. GPC data for the isolated polymers are reported in Figure S1. ¹H and ¹³C NMR spectra for the precipitated material were collected in CDCl₃ (Figures S21 and S22).

Entry	[2]0:[Ni]0	<i>М</i> л (Da) ^(a)	Target <i>M_n^(b)</i>	Đ ^(c)
1	34:1	7,504	5,040	1.37
2	86:1	18,920	12,750	1.19
3	169:1	26,420	25,050	1.13
4	337:1	52,030	49,960	1.23
5	503:1	66,270	74,570	1.23
6	688:1	99,580	102,000	1.31

Table S1: Selected Molecular Weight Data for 3.

(a) Determined by GPC. (b) Calculated using $[2]_0$: $[Ni]_0 \times 148.25$ (rounded values shown). (c) Calculated using M_W/M_n .

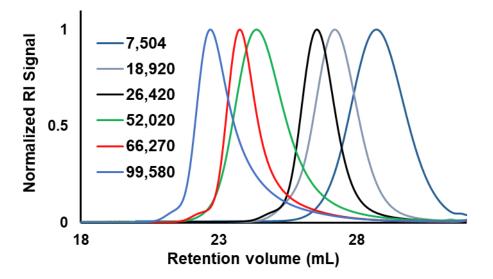


Figure S1: Selected GPC Data for 3.

3.1.1 Confirmation of Fused-Ring Structure of 3

The HSQC spectrum of **2** (Figure S19) shows the ¹H resonances at δ = 2.57 and 2.21 (each of which integrates to 1H) correlate to the same ¹³C resonance at δ = 19.60; therefore, these protons represent a methylene set. The ¹H resonances at δ = 2.34 and 1.51 (each of which integrates to 1H) correlate to the same ¹³C resonance at δ = 26.14; therefore, these protons represent another methylene set. Finally, the ¹H resonances at δ = 23.67; therefore, these protons represent another methylene set to the same ¹³C resonance at δ = 2.47 and 1.92 each integrate to 1H and correlate to separate ¹³C resonances (δ = 47.73 and 40.31, respectively); thus, these correspond to two methines. The COSY spectrum of **2** (Figure S20) shows a correlation between the methylene set at δ = 2.57 and 2.21 with the vinylic protons of the allene unit which can therefore be assigned as the methylene vicinal to the allene. The two methine protons were found to have correlations with the remaining two methylene sets, making the determination of the bridging methylene difficult. As such, the HSQC spectrum of **2** was found to be more diagnostic.

Due to significant broadening and overlap in the ¹H and ¹³C NMR spectra of **3** (M_n = 79,910 Da), COSY correlations were not as informative (Figure S23). However, the HSQC spectrum of **3** (Figure S24) clearly shows the retention of two methine protons (correlating to ¹³C resonances at δ = 46.39 and 40.73, respectively); these correlations and chemical shifts are not consistent with the presence of an endocyclic olefin. Three methylene sets are also observed in the HSQC spectrum of **3**.

$\begin{array}{c|c} & CI \\ & Pd \\ & P(i-Pr)_3 \\ & 5 \\ &$

3.2 Procedure for the Vinyl-Addition Polymerization of 2 Using 5

Scheme S4: Vinyl-Addition Polymerization of 2 Using 5

In an N₂ filled glovebox, (η^3 -allyl)Pd(*i*-Pr₃P)Cl (**5**; 0.8 mg, 0.0022 mmol) and LiBArF (1.5 mg, 0.0022 mmol) were taken up in toluene (0.2 mL) and allowed to stir for 15 min to generate **5'** *in situ* ([Pd] = 0.011 M). The solution of **5'** was then added to a solution of **2** (66 mg, 0.443 mmol). The reaction was allowed to stir at 23 °C for 70 min, at which time the solution was added to methanol to precipitate any polymeric material. GPC data for the isolated polymer is reported in Figure S2. ¹H NMR spectroscopic data for the precipitated material (collected in CDCl₃; Figure S25) was consistent with that observed for the material prepared using **4**.

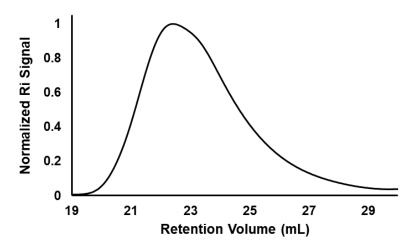
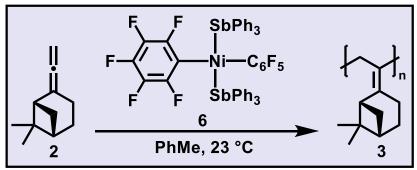



Figure S2: GPC Data for the Vinyl-Addition Polymerization of 2 Using 5'

Scheme S5: Vinyl-Addition Polymerization of 2 Using 6

In an N₂ filled glovebox, *trans*-[Ni(C6F5)₂(SbPh3)₂] (2.6 mg, 0.0024 mmol) was taken up in toluene (0.2 mL). The solution of **6** ([Ni] = 0.012 M) was then added to a solution of **2** (73 mg, 0.489 mmol). The reaction was allowed to stir at 23 °C for 70 minutes, at which point polymer product was recovered by precipitation in methanol. GPC data for the isolated polymer is reported in Figure S3. ¹H NMR spectroscopic data for the precipitated material (collected in CDCl₃; Figure S26) was consistent with that observed for the material prepared using **4**.

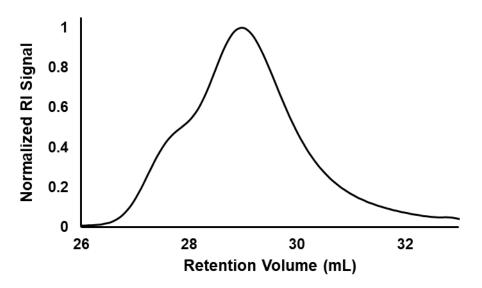


Figure S3: GPC Data for the Vinyl-Addition Polymerization of 2 Using 6

3.4 Initiator Screen for Other Polymerizations of 2

Polymerization of **2** was also attempted under uncontrolled radical (section 3.4.1), controlled radical (section 3.4.2), anionic (section 3.4.3), and cationic conditions (sections 3.4.4 and 3.4.5). All reactions were performed outside of the glovebox using standard Schlenk techniques.

3.4.1 General Procedure for the Uncontrolled Radical Polymerization of 2

A flame dried, septum capped 2-dram vial was charged with a Teflon stir bar, **2** (100 mg 0.675 mmol), THF (2.0 mL), and AIBN (0.17 mg, 0.001 mmol). The resulting solution was subjected to three freeze-pump-thaw cycles and allowed to warm to room temperature under an atmosphere of N₂. Polymerizations were attempted under a variety of temperatures and times (Table S2); however, no polymeric product was recovered upon addition of the reaction mixtures to methanol.

3.4.2 General Procedure for the Controlled Radical Polymerization of 2

A flame dried, septum capped 2-dram vial was charged with a Teflon stir bar wrapped in copper wire, **2** (100 mg, 0.675 mmol), DMSO (2.0 mL), ethyl α -bromoisobutyrate (0.20 mg, 0.001 mmol), and PMDETA (50 μ L, 7.19 mmol). The resulting solution was subjected to three freeze-pump-thaw cycles and allowed to warm to room temperature under an atmosphere of N₂. Polymerizations were attempted under a variety of temperatures and times (Table S2); however, no polymeric product was recovered upon addition of the reaction mixtures to methanol.

3.4.3 General Procedure for the Anionic Polymerization of 2

A flame dried 10 mL Schlenk flask was charged with a Teflon stir bar, **2** (150 mg, 1.01 mmol), and Et₂O (4 mL). The solution was cooled to 0 °C, and an alkyl lithium solution in Et₂O (0.0075 mmol lithiate; Table S2) was added. The reaction was then allowed to stir under an atmosphere on N₂ for 1 h. Polymerizations were attempted with a variety of alkyl lithiates under various temperatures (Table S2); however, no polymeric product was recovered upon addition of the reaction mixtures to methanol.

3.4.4 General Procedure for the Cationic Polymerization of 2

A flame dried, septum capped 2-dram vial was charged with a Teflon stir bar, 2 (150 mg, 1.01 mmol), and solvent (4 mL; see Table S2). In a separate flame dried, septum capped 2-dram vial, a 0.15 M stock solution of cationic initiator was prepared (Table S2). The solution of **2** was cooled to 0 °C, and the initiator solution was added via syringe. Reactions were carried out under an atmosphere of N₂ while warming from $0 \rightarrow 23$ °C over the course of 1 h. Polymeric product was recovered from methanol precipitation only in the case of polymerizations mediated by AlCl₃•OPh₂ (Table S2, entry 12; see section 3.4.5 for additional details).

3.4.5 Cationic Ring-Opening Polymerization of 2 with AICI₃•OPh₂

Scheme S6: Cationic Ring-Opening Polymerization of **2** with AICI₃•OPh2

The cationic ring-opening polymerization of **2** was performed according to a modification of the procedure developed by Kostjuk.³ A flame dried, septum capped 2-dram vial was charged with a Teflon stir bar and AlCl₃ (74 mg, 0.55 mmol). The AlCl₃ was suspended in DCM (3.7 mL), and diphenyl ether (87.5 µL, 0.55 mmol) was added dropwise. The mixture was stirred for 1 h to generate a 0.15 M solution of the AlCl₃•OPh₂ complex. In a separate vial, **2** (140 mg, 0.94 mmol) was taken up in DCM (0.25 M) and cooled to 0 °C. The AlCl₃•OPh₂ solution (50 µL, 0.075 mmol) was then added via syringe to the solution of **2**, and the mixture was allowed to stir from 0 °C \rightarrow 23 °C over a period of 1 h. The polymer product was recovered by precipitation in methanol (26.3 mg, 18.8% yield). GPC data for the isolated polymer is reported in Figure S4. ¹H NMR spectroscopic analysis of the precipitated material (collected in CDCl₃; Figure S27) revealed two sets of vinyl signals ($\delta = 5.61$ and $\delta = 6.56$), which was interpreted as evidence of ring-opening during the polymerization.

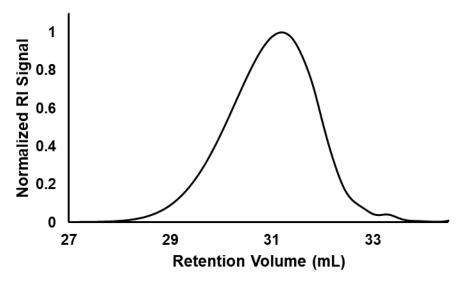
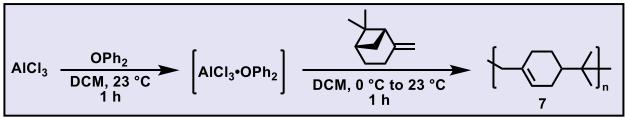



Figure S4: GPC Data for the Cationic Ring-Opening Polymerization of 2

Entry	Initiator	Solvent	[2] ₀ :[Initiator] ₀	Time (h)	Temperature (°C)	Yield (%)
1	AIBN	THF	650:1	16	80	0
2	AIBN	THF	650:1	24	80	0
3	AIBN	THF	650:1	16	90	0
4	Bromoisobutyrate (Cu/PMDETA)	DMSO	650:1	16	23	0
5	Bromoisobutyrate (Cu/PMDETA)	DMSO	650:1	16	50	0
6	MeLi	Et ₂ O	130:1	1	0	0
7	MeLi	Et ₂ O	130:1	1	23	0
8	n-BuLi	Et ₂ O	130:1	1	0	0
9	n-BuLi	Et ₂ O	130:1	1	23	0
10	BF ₃ OMe ₂	Et ₂ O	140:1	1	0 – 23	0
11	AICI ₃	DCM	12.5:1	1	0 – 23	0
12	AICI ₃ •OPh ₂	DCM	12.5:1	1	0 – 23	18.8

Table S2: Initiator Screen for the	Ring-opening Polymerization of 2
------------------------------------	---

3.5 Procedure for the Preparation of 7

Scheme S7: Preparation of 7

7 was prepared according to a modification of the procedure developed by Kostjuk.³ AlCl₃•OPh₂ was prepared according to the procedure described in section 3.4.5. In a separate flame dried Schlenk flask, (1*S*)-(-)- β -pinene (6.54 g, 36.7 mmol) was taken up in DCM/hexanes (21 mL:14 mL) and cooled to 0 °C. The AlCl₃•OPh₂ solution (0.75 mL, 0.11 mmol) was then added to via syringe, and the resulting mixture was allowed to stir at 0 °C for 2 min. After warming to room temperature, the solution was added to methanol to precipitate any polymeric material. Filtration of these solids afforded **7** as a white powder (1.08 g, 21.6% yield). GPC data for the isolated polymer is reported in Figure S5. ¹H and ¹³C NMR spectra of the precipitated material was consistent with literature values^{3–5} (Figures S28 and S29).

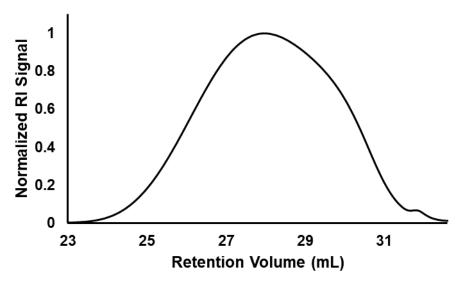


Figure S5: GPC Data for 7

3.6 Thermomechanical Data

TGA thermograms were collected using powder samples of **3** and **7** (10 °C/min heating rate). Powder samples of **3** and **7** were analyzed by DMA using a powder clamp attachment. Samples were heated at a rate of 2 °C/min at 1.00 Hz.

3.6.1 TGA and DMA Data for 3

Representative thermomechanical data for **3** (M_n = 7,504 Da) are shown in Figures S6 and S7. The TGA thermogram of a powdered sample revealed an initial decomposition onset temperature of 294 °C (Figure S6). Negligible mass loss was observed below this temperature. A powder sample of the same polymer exhibited a peak in Tan δ at 160 °C (Figure S7) when analyzed by DMA.

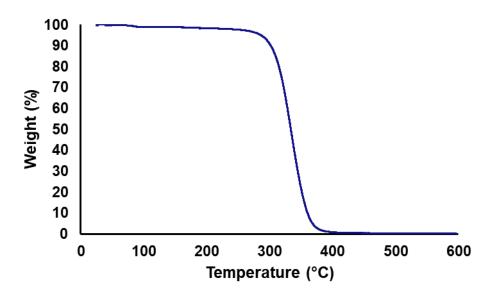


Figure S6: Representative TGA Thermogram of 3 (10 °C/min heating rate)

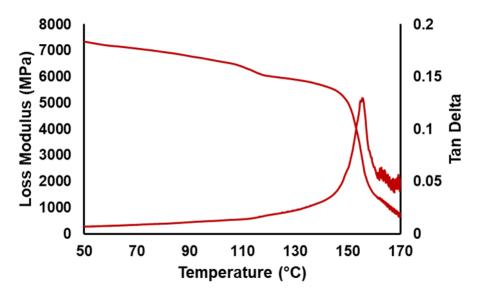


Figure S7: Representative Powder DMA of 3 (2 °C/min; 1.00 Hz)

3.6.2 TGA and DMA Data for 7

Representative thermomechanical data for **7** ($M_n = 5,812$ Da) are shown in Figures S8 and S9. The TGA thermogram of a powdered sample indicated an initial decomposition onset temperature of 303 °C (Figure S8). Negligible mass loss was observed below this temperature. A powder sample of the same polymer revealed a peak in Tan δ at 82 °C when analyzed by DMA (Figure S9).

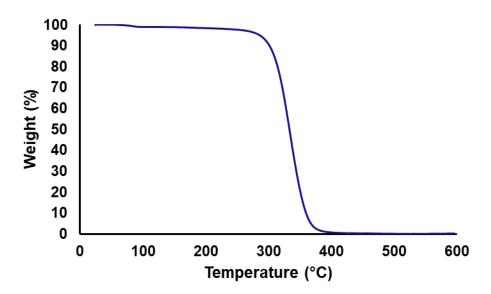
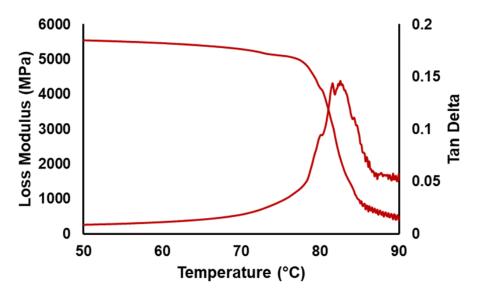
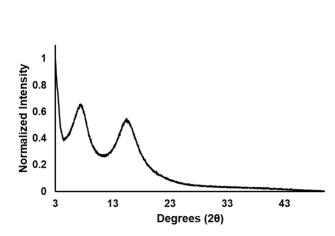


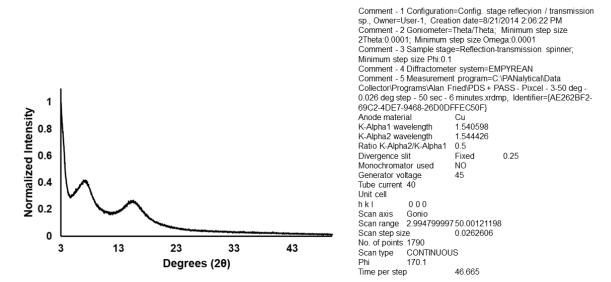
Figure S8: Representative TGA Thermogram of 7 (10 °C/min heating rate)



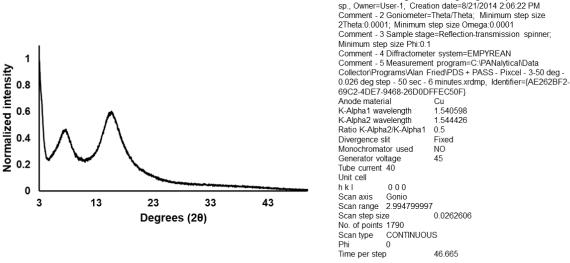

Figure S9: Representative Powder DMA of 7 (2 °C/min; 1.00 Hz)

3.6.3 WAXS Measurements of 3

WAXS was performed on low molecular weight ($M_n = 7,504$ Da) and high molecular weight ($M_n = 79,910$ Da) powder samples of **3**. WAXS was also performed on a powder sample of **7**, as well as annealed samples of **3** and **7**. WAXS measurements typically required 75 mg of polymer sample; comprehensive measurement parameters are given in Figures S10–12 and S13–14.


Freshly precipitated powder samples of **3** (both low and high molecular weight materials; Figures S10 and S11, respectively) displayed semi-crystalline peaks at $2\theta = 7.45^{\circ}$ and 15.52° (averaged from low and high molecular weight materials). A sample of **3** (M_n =

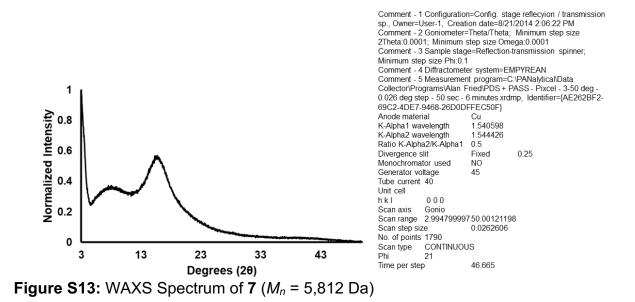
66,090 Da) was annealed for 1 h at 185 °C in a vacuum oven (Figure S12); WAXS analysis revealed similar semi-crystalline peaks at $2\theta = 7.71^{\circ}$ and 15.64°. The d-spacing values for all materials were calculated using Bragg's law. Crystallite sizes were calculated using the Scherrer equation (shape factor value of 0.9 and instrumental line broadening of 0.026°; results are summarized in Table S3). All calculations were performed following a baseline correction of the raw data file (second derivatives used as anchor points for baseline correction).



Comment - 1 Configuration=Config. stage reflecyion / transmission sp., Owner=User-1, Creation date=8/21/2014 2:06:22 PM Comment - 2 Goniometer=Theta/Theta; Minimum step size 2Theta:0.0001; Minimum step size Omega:0.0001 Comment - 3 Sample stage=Reflection-transmission spinner; Minimum step size Phi:0.1 Comment - 4 Diffractometer system=EMPYREAN Comment - 5 Measurement program=C:IPANalytical\Data Collector\Programs\Alan Fried\PDS + PASS - Pixcel - 3-50 deg 0.026 deg step - 50 sec - 6 minutes.xrdmp, Identifier={AE262BF2-69C2-4DE7-9468-26D0DFFEC50F} Anode material 1.540598 K-Alpha1 wavelength K-Alpha2 wavelength 1.544426 Ratio K-Alpha2/K-Alpha1 0.5 Divergence slit Fixed 0.25 Monochromator used NO Generator voltage 45 Tube current 40 Unit cell hkl 000 Scan axis Gonio Scan range 2.99479999750.00121198 Scan step size 0.0262606 No. of points 1790 CONTINUOUS Scan type Phi 304 Time per step 46.665

Figure S10: WAXS Spectrum of Low Molecular Weight (M_n = 7,504 Da) 3

Comment - 1 Configuration=Config. stage reflecyion / transmission


Figure S12: WAXS spectrum of Annealed 3 (M_n = 66,090 Da)

	Low angle peak		High angle peak			
	Angle d-spacing Crystallite		Angle	d-spacing	Crystallite	
	(20)	(nm)	(Å)	(20)	(nm)	(Å)
3 (7.5 kDa)	7.45	11.86	32.4	15.48	5.72	22.6
3 (79.9 kDa)	7.45	11.85	33.4	15.57	5.69	21.7
Annealed 3	7.71	11.46	34.3	15.64	5.66	23.0

Table S3: WAXS Data for 3

3.6.4 WAXS Measurements of 7

WAXS analysis of a powder sample of **7** ($M_n = 5,812$ Da; Figure S13) displayed an amorphous peak at $2\theta = 7.52^{\circ}$ and a semi-crystalline peak at 15.74° . A separate sample of **7** ($M_n = 6,151$ Da) was annealed for 1 h at 105 °C in a vacuum oven (Figure S14); WAXS analysis revealed an amorphous peak at $2\theta = 6.34^{\circ}$ and a semi-crystalline peak at 15.85° . The d-spacing values for all materials were calculated using Bragg's law. Crystallite sizes were calculated using the Scherrer equation (shape factor value of 0.9 and instrumental line broadening of 0.026° ; results are summarized in Table S4). All calculations were performed following a baseline correction of the raw data file (second derivatives used as anchor points for baseline correction)

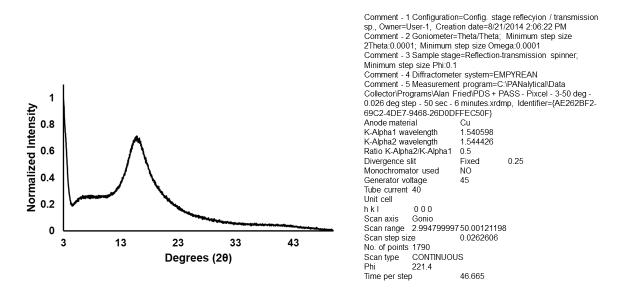


Figure S14: WAXS Spectrum of Annealed 7 (M_n = 6,151 Da)

Table S4: WAXS Data for 7

	Low angle peak				High angle p	beak
	Angle d-spacing Crystallite		Angle	d-spacing	Crystallite	
	(20)	(nm)	(Å)	(2θ)	(nm)	(Å)
7 (5.81 kDa)	7.52	11.74	21.4	15.74	5.62	23.6
Annealed 7	6.34	13.92	n/a	15.85	5.59	20.5

4 Determination of Living Character for the Polymerization of 2 Using 4

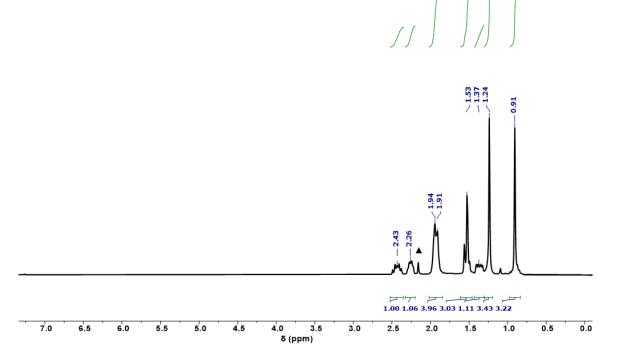
4.1 Molecular Weight as a Function of Monomer Conversion

In an N₂ filled glovebox, a stock solution of **4** was prepared according to the procedure outlined in section 3.1 ([Ni] = 0.026 M). In a separate vial, **2** (200 mg, 1.35 mmol) and mesitylene (as an internal standard; 188 μ L, 1.35 mmol) were taken up in toluene-d8 (4.05 mL). A 0.26 mL (0.007 mmol in Ni) aliquot of the stock solution of **4** was added, and the reaction was allowed to stir at 23 °C. Aliquots (0.15 mL) of the reaction mixture were removed every 5 minutes, quenched by exposure to air, and analyzed using ¹H NMR spectroscopy. The aliquots were then concentrated to dryness and analyzed by GPC to determine the number average molecular weight (M_n) of any polymeric species (Table S5). The calculated M_n data were plotted as a function of monomer conversion, which revealed a linear correlation (Figure 2A).

Entry	Reaction Time (min)	Conversion (%)	<i>M_n</i> (Da)	Ð
1	0	0	-	-
2	5	36	8,734	1.27
3	10	42	13,110	1.20
4	15	49	15,150	1.20
5	20	58	16,160	1.21
6	25	64	17,260	1.23
7	30	72	20,060	1.20
8	35	76	20,690	1.20
9	40	80	22,120	1.22
10	45	86	23,170	1.20

Table S5: Living Plot Molecular Weight and Conversion Data

4.2 Chain Extension Experiment


In an N₂ filled glovebox, a stock solution of **4** was prepared according to the procedure in section 3.1([Ni] = 0.026 M). In a separate vial, **2** (150 mg, 1.01 mmol) and mesitylene (as an internal standard; 140.5 μ L; 1.01 mmol) were taken up in toluene (7.0 mL). To the solution of **2**, a 0.385 mL aliquot of the stock solution of **4** was added (0.01 mmol Ni), and

the reaction was allowed to stir at 23 °C. After 70 min, a 0.2 mL aliquot of the reaction mixture was removed to confirm complete consumption of **2** by ¹H NMR spectroscopy. At this point, a 150 mg (1.01 mmol) portion of **2** in 0.2 mL of toluene was added to the polymerization mixture and allowed to stir. Another 0.2 mL aliquot was taken after 70 min, and ¹H NMR spectroscopic analysis revealed complete consumption of **2**. Finally, a second 150 mg (1.01 mmol) portion of **2** in 0.2 mL of toluene was added to the polymerization mixture and allowed to stir. Another 0.2 mL aliquot was taken after 70 min, and ¹H NMR spectroscopic analysis revealed complete consumption of **2**. Finally, a second 150 mg (1.01 mmol) portion of **2** in 0.2 mL of toluene was added to the polymerization mixture and allowed to stir. Another 0.2 mL aliquot was taken after 70 min, and ¹H NMR spectroscopic analysis revealed complete consumption of **2**. All NMR aliquots were concentrated under vacuum and analyzed by GPC to determine the number average molecular weight (M_n) of any polymeric species (Table S6). Note: we calculated mmol Ni removed in each aliquot and iteratively subtracted this from the original total (0.01 mmol Ni). For each extension, we used this calculated mmol Ni, the measured M_n from the previous extension, and the amount of added monomer to determine target M_n . The observed data were consistent with successful chain extension (Figure 2B).

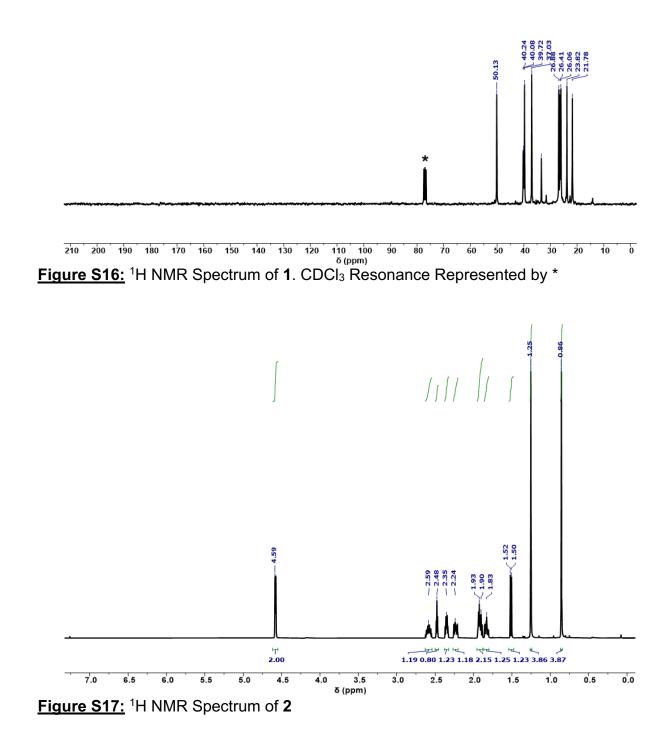

Entry	Extensions	<i>M_n</i> (Da)	Target <i>M_n</i> (Da)	Ð
1	0	28,530	14,973	1.30
2	1	45,420	43,920	1.30
3	2	59,590	61,238	1.36

Table S6: Molecular Weight Data for Chain Extension of 3

5 NMR Spectroscopic Data

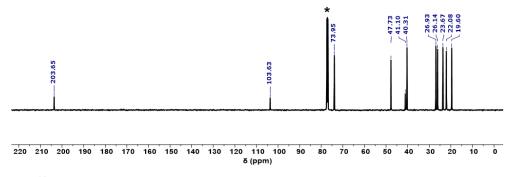
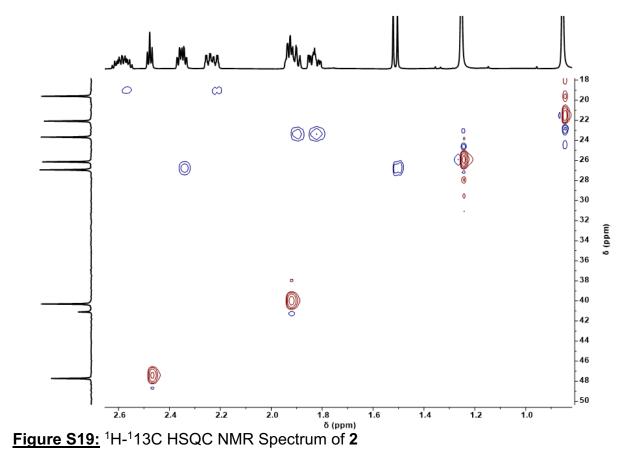
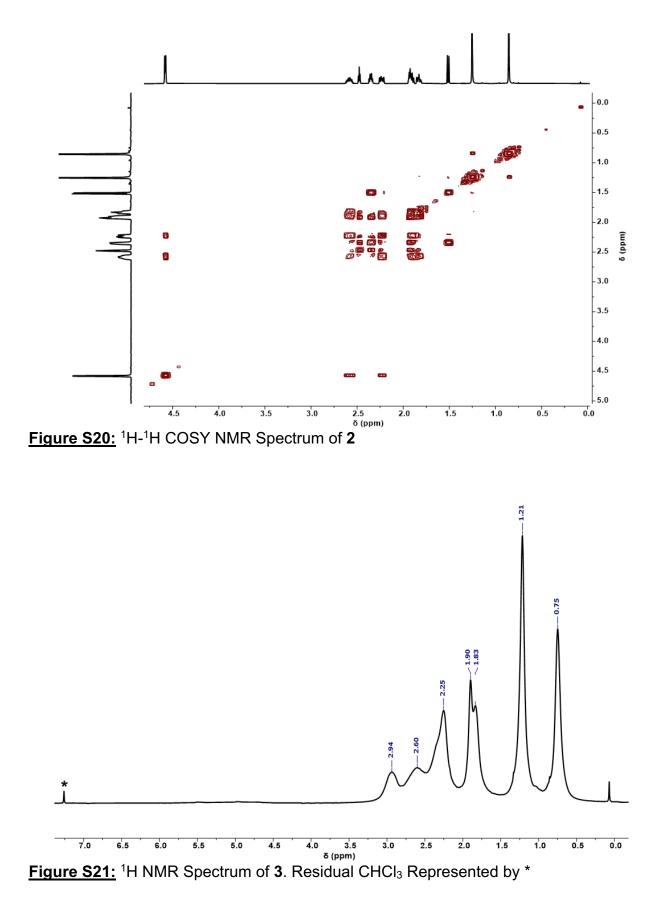




Figure S18: ¹³C NMR Spectrum of 2. CDCl₃ Resonance Represented by *

S23

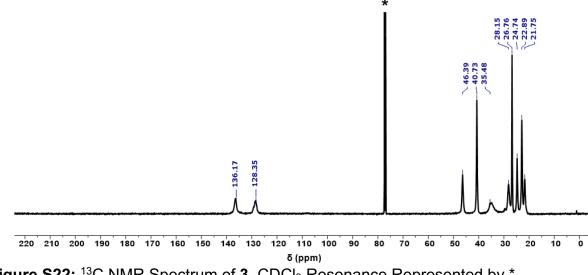
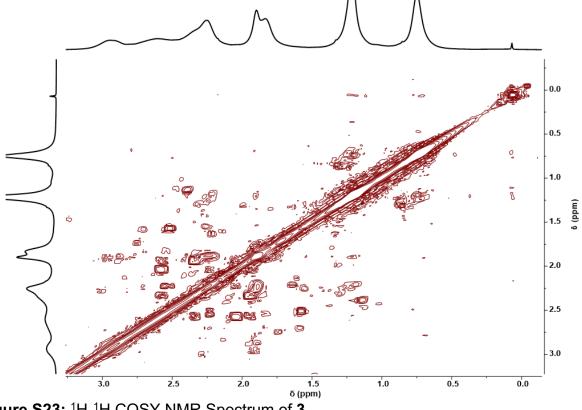
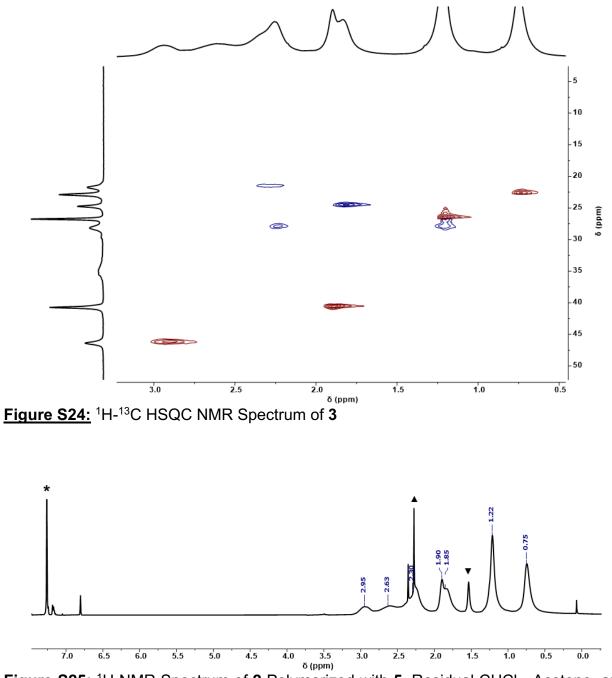
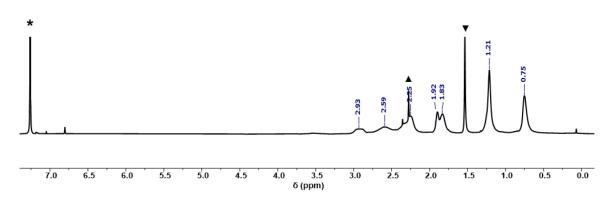
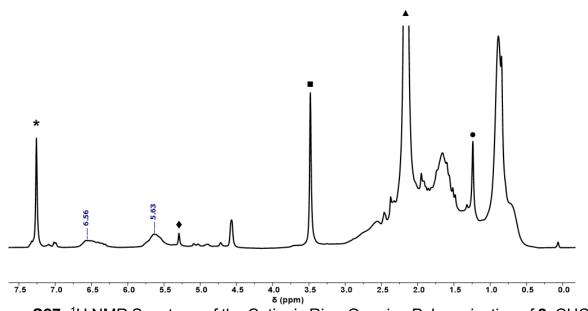
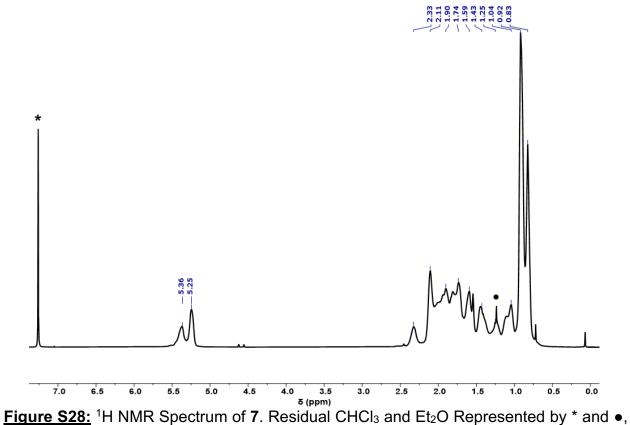
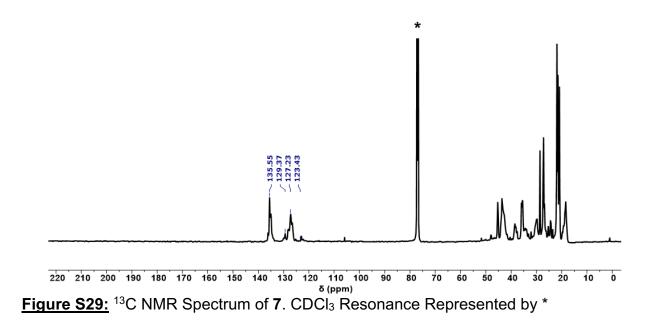


Figure S22: ¹³C NMR Spectrum of 3. CDCl₃ Resonance Represented by *


Figure S23: ¹H-¹H COSY NMR Spectrum of 3


Figure S25: ¹H NMR Spectrum of **2** Polymerized with **5**. Residual CHCl₃, Acetone, and Water Represented by *, \blacktriangle , and \blacktriangledown Respectively


Figure S26: 1H NMR Spectrum of **2** Polymerized with **6**. Residual CHCl₃, Acetone, and Water Represented by *, ▲, and ▼ Respectively

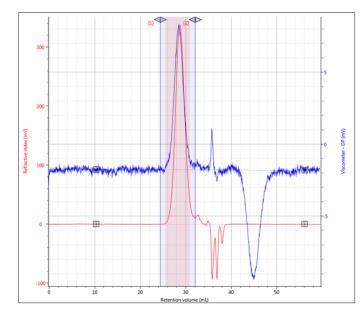
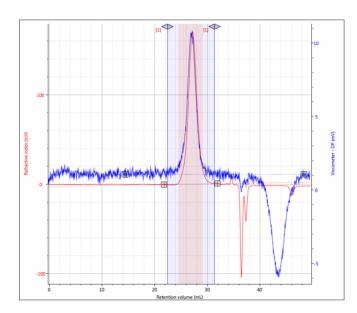

Figure S27: ¹H NMR Spectrum of the Cationic Ring-Opening Polymerization of **2**. CHCl₃, DCM, Methanol, Acetone, and Et₂O represented by *, \blacklozenge , \blacksquare , \blacktriangle , and \blacklozenge , respectively

Figure 528: "HINNE Spectrum of 7. Residual CHCI₃ and Et_2O Represented by " and \bullet_1 Respectively



6 Raw GPC Data

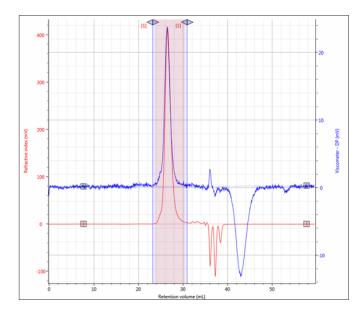

7,504	
10,290	
13,420	
0.05437	
2.021	
N/C	
) -3.034	
.)830.6	
∙mL)	26.55
·mL)	19.13
L)	24.3
∕∙mL)	N/C
0.1431	
N/C	
	10,290 13,420 0.05437 2.021 N/C) -3.034 .) 830.6 ·mL) ·mL) L) 7.mL) 0.1431

Figure S30: Raw GPC Data for Table S1 Entry 1

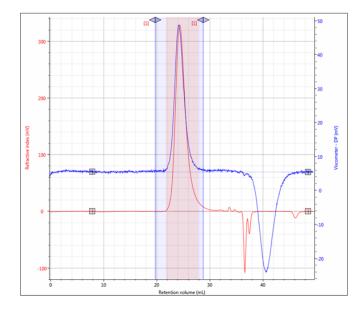

RV (mL) 27.22		
Mn (g/mol)	18,920	
Mw (g/mol)	22,540	
Mz (g/mol)	45,450	
Mw/Mn 1.192		
lVw (dL/g)	0.06982	
Rh(η)w (nm)	2.843	
Rgw (nm)	N/C	
M-Ha 0.686		
M-H log K (dL/g	g) -4.13	
RI peak (mV·ml	_) 340.2	
RALS peak (mV	∕∙mL)	17.72
LALS peak (mV	∕∙mL)	14
DP peak (mV·m	L)	20.51
MALS peak (m)	/·mL)	N/C
Calc. dn/dc	0.1137	
Recovery (%)	N/C	

Figure S31: Raw GPC Data for Table S1 Entry 2

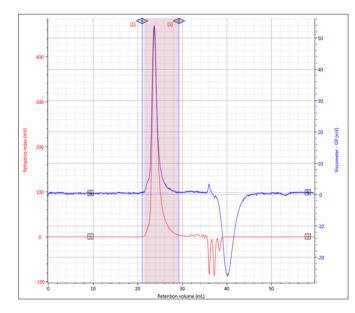

RV (mL) 26.56		
Mn (g/mol)	26,420	
Mw (g/mol)	29,720	
Mz (g/mol)	33,750	
Mw/Mn 1.125		
lVw (dL/g)	0.1055	
Rh(η)w (nm)	3.625	
Rgw (nm)	N/C	
М-На 0.652		
M-H log K (dL/g) -3.888	
RI peak (mV·mL) 674.6	
RALS peak (mV	·mL)	62.56
LALS peak (mV	·mL)	45.57
DP peak (mV·ml	L)	37.58
MALS peak (mV	·mL)	N/C
Calc. dn/dc	0.1437	
Recovery (%)	N/C	

Figure S32: Raw GPC Data for Table S1 Entry 3

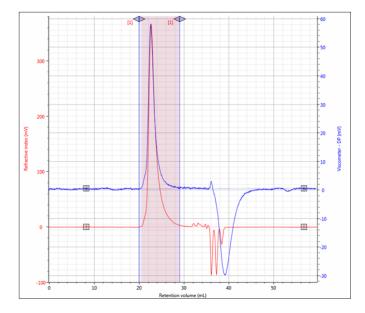

RV (mL) 24.37		
Mn (g/mol)	52,030	
Mw (g/mol)	64,050	
Mz (g/mol)	78,070	
Mw/Mn 1.231		
lVw (dL/g)	0.1352	
Rh(η)w (nm)	5.069	
Rgw (nm)	N/C	
M-Ha 0.6352		
M-H log K (dL/g	g) -3.912	
RI peak (mV·ml	L)767.6	
RALS peak (m\	∕∙mL)	112.2
LALS peak (mV·mL)		86.02
DP peak (mV·mL)		95.43
MALS peak (m)	V·mL)	N/C
Calc. dn/dc	0.1152	
Recovery (%)	N/C	

Figure S33: Raw GPC Data for Table S1 Entry 4

RV (mL) 23.77		
Mn (g/mol)	66,270	
Mw (g/mol)	81,440	
Mz (g/mol)	95,160	
Mw/Mn 1.229		
lVw (dL/g)	0.2254	
Rh(η)w (nm)	6.526	
Rgw (nm)	N/C	
М-На 0.5149		
M-H log K (dL/g) -3.17	
RI peak (mV·mL	.)743.2	
RALS peak (mV	′∙mL)	208.1
LALS peak (mV	·mL)	152.8
DP peak (mV·m	L)	80.24
MALS peak (mV	/·mL)	N/C
Calc. dn/dc	0.1583	
Recovery (%)	N/C	

Figure S34: Raw GPC Data for Table S1 Entry 5

RV (mL) 22.7		
Mn (g/mol)	99,580	
Mw (g/mol)	130,200	
Mz (g/mol)	158,300	
Mw/Mn 1.308		
IVw (dL/g)	0.2885	
Rh(η)w (nm)	8.252	
Rgw (nm)	N/C	
М-На 0.5731		
M-H log K (dL/g)	-3.465	
RI peak (mV·mL)	695.3	
RALS peak (mV·	mL)	307.8
LALS peak (mV·I	mL)	227.1
DP peak (mV·mL	.)	97.68
MALS peak (mV·	mL)	N/C
Calc. dn/dc	0.1566	
Recovery (%)	N/C	

Figure S35: Raw GPC Data for Table S1 Entry 6

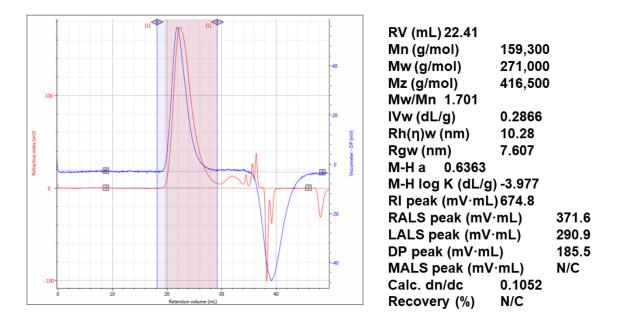


Figure S36: Raw GPC Data for the Vinyl-Addition Polymerization of 2 With 5

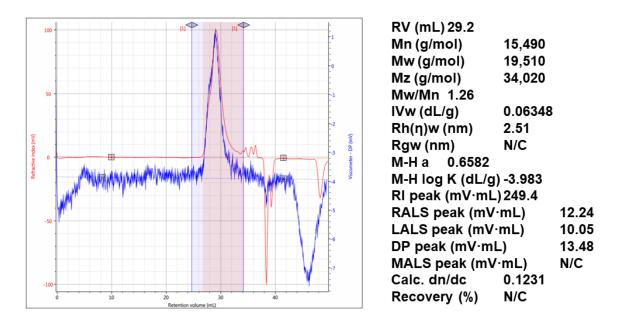
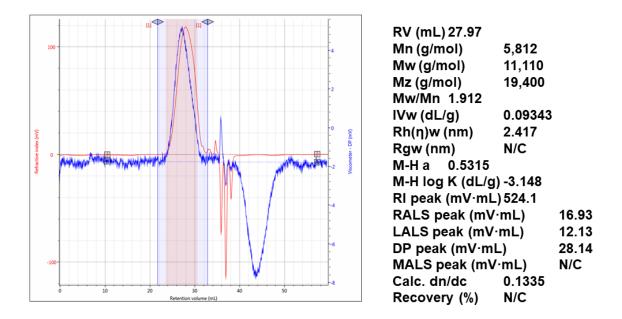



Figure S37: Raw GPC Data for the Vinyl-Addition Polymerization of 2 With 6

Figure S38: Raw GPC Data for the Cationic Ring-Opening Polymerization of (1S)-(-)- β -pinene

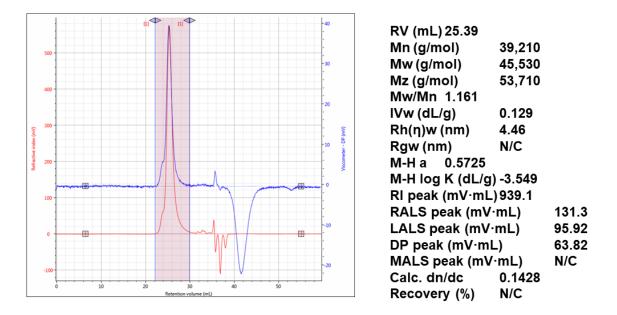
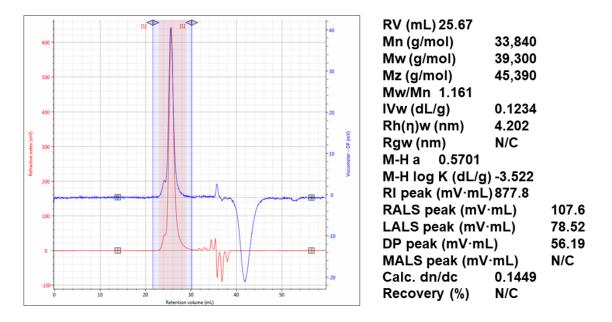



Figure S39: Raw GPC Data for the Polymerization of 2 With 4 in Toluene (for Solvent Screen)

Figure S40: Raw GPC Data for the Polymerization of 2 With 4 in Toluene at 35 °C (for Solvent Screen)

Figure S41: Raw GPC Data for the Polymerization of **2** With **4** in Et₂O (for Solvent Screen)

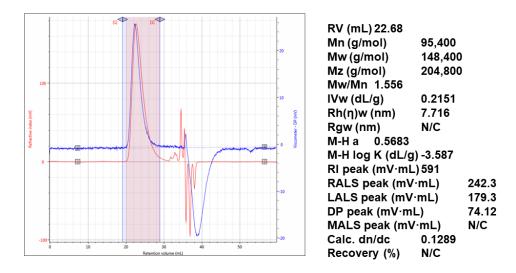


Figure S42: Raw GPC Data for the Polymerization of 2 With 4 in THF (for Solvent Screen)

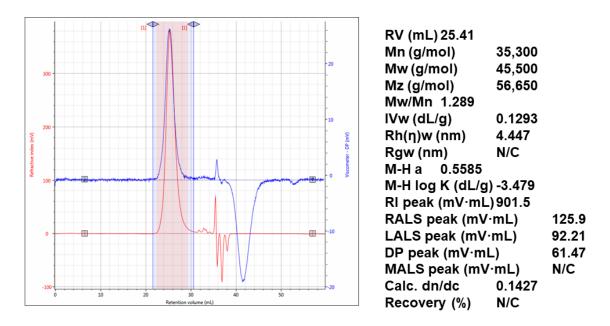
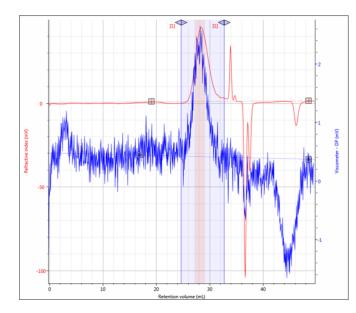
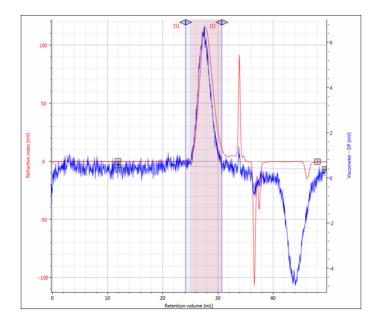




Figure S43: Raw GPC Data for the Polymerization of 2 With 4 in DCM (for Solvent Screen)

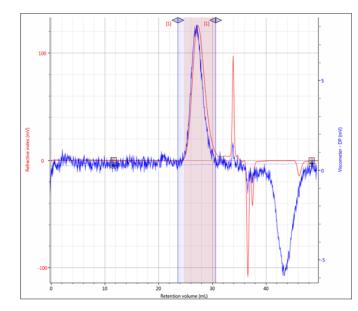

RV (mL) 28.45		
Mn (g/mol)	8,734	
Mw (g/mol)	11,090	
Mz (g/mol)	14,260	
Mw/Mn 1.27		
lVw (dL/g)	0.06282	
Rh(η)w (nm)	2.097	
Rgw (nm)	N/C	
М-На -1.337		
M-H log K (dL/g)	4.078	
RI peak (mV·mL)	127.3	
RALS peak (mV·	mL)	5.028
LALS peak (mV·	mL)	4.288
DP peak (mV⋅mL	.)	5.605
MALS peak (mV·	mL)	N/C
Calc. dn/dc	0.1372	
Recovery (%)	N/C	

Figure S44: Raw GPC Data for Table S5 Entry 2


RV (mL) 27.79		
Mn (g/mol)	13,110	
Mw (g/mol)	15,750	
Mz (g/mol)	22,370	
Mw/Mn 1.202		
lVw (dL/g)	0.06212	
Rh(η)w (nm)	2.414	
Rgw (nm)	N/C	
М-На 0.9581		
M-H log K (dL/g) -5.167	
RI peak (mV·mL) 327.9	
RALS peak (mV	·mL)	13.7
LALS peak (mV·	mL)	10.9
DP peak (mV·ml	_)	16.1
MALS peak (mV	·mL)	N/C
Calc. dn/dc	0.134	
Recovery (%)	N/C	

Figure S45: Raw GPC Data for Table S5 Entry 3

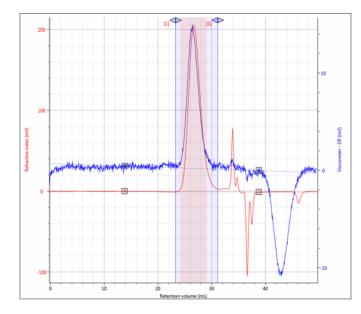

RV (mL) 27.34		
Mn (g/mol)	15,150	
Mw (g/mol)	18,140	
Mz (g/mol)	25,200	
Mw/Mn 1.197		
lVw (dL/g)	0.0737	
Rh(η)w (nm)	2.691	
Rgw (nm)	N/C	
М-На 0.7635		
M-H log K (dL/g)) -4.386	
RI peak (mV·mL) 348.5	
RALS peak (mV	·mL)	16.87
LALS peak (mV·	mL)	13.01
DP peak (mV·ml	_)	20.32
MALS peak (mV	·mL)	N/C
Calc. dn/dc	0.1333	
Recovery (%)	N/C	

Figure S46: Raw GPC Data for Table S5 Entry 4

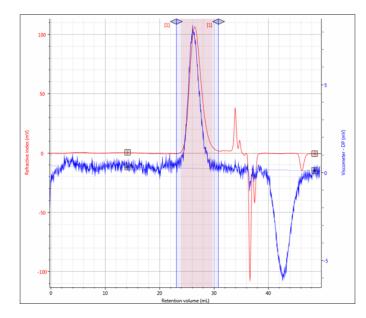

RV (mL) 26.99		
	16 160	
Mn (g/mol)	16,160	
Mw (g/mol)	19,540	
Mz (g/mol)	25,210	
Mw/Mn 1.209		
lVw (dL/g)	0.0854	
Rh(η)w (nm)	2.892	
Rgw (nm)	N/C	
М-На 0.6796		
M-H log K (dL/g) -3.973	
RI peak (mV·mL	.) 205	
RALS peak (mV	′·mL)	10.81
LALS peak (mV·mL)		8.287
DP peak (mV·mL)		14.25
MALS peak (mV	/∙mL)	N/C
Calc. dn/dc	0.135	
Recovery (%)	N/C	

Figure S47: Raw GPC Data for Table S5 Entry 5

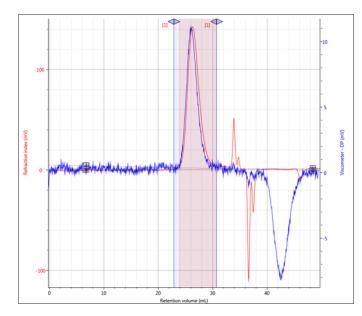

RV (mL) 26.72		
Mn (g/mol)	17,260	
Mw (g/mol)	21,240	
Mz (g/mol)	27,560	
Mw/Mn 1.231		
lVw (dL/g)	0.08682	
Rh(η)w (nm)	3.016	
Rgw (nm)	N/C	
М-На 0.7006		
M-H log K (dL/g)	-4.08	
RI peak (mV·mL)	544.6	
RALS peak (mV·	mL)	31.97
LALS peak (mV·	mL)	25.07
DP peak (mV·mL	.)	36.88
MALS peak (mV·	mL)	N/C
Calc. dn/dc	0.1373	
Recovery (%)	N/C	

Figure S48: Raw GPC Data for Table S5 Entry 6

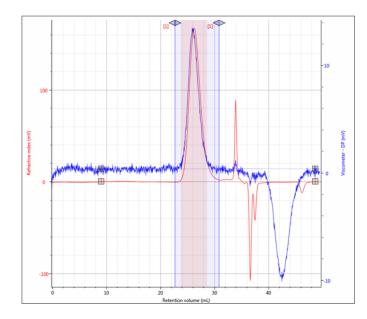

RV (mL) 26.49		
Mn (g/mol)	20,060	
Mw (g/mol)	24,060	
Mz (g/mol)	30,490	
Mw/Mn 1.199		
lVw (dL/g)	0.08775	
Rh(η)w (nm)	3.14	
Rgw (nm)	N/C	
M-Ha 0.6954		
M-H log K (dL/g) -4.093	
RI peak (mV⋅mL	.)274.1	
RALS peak (mV	·mL)	17.41
LALS peak (mV	·mL)	13.56
DP peak (mV·m	L)	19.43
MALS peak (mV	∕∙mL)	N/C
Calc. dn/dc	0.1326	
Recovery (%)	N/C	

Figure S49: Raw GPC Data for Table S5 Entry 7

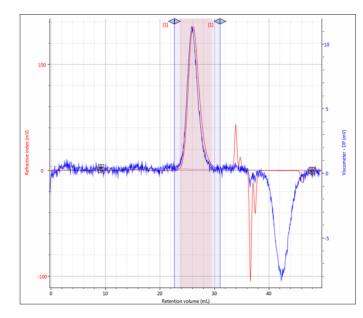

RV (mL) 26.36		
Mn (g/mol)	20,690	
Mw (g/mol)	24,760	
Mz (g/mol)	31,150	
Mw/Mn 1.197		
lVw (dL/g)	0.09111	
Rh(η)w (nm)	3.213	
Rgw (nm)	N/C	
М-На 0.7518		
M-H log K (dL/g)	-4.331	
RI peak (mV·mL)	359.4	
RALS peak (mV·	mL)	24.22
LALS peak (mV·	mL)	18.75
DP peak (mV⋅mL	.)	25.15
MALS peak (mV	mL)	N/C
Calc. dn/dc	0.1374	
Recovery (%)	N/C	

Figure S50: Raw GPC Data for Table S5 Entry 8

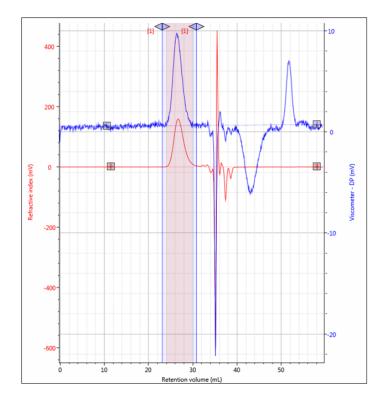

RV (mL) 26.26			
Mn (g/mol)	22,120		
Mw (g/mol)	26,870		
Mz (g/mol)	35,200		
Mw/Mn 1.215			
lVw (dL/g)	0.0912		
Rh(η)w (nm)	3.317		
Rgw (nm)	N/C		
M-Ha 0.9472			
M-H log K (dL/g) -5.247			
RI peak (mV⋅mL)416.9			
RALS peak (mV⋅mL)		29.62	
LALS peak (mV·mL)		23.16	
DP peak (mV·mL)		29.91	
MALS peak (mV⋅mL)		N/C	
Calc. dn/dc	0.1318		
Recovery (%)	N/C		

Figure S51: Raw GPC Data for Table S5 Entry 9

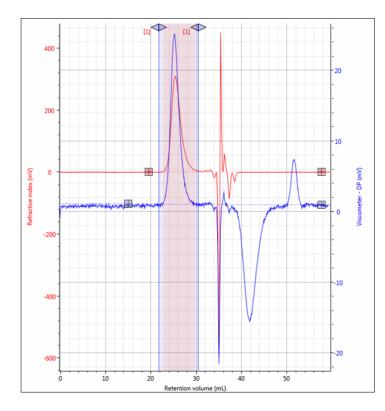

RV (mL) 26.14				
Mn (g/mol)	23,170			
Mw (g/mol)	27,780			
Mz (g/mol)	34,740			
Mw/Mn 1.199				
lVw (dL/g)	0.09502			
Rh(η)w (nm)	3.392			
Rgw (nm)	N/C			
М-На 0.7161				
M-H log K (dL/g) -4.186				
RI peak (mV⋅mL) 333.9				
RALS peak (mV·	mL)	24.34		
LALS peak (mV⋅mL)		18.76		
DP peak (mV⋅mL)		25.47		
MALS peak (mV·	mL)	N/C		
Calc. dn/dc	0.1319			
Recovery (%)	N/C			

Figure S52: Raw GPC Data for Table S5 Entry 10

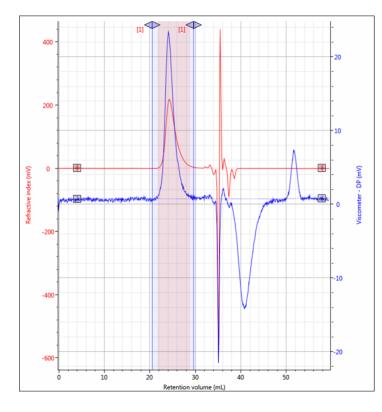

RV (mL) 26.71			
Mn (g/mol)	28,530		
Mw (g/mol)	37,210		
Mz (g/mol)	46,590		
Mw/Mn 1.304			
lVw (dL/g)	0.07822		
Rh(η)w (nm)	3.512		
Rgw (nm)	N/C		
M-Ha 0.6233			
M-H log K (dL/g) -3.952			
RI peak (mV⋅mL) 418.9			
RALS peak (m\	/∙mL)	37.76	
LALS peak (mV·mL)		27.6	
DP peak (mV·mL)		22.14	
MALS peak (mV·mL) N		N/C	
Calc. dn/dc	0.1115		
Recovery (%)	N/C		

Figure S53: Raw GPC Data for Table S6 Entry 1

RV (mL) 25.39			
Mn (g/mol)	45,420		
Mw (g/mol)	58,940		
Mz (g/mol)	72,720		
Mw/Mn 1.298			
lVw (dL/g)	0.1085		
Rh(η)w (nm)	4.573		
Rgw (nm)	N/C		
M-Ha 0.6183			
M-H log K (dL/g) -3.905			
RI peak (mV·mL) 764.9			
RALS peak (mV·mL)		113.9	
LALS peak (mV·mL)		83.22	
DP peak (mV·mL)		54.47	
MALS peak (mV·mL)		N/C	
Calc. dn/dc	0.1164		
Recovery (%)	N/C		

Figure S54: Raw GPC Data for Table S6 Entry 2

RV (mL) 24.32			
Mn (g/mol)	59,590		
Mw (g/mol)	81,240		
Mz (g/mol)	103,700		
Mw/Mn 1.363	,		
IVw (dL/g)	0.1539		
Rh(ŋ)w (nm)	5.699		
Rgw (nm)	N/C		
M-H a 0.5577			
M-H log K (dL/g) -3.536			
RI peak (mV·mL) 566.8			
RALS peak (mV·mL) 128.9			
LALS peak (mV·mL)		94.43	
DP peak (mV·mL)		52.16	
MALS peak (mV·mL)		N/C	
Calc. dn/dc	0.1289		
Recovery (%)	N/C		

Figure S55: Raw GPC Data for Table S6 Entry 3

7 <u>References</u>

- (1) Mühlstädt, M.; Thanh, L. Q.; Graefe, J. *Tetrahedron* **1972**, *28*, 4389–4393.
- Nizovtsev, A. V; Baird, M. S.; Bolesov, I. G. *Tetrahedron* 2004, 60 (16), 3717–3729.
- (3) Kukhta, N. A.; Vasilenko, I. V; Kostjuk, S. V. Green Chem. 2011, 13 (9), 2362–2364.
- (4) Satoh, K.; Nakahara, A.; Mukunoki, K.; Sugiyama, H.; Saito, H.; Kamigaito, M. *Polym. Chem.* **2014**, *5*, 3222–3230.
- (5) Yu, P.; Li, A.-L.; Liang, H.; Lu, J. J. Polym. Sci. Part A Polym. Chem. 2007, 45, 3739–3746.