Supporting Information

Spinel Zinc Cobalt Oxide (ZnCo₂O₄) Porous Nanorods as a Cathode Material for Highly Durable Li–CO₂ Batteries

Subashchandrabose Thoka,[†] Chih-Jung Chen,[⊥] Anirudha Jena,^{⊥,‡} Fu-Ming Wang^{¶,∇,O,}◆, Xing-Chun Wang[¶], Ho Chang,^{*,‡} Shu-Fen Hu,^{*,†} and Ru-Shi Liu^{*,⊥,‡}

[†]Department of Physics, National Taiwan Normal University, Taipei 116, Taiwan

¹Department of Chemistry, National Taiwan University, Taipei 106, Taiwan

[‡]Department of Mechanical Engineering and Graduate Institute of Manufacturing Technology, National Taipei University of Technology, Taipei 106, Taiwan

[¶] Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan

⁷ Sustainable Energy Center, National Taiwan University of Science and Technology, Taipei 10607, Taiwan

^o Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan

* R&D Center for Membrane Technology, Chung Yuan Christian University, Taoyuan 32023, Taiwan

AUTHOR INFORMATION

*Corresponding authors

E-mails: rsliu@ntu.edu.tw (R. S. Liu)

sfhu.hu@gmail.com (S. F. Hu)

f10381@ntut.edu.tw (H. Chang)

Figure S1. Full-range X-ray photoelectron spectrum of ZnCo₂O₄.

Figure S2. X-ray diffraction pattern of the porous Co₃O₄ nanorods.

Figure S3. (a) Low- and (b) high-resolution scanning electron micrographs of the as-synthesized porous Co_3O_4 nanorods.

Cathode	Solution resistance Rs/ Ohm	Charge transfer resistance Rct/ Ohm
ZnCo ₂ O ₄ @CNT	10.22	2413
Co ₃ O ₄ @CNT	12.35	2904

Table S1. Solution and charge transfer resistance values obtained from the Nyquist plot fittingcurves of $ZnCo_2O_4$ @CNT and Co_3O_4 @CNT.

Figure S4. X-ray diffraction patterns and corresponding SEM images of $ZnCo_2O_4@CNT$ cathode at (a1, a2) 100 mA g⁻¹ and (b1, b2) 200 mA g⁻¹.after the end of battery cycles test. c1, c2) X-ray diffraction pattern and corresponding SEM image of $Co_3O_4@CNT$ cathode at 100 mA g⁻¹.after the end of the battery cycles test.

Figure S5. X-ray diffraction patterns of the Li anodes while using $ZnCo_2O_4@CNT$ and $Co_3O_4@CNT$ cathodes after the battery cycle test.

Figure S6. Cross-sectional scanning electron micrograph of the Li anode after the end of the cycle test by utilizing $ZnCo_2O_4$ @CNT as the cathode in a Li–CO₂ battery at a current density of 100 mA g⁻¹.

Figure S7. Specially designed gas bottle used for the battery cycle test.

Figure S8. N_2 adsorption–desorption isotherms of $ZnCo_2O_4$ nanorods. The inset represents the pore size distribution of the $ZnCo_2O_4$ nanorods.

Figure S9. Photograph of the homemade cell for *in-situ* GC-MS characterization of the charging process of $ZnCo_2O_4@CNT$ cathode based Li–CO₂ cell.