Supporting Information

Production of squalene in *Bacillus subtilis* by squalene synthases screening and metabolic engineering

Yafeng Song¹, Zheng Guan¹, Ronald van Merkerk¹, Hegar Pramastya^{1,2}, Ingy I. Abdallah^{1,3}, Rita Setroikromo¹, Wim J. Quax^{1,*}

¹Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands

²Pharmaceutical Biology Research Group, School of Pharmacy, Institut Teknologi Bandung, 40132, Bandung, Indonesia

³Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt

*Corresponding author: Prof. Dr. Wim J. Quax

Table S1 Plasmids used in this study

Table S2 Strains used in this study

Table S3 Oligonucleotides used in this study

Table S4 Sequence alignment result of squalene synthase (SQS)/HpnC from different species

Figure S1 Analysis of the secondary structures of SQSs

Figure S2 Sequence alignment of the squalene synthase candidates from different species

Figure S3 Biosynthesis pathway of squalene

Figure S4 Effect of incubation temperature on the activity of crude SQS extracts

Figure S5 In vitro relative activity of crude SQS extracts

Figure S6 Effect of different combinations of MEP pathway genes in pBS0E plasmid on

squalene production in Bacillus subtilis cultured 48 hours at 25°C

Materials and methods

GC-MS assay for catalytic activities of different crude SQS extracts

An in-vitro GC-MS assay was conducted to determine the catalytic activities of crude SQS enzymes. B. subtilis strains DBA, DBM, DPG and DSC, which contain the genes encoding respectively BaSQS, BmSQS, PgSQS, and ScSQS in the genome, were used to determine the catalytic activities of crude SQS extracts. Culture samples (1mL) were harvested after the B. subtilis strains had been cultured at 25°C for 48 hours to obtain cell pellets. Then the cell pellets were lysed by lysis buffer (50µl lysis buffer per OD₆₀₀) containing: 50mM glucose, 25mM Tris-HCl (pH 8.0), 0.25mg/mL lysozyme, DNAse 0.01%, 2mM DTT, 1 cOmplete protease inhibitor (1 tablet per 50mL); and incubated for 1 hour at 37°C. Then the supernatants were separated from the lyses by centrifugation (13000rpm, 10 min) and served as the crude enzyme extracts. For 0.5mL reaction of each sample containing crude extract enzymes 50µL in 10mM Tris-HCl buffer (pH 7.4), containing 10mM Mg²⁺, 2mM DTT, 1 mM NADPH, and 46µM FPP substrate. The reaction samples were incubated at 30°C (if not indicated otherwise) for 2 hours and stopped by addition of equal volume of cold methanol and 200µL of ethyl acetate containing cholesterol as internal standard. Then the reaction samples were centrifuged at 13000rpm for 2 minutes to obtain the supernatants. The supernatants were subsequently dried under nitrogen and dissolved in 100 µL of isopropanol (IPA)-acetonitrile (ACN) (7:3, v/v). Then samples were sent for GC-MS analysis.

Plasmids	Genotype and/or relevant characteristics	Sources/Reference
pHCMC04G	B. subtilis and E. coli shuttle vector; ori-	1
-	pBR322; ori-pBS72; P _{xvlA} xylose-	
	inducible promoter; Cm ^R ; Amp ^R	
pHCMC04G-	pHCMC04G derivative, squalene	This work
BaSQS	synthase originated from Bacillus	
	acidocaldarius	
pHCMC04G-	pHCMC04G derivative, squalene	This work
BmSQS	synthase originated from Bacillus	
	megaterium	
pHCMC04G-	pHCMC04G derivative, squalene	This work
PgSQS	synthase originated from Panax ginseng	
pHCMC04G-	pHCMC04G derivative, squalene	This work
ScSQS	synthase originated from	
	Saccharomyces cerevisiae	_
pHY300PLK	<i>B. subtilis</i> and <i>E. coli</i> shuttle vector; ori-	2
	pACYC17; ori-pAMa1; Tc ^R ; Amp ^R	
pHY-BmSQS	pHY300PLK derivative, squalene	This work
	synthase originated from Bacillus	
	megaterium	
pHY-PgSQS	pHY300PLK derivative, squalene	This work
	synthase originated from <i>Panax ginseng</i>	
pHY-ScSQS	pHY300PLK derivative, squalene	This work
	synthase originated from	
DD111	Saccharomyces cerevisiae	2
pDR111	<i>B. subtilis</i> integration vector; ori-	3
	pBR322; P _{hyperspank} IPTG-inducible	
	promoter; Spe ^R ; Amp ^R	

Table S1 Plasmids used in this study.

pDR111-BaSQS	pDR111 derivative, squalene synthase originated from <i>Bacillus acidocaldarius</i>	This work
pDR111-BmSQS	pDR111 derivative, squalene synthase originated from <i>Bacillus megaterium</i>	This work
pDR111-PgSQS	pDR111 derivative, squalene synthase originated from <i>Panax ginseng</i>	This work
pDR111-ScSQS	pDR111 derivative, squalene synthase originated from <i>Saccharomyces</i> <i>cerevisiae</i>	This work
pHB201	<i>B. subtilis</i> and <i>E. coli</i> shuttle vector; ori- pUC19;ori-pTA1060 (rolling circle replication); P59 constitutive promoter; <i>cat86::lacZα</i> ; Cm ^R ; Em ^R	1
pHCMC04G- SDFH	pHCMC04G derivative, <u>dxs, ispD, ispF,</u> ispH	1
pHCMC04G- CEGA	pHCMC04G derivative, <i>ispC</i> , <i>ispE</i> , <i>ispG</i> , <i>ispA</i>	1
pHCMC04G- SDFHCEGA	pHCMC04G derivative, <i>dxs</i> , <i>ispD</i> , <i>ispF</i> , <i>ispH</i> , <i>ispC</i> , <i>ispE</i> , <i>ispG</i> , <i>ispA</i>	4
pBS0E	<i>B. subtilis</i> and <i>E. coli</i> shuttle vector; ori- 1030 (theta replication); P_{xylA} xylose- inducible promoter; Erm ^R ; Amp ^R	5
pBS0E-SDFH	pBS0E derivative, dxs, ispD, ispF, ispH	This work
pBS0E-SDFHC	pBS0E derivative, <i>dxs</i> , <i>ispD</i> , <i>ispF</i> , <i>ispH</i> , <i>ispC</i>	This work
pBS0E-SDFHE	pBS0E derivative, <i>dxs</i> , <i>ispD</i> , <i>ispF</i> , <i>ispH</i> , <i>ispE</i>	This work
pBS0E-SDFHG	pBS0E derivative, <i>dxs</i> , <i>ispD</i> , <i>ispF</i> , <i>ispH</i> , <i>ispG</i>	This work
pBS0E-SDFHA	pBS0E derivative, <i>dxs, ispD, ispF, ispH,</i> <i>ispA</i>	This work

Table S2 Strains used in this study

Strains	Genotype and/or relevant characteristics	Sources
B. subtilis 168	trpC2	Lab stock
BC	B. subtilis 168 derivative, pHCMC04G, Cm ^R	This work
BA	B. subtilis 168 derivative, pHCMC04G-BaSQS, Cm ^R	This work
BM	<i>B. subtilis</i> 168 derivative, pHCMC04G-BmSQS, Cm ^R	This work
PG	<i>B. subtilis</i> 168 derivative, pHCMC04G-PgSQS, Cm ^R	This work
SC	B. subtilis 168 derivative, pHCMC04G-ScSQS, Cm ^R	This work
HBM	B. subtilis 168 derivative, pHY-BmSQS, Tet ^R	This work
HPG	<i>B. subtilis</i> 168 derivative, pHY-PgSQS,Tet ^R	This work
HSC	<i>B. subtilis</i> 168 derivative, pHY-ScSQS, Tet ^R	This work
DBA	<i>B. subtilis</i> 168 derivative, pDR111-BaSQS, Spe ^R	This work
DBM	<i>B. subtilis</i> 168 derivative, pDR111-BmSQS, Spe ^R	This work
DPG	<i>B. subtilis</i> 168 derivative, pDR111-PgSQS, Spe ^R	This work
DSC	<i>B. subtilis</i> 168 derivative, pDR111-ScSQS, Spe ^R	This work
DBA-MEP4	B. subtilis 168 derivative, pDR111-BaSQS, pHCMC04G-	This work
	SDFH, Spe ^R , Cm ^R	
DBM-MEP4	B. subtilis 168 derivative, pDR111-BmSQS, pHCMC04G-	This work
	SDFH, Spe ^R , Cm ^R	
DPG-MEP4	B. subtilis 168 derivative, pDR111-PgSQS, pHCMC04G-	This work
	SDFH, Spe ^R , Cm ^R	

DSC-MEP4	<i>B. subtilis</i> 168 derivative, pDR111-ScSQS, pHCMC04G-SDFH, Spe ^R , Cm ^R	This work
DBA-MEP8	<i>B. subtilis</i> 168 derivative, pDR111-BaSQS, pHCMC04G-SDFHCEGA, Spe ^R , Cm ^R	This work
DBM-MEP8	<i>B. subtilis</i> 168 derivative, pDR111-BmSQS, pHCMC04G-SDFHCEGA, Spe ^R , Cm ^R	This work
DPG-MEP8	<i>B. subtilis</i> 168 derivative, pDR111-PgSQS, pHCMC04G-SDFHCEGA, Spe ^R , Cm ^R	This work
DSC-MEP8	<i>B. subtilis</i> 168 derivative, pDR111-ScSQS, pHCMC04G-SDFHCEGA, Spe ^R , Cm ^R	This work
DBM-ESDFH	<i>B. subtilis</i> 168 derivative, pDR111-BmSQS, pBS0E-SDFH, Spe ^R , Erm ^R	This work
DPG-ESDFH	<i>B. subtilis</i> 168 derivative, pDR111-PgSQS, pBS0E-SDFH, Spe ^R , Erm ^R	This work
DSC-ESDFH	<i>B. subtilis</i> 168 derivative, pDR111-ScSQS, pBS0E-SDFH, Spe ^R , Erm ^R	This work
DBM-ESDFHC	<i>B. subtilis</i> 168 derivative, pDR111-BmSQS, pBS0E-SDFHC, Spe ^R , Erm ^R	This work
DPG-ESDFHC	<i>B. subtilis</i> 168 derivative, pDR111-PgSQS, pBS0E-SDFHC, Spe ^R , Erm ^R	This work
DSC-ESDFHC	<i>B. subtilis</i> 168 derivative, pDR111-ScSQS, pBS0E-SDFHC, Spe ^R , Erm ^R	This work
DBM-ESDFHE	<i>B. subtilis</i> 168 derivative, pDR111-BmSQS, pBS0E-SDFHE, Spe ^R , Erm ^R	This work
DPG-ESDFHE	<i>B. subtilis</i> 168 derivative, pDR111-PgSQS, pBS0E-SDFHE, Spe ^R , Erm ^R	This work
DSC-ESDFHE	<i>B. subtilis</i> 168 derivative, pDR111-ScSQS, pBS0E-SDFHE, Spe ^R , Erm ^R	This work
DBM-ESDFHG	<i>B. subtilis</i> 168 derivative, pDR111-BmSQS, pBS0E-SDFHG, Spe ^R , Erm ^R	This work
DPG-ESDFHG	<i>B. subtilis</i> 168 derivative, pDR111-PgSQS, pBS0E-SDFHG, Spe ^R , Erm ^R	This work
DSC-ESDFHG	<i>B. subtilis</i> 168 derivative, pDR111-ScSQS, pBS0E-SDFHG, Spe ^R , Erm ^R	This work
DBM-ESDFHA	<i>B. subtilis</i> 168 derivative, pDR111-BmSQS, pBS0E-SDFHA, Spe ^R , Erm ^R	This work
DPG-ESDFHA	<i>B. subtilis</i> 168 derivative, pDR111-PgSQS, pBS0E-SDFHA, Spe ^R , Erm ^R	This work
DSC-ESDFHA	<i>B. subtilis</i> 168 derivative, pDR111-ScSQS, pBS0E- SDFHA, Spe ^R , Erm ^R	This work
<i>E. coli</i> turbo	F' proA B lacI ^q Δ lacZM15 / fhuA2 Δ (lac proAB) glnV galK16 galE15 R(zgb 210::Tn10)Tet ^S endA1 thi-1 Δ (hsdS-mcrB)5	Lab stock

Table S3 Oligonucleotides used in this study

Name	Sequences
Ba-F	gacaaatggtccaaactagtgataagaggaggagaaatatgggctcagttccggttgaactgag
Ba-R	catttccccctttgatttttagattcagtgatgatgatgatgatgtgctgatccgccttcgccttttgc
Bm-F	gacaaatggtccaaactagtgataagaggaggagaaatatgagcgttccgaataaactgcgcg
Bm-R	catttccccctttgatttttagattcagtgatgatgatgatgatgatgcatatcgacgacttcattgactg
Pg-F	gacaaatggtccaaactagtgataagaggaggagaaatatgggctcacttggcgcaattctgaaac
Pg-R	catttccccctttgatttttagattcagtgatgatgatgatgatgtgcgctattatggcctgattcgc
Sc-F	gacaaatggtccaaactagtgataagaggaggagaaatatgggcaaactgctgcaactggcactg
Sc-R	catttccccctttgatttttagattcagtgatgatgatgatgatgatgtttgtactcttcttcttgttgtgtc
SQS-F2	gggaaatgacaaatggtccaaactagtgataagaggaggagaaatatg

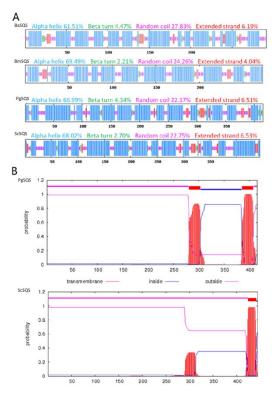
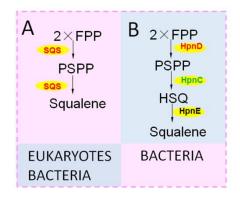

04-SQS-S	cattgaaataaacatttattttgtatatgatgagataaagttag
04-SQS-A	cctaataagccgatattagcctcgtatg
CO-SDFH-S	ccatttgtttaatctttaaattaagtatcaacatagtac
CO-SDFH-A	gattcattaatgcagctggcacgac
HYV-F	actagtcctctttacggatcccc
HYV-R	gggagtagtctaagagaaagatgtgag
HYBm-F	ggggatccgtaagagggactagtatgagcgttccgaataaactgcgcg
HYBm-R	cacatetttetettagactactecetcagtgatgatgatgatgatgatgatateg
HYPg-F	ctcacatctttctcttagactactccctcagtgatgatgatgatgatgtgcgc
HYPg-R	ggggatccgtaagagggactagtatgggctcacttggcgcaattctg
HYSc-F	ctcacatctttctcttagactactccctcagtgatgatgatgatgatgttgtac
HYSc-R	cggggatccgtaagaggaggactagtatgggcaaactgctgcaactggcac
DRV-F	taataatgagcactagtcaaggtcggc
DRV-R	gtttgtcctccttattagttaatcagctagc
DRBa-F	gccgaccttgactagtgctcattattagtgatgatgatgatgatgtgctgatccg
DRBa-R	gctgattaactaataaggaggacaaacatgggctcagttccggttgaactgagag
DRBm-F	gccgaccttgactagtgctcattattagtgatgatgatgatgatgatgatgatgatgatg
DRBm-R	gctgattaactaataaggaggacaaacatgagcgttccgaataaactgcgcgataatg
DRPg-F	gctgattaactaataaggaggacaaacatgggctcacttggcgcaattctgaaac
DRPg-R	gccgaccttgactagtgctcattattagtgatgatgatgatgatgtgcgctattatg
DRSc-F	gccgaccttgactagtgctcattattagtgatgatgatgatgatgttgtactcttc
DRSc-R	gctgattaactaataaggaggacaaacatgggcaaactgctgcaactggcactg
DRGV-F	catcatcatcatcatcatataatgagcactagtc
DRGV-R	gccagaaccgcctttatacaattcatc
HY-SQS-S	cctatggaagttgatcagtcaacttatctg
HY-SQS-A	gcatgcgcaaccagttagatatgc
DR-SQS-S	gcacgaaaaaagcacccataagg
DR-SQS-A	gccgcgtttcggtgatgaagatc
DR-GSQS-S	gcacgaaaaaagcacccataagg
DR-GSQS-A	gatggtccagttttgttgccag
ESDFHV-F	gtttttgcttttacttttggaagtattttttg
ESDFHV-R	cactagtagcggccgctgcaggca
ESDFH-F2	caaaaaaatacttccaaaagtaaaagcaaaaaactaacgcaagaggaggagaaat
ESDFHC-F	gtaaaagcaaaaaactaacgcaagaggaggagaaatatgaaaaatatttgtcttttag
ESDFHC-R	gcatgcctgcagcggccgctactagtgtgtgagtattgaattgacgtatccccg
ESDFHE-F	gtaaaagcaaaaaactaacgcaagaggaggagaaatatgcgtattttagaaaaagc
ESDFHE-R	tgcctgcagcggccgctactagtgatcaagagcgttctgttcgccgatc
ESDFHG-F	gtaaaagcaaaaaactaacgcaagaggaggagaaatatgcaagtgagtg
ESDFHG-R	atgcctgcagcggccgctactagtgagctttttgtgtttcttcttttaattttgc
ESDFHA-F	aaaagcaaaaaactaacgcaagaggaggagaaatatgacaaataaat
ESDFHA-R	catgcctgcagcggccgctactagtggtgatctcttgccgcaattaaatcac
ESDFH-S	caggetttacaetttatgetteegg
ESDFH-A	gcagtttgatcacgaagatccatc

Table S4 Sequence alignment result of s	qualene synthase (SOS	S)/HpnC from different species
Tuble St Sequence anguinent result of s	quaterie synthuse (SQ	S / IIpile II oli uniei ene species

Subject	Query	Identity (%)
Bacillus acidocaldarius	SQS from <i>Homo sapiens</i>	12.2
Bacillus acidocaldarius	SQS from Methylococcus capsulatus	17.3
Bacillus acidocaldarius	SQS from Bacillus megaterium	16.4
Bacillus acidocaldarius	SQS from Panax ginseng	12.8
Bacillus acidocaldarius	SQS from Saccharomyces cerevisiae	13.5
Bacillus acidocaldarius	HpnC from Rhodopseudomonas Palustris	24.9
Bacillus acidocaldarius	HpnC from Zymomonas mobilis	27.5

Figure S1

Figure S1 Analysis of the secondary structures of SQSs. **A**. Annotation of the secondary structures of SQS using SOPMA online server (<u>https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_sopma.html</u>). **B**. The predicted transmembrane regions of SQS using TMHMM Server (v. 2.0) (<u>http://www.cbs.dtu.dk/services/TMHMM/</u>). PgSQS, ScSQS, and HsSQS represents squalene synthase originating from *Panax ginseng*, *Saccharomyces cerevisiae, and Homo sapiens*, respectively.


Figure S2

BaSQS FEVCRRLTRSHYENESVVSLFVPRHLRPHFYSV BmSQS RDNAMVMLKETSRTFFFFISHLPAELQNAVGSA PgSQS WAFCYSMLHKVSRSFGLVIQQLGPQLRDAVCIF ScSQS LLHCFELLNLTSRSFAAVIRELHPELRNCVTLF HsSQS LKTCYKYLNCTSRSFAAVICALDGEMRNAVCF	YLCMBAI 47 YLVLBAL 76 YLILBAL 78	BmSQS MINDIWKWYDGTETDKELAIAFGRCIQS BmSQS GISKLFHASGAEDLATDSLSNSMGLFLCK SCSQS GITRLIVIAKFANESLYS.NEQLYESMGLFLCK	NILENT 189 NIIRDY 214 NIIRDY 227
McSQS DEFCAHFLDGVSRTFALTIPRLPEGLARPVSNG		McSQS MITRIFCHYSPEIAAHRSRIMELAVSFGQGLQM	
Consensus f 1st	y r	Consensus 1q	n
BASQS DLED EFAGDRMAALDAYEEELR BmSQS DETED HPELEAGVKSRLLYAISDLLK PgSQS DTVDD DTSIPTEVKVPILMAFHRHIY ScSQS DTIED DMSIEHDLKIDLLRHFHEKLL HsSQS DTIED DMTISVEKKVPLLHNFHSFLY McSQS DTIED EVALTSTQKRRYCEHFARVVAGTAPAAP) Consedsusd	KSFNE 78 DKDWH 107 LTKWS 109 QPDWR 110	BBNSQS SEI SERGVSFFINN.WSR PgSQS LED INEIPKSRMFWFRQIWSKYVDKIEDLKYEEI SCSQS NEDVDGRSFWFKEIWSQYAPQIKDFMKPEI HSSQS LED QQGREFWFQEVWSRYVKKIGDFAKPEI	206 SAKAVQ 254 NEQLGLD 264 NIDLAVQ 257

Figure S2 Sequence alignment of the squalene synthase candidates from different species. 1st and 2nd represent two conserved (predicted) aspartate-rich motifs "DxxxD". BaSQS, BmSQS,

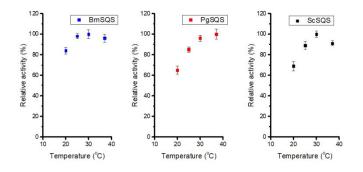

PgSQS, ScSQS, HsSQS, and McSQS represents squalene synthase originating from *Bacillus acidocaldarius*, *Bacillus megaterium*, *Panax ginseng*, *Saccharomyces cerevisiae*, *Homo sapiens and Methylococcus capsulatus*, respectively.

Figure S3

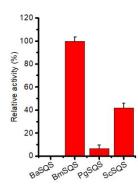

Figure S3 Biosynthesis pathway of squalene. **A**: Conversion of FPP to squalene in a two steps/one enzyme reaction by eukaryotic squalene synthase or bacterial squalene synthase, such as *Homo sapiens* and *Methylococcus capsulatus*,. **B**: Conversion of FPP to squalene in three steps/two enzymes reaction by bacterial squalene synthase from *Zymomonas mobilis* and *Rhodopseudomonas Palustris*. SQS: squalene synthase; FPP, Farnesyl pyrophosphate; PSPP: Presqualene pyrophosphate; HSQ: hydroxysqualene.

Figure S4

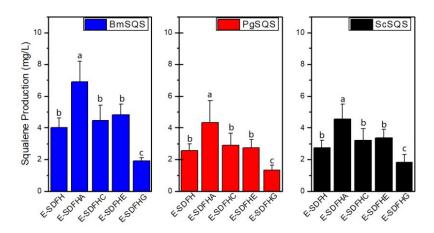

Figure S4 Effect of incubation temperature on the activity of crude SQS extracts. The crude enzyme extracts were prepared after the *B. subtilis* strains had been cultured 48 h at 25°C. The *in vitro* reaction samples were incubated for 2 hours at 20°C, 25 °C, 30 °C and 37 °C, respectively. Error bars represent standard deviations of biological triplicates. Strains DBM, DPG and DSC, which contain the genes encoding respectively BmSQS, PgSQS, and ScSQS in the genome, were tested. BmSQS, PgSQS, and ScSQS are squalene synthases originating from *Bacillus megaterium, Panax ginseng* and *Saccharomyces cerevisiae*, respectively.

Figure S5

Figure S5 *In vitro* relative activity of crude SQS extracts. The crude enzyme extracts were prepared after the *B. subtilis* strains had been cultured 48 h at 25°C. The *in vitro* reaction samples were incubated at 30°C for 2 hours. Error bars represent standard deviations of biological triplicates. Strains DBA, DBM, DPG and DSC, which contain the genes encoding respectively BaSQS, BmSQS, PgSQS, and ScSQS in the genome, were tested. BaSQS, BmSQS, PgSQS, and ScSQS are squalene synthases originating from *Bacillus acidocaldarius, Bacillus megaterium, Panax ginseng* and *Saccharomyces cerevisiae*, respectively.

Figure S6

Figure S6

Effect of different combinations of MEP pathway genes in pBS0E plasmid on squalene production in *Bacillus subtilis* cultured 48 hours at 25°C. Error bars represent standard deviations of biological triplicates. Different letters indicate significant statistical differences (Scott Knott 5%). MEP pathway related genes were overexpressed in pBS0E. S, C, D, E, F, G and A represents *dxs, ispC, ispD, ispE, ispF, ispG, ispH* and *ispA*, respectively. BmSQS, PgSQS, and ScSQS are squalene synthases originating from *Bacillus megaterium, Panax ginseng* and *Saccharomyces cerevisiae*, respectively.

References

(1) Xue, D.; Abdallah, II; de Haan, I. E.; Sibbald, M. J.; Quax, W. J., Enhanced C30 carotenoid production in Bacillus subtilis by systematic overexpression of MEP pathway genes. Applied microbiology and biotechnology 2015, 99, 5907-15.

(2) Yoshida, K.; Ueda, S.; Maeda, I., Carotenoid production in *Bacillus subtilis* achieved by metabolic engineering. Biotechnology letters 2009, 31, 1789-93.

(3) Overkamp, W.; Beilharz, K.; Detert Oude Weme, R.; Solopova, A.; Karsens, H.; Kovacs, A.; Kok, J.; Kuipers, O. P.; Veening, J. W., Benchmarking various green fluorescent protein variants in *Bacillus subtilis, Streptococcus pneumoniae,* and *Lactococcus lactis* for live cell imaging. Applied and environmental microbiology 2013, 79, 6481-90.

(4) Abdallah, II; Pramastya, H.; van Merkerk, R.; Sukrasno; Quax, W. J., Metabolic Engineering of *Bacillus subtilis* Toward Taxadiene Biosynthesis as the First Committed Step for Taxol Production. Frontiers in microbiology 2019, 10, 218.

(5) Popp, P. F.; Dotzler, M.; Radeck, J.; Bartels, J.; Mascher, T., The Bacillus BioBrick Box 2.0: expanding the genetic toolbox for the standardized work with *Bacillus subtilis*. Scientific reports 2017, 7, 15058.