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SUPP 1. Schematic drawing of trenches milled by FIB. 

 

 

Figure SUPP 1.1. Schematic drawing of the trenches fabricated by FIB. 

 

 

Figure SUPP 1.2. SE and BSE SEM cross-section images of a trench fabricated by FIB lithography. 
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SUPP 2. Estimation of the surface coverage ratio of hexagonal nanorod arrays. 

 

  
(a) (b) 

 

Figure SUPP 2. (a) Schematic top view of a hexagonal nanorod array for the calculation of the surface 

coverage ratio. The nanorods have the diameter 𝑑𝑁𝑅, the top face area 𝑆𝑁𝑅, and the distance between 

the nanorods is 𝐷𝑁𝑅. (b) Schematic view of a rectangular area surrounding a single nanorod, which was 

used for the calculation of the nanorod density. 

 

Let us assume a periodic hexagonal array of vertically grown ZnO nanorods with internanod 

distances 𝐷𝑁𝑅 and uniform nanorod diameters 𝑑𝑁𝑅 (Figure SUPP 2a). The surface coverage ratio 𝑆 of 

this ZnO nanorod array is given by the total area of top faces of ZnO nanorods divided by the total area 

covered by these nanorods. 𝑆 can be generally calculated by the following equation 

 𝑆 = 𝑛𝑁𝑅𝑆1𝑁𝑅 (S2.1) 

where 𝑛𝑁𝑅 = 𝑁𝑁𝑅/𝑆𝑇𝑂𝑇 is the number density of the nanorods within a total area covered by the 

nanorod pattern 𝑆𝑇𝑂𝑇, where 𝑁𝑁𝑅 is the number of nanorods within this area. 𝑆1𝑁𝑅 is the average 

surface area of a single nanorod. If we assume that the nanorods have a regular hexagonal shape, 𝑆1𝑁𝑅 

can be calculated 

 𝑆1𝑁𝑅 =
3√3

8
𝑑𝑁𝑅

2  (S2.2) 

To estimate the nanorod number density 𝑛𝑁𝑅, let us assume that every nanorod is surrounded by a 

rectangle with sides of 𝐷𝑁𝑅 and (√3/2)𝐷𝑁𝑅. The area of the rectangle is  

 𝑆̃1𝑁𝑅 =
√3

2
𝐷𝑁𝑅

2  (S2.3) 

Clearly, the rectangles can completely fill the total area 𝑆𝑇𝑂𝑇 (Figure SUPP 2b). Then the number of 

nanorods within 𝑆𝑇𝑂𝑇 is 

 𝑁𝑁𝑅 =
𝑆𝑇𝑂𝑇

𝑆̃1𝑁𝑅

 (S2.4) 

Combining eq S2.3 and eq S2.4, we obtain the relation for the number density of nanorods 
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 𝑛𝑁𝑅 =
𝑁𝑁𝑅

𝑆𝑇𝑂𝑇
=

1

𝑆̃1𝑁𝑅

=
2√3

3

1

𝐷𝑁𝑅
2 ≈ 1.1547

1

𝐷𝑁𝑅
2  (S2.5) 

Using eq S2.1, S2.2, and S2.5, we can find the relation of the surface coverage ratio 

 𝑆 =
2√3

3

𝑆1𝑁𝑅

𝐷𝑁𝑅
2 =

3

4

𝑑𝑁𝑅
2

𝐷𝑁𝑅
2  (S2.6) 

This simple equation (eq S2.6) was then used as an estimation for the surface coverage ratios of all the 

arrays. 
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SUPP 3. Reaction/Diffusion limited growth model. 

 

 

The reaction/diffusion limited growth model assumes that there is a nanorod array with infinite 

lateral dimensions with the surface coverage ratio 𝑆, which is the ratio of the area of all c-plane faces 

to the total area (see SUPP 2). These nanorods are immersed in a solution with the reactants. As a first 

approximation, we consider that only the concentration of Zn2+ ions 𝑐𝑍𝑛 is responsible for the growth 

kinetics of the nanorods. As the nanorods grow, they consume the growth units from the solution and 

a stagnant layer is formed between the top nanorod faces (with the interface Zn2+ ion concentration 

𝑐𝑁𝑅) and the area with the bulk concentration 𝑐𝐵 at the distance 𝛿. Within this stagnant layer, a 

concentration gradient is formed. According to the first Fick’s law, the diffusion flux of Zn2+ ions 𝐽𝑍𝑛 is 

governed by the concentration gradient (here in 𝑧 axis) 

 𝐽𝑍𝑛 = −𝐷
𝑑𝑐𝑍𝑛

𝑑𝑧
 (S3.1) 

where 𝐷 is the diffusion coefficient of Zn2+ ions in water. During the growth of nanorods, the rate of 

consumption of Zn2+ ions by the nanorod array is proportional to the interface concentration 𝑐𝑁𝑅 and 

to the surface coverage ratio 𝑆 

 𝑟𝑁𝑅 = 𝑘𝑁𝑅𝑐𝑁𝑅𝑆 (S3.2) 

where 𝑘𝑁𝑅 is the first-order reaction rate constant, which characterizes the rate of incorporation of 

the growth unit into the nanorod. In equilibrium, the diffusion flux 𝐽𝑍𝑛 has to be equal to the rate of 

incorporation Zn2+ ions to the nanorods 𝑟𝑁𝑅 

 𝐽𝑍𝑛 = 𝑟𝑁𝑅 (S3.3) 

In steady state, the diffusion flux is constant, and therefore the concentration gradient is linear. We 

can then write 

 −𝐷
𝑐𝐵 − 𝑐𝑁𝑅

𝛿
= 𝑘𝑁𝑅𝑐𝑁𝑅𝑆 (S3.4) 

After rewriting, we obtain the relation for the interface ion concentration 𝑐𝑁𝑅 

0 

𝑐𝐵 

𝑐𝑁𝑅  

𝛿 

𝐽𝑍𝑛 stagnant 
layer 

𝐽𝑍𝑛 = −𝐷
𝑑𝑐𝑍𝑛

𝑑𝑧
 

𝑟𝑁𝑅 = 𝑘𝑁𝑅𝑐𝑁𝑅𝑆 
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 𝑐𝑁𝑅 =
𝑐𝐵

𝜙 + 1
 (S3.5) 

where 𝜙 is the Thiele modulus 

 𝜙 =
𝑘𝑁𝑅𝑆𝛿

𝐷
 (S3.6) 

Note that the Thiele modulus is a measure whether the reaction rate or the diffusion rate dominates 

the growth process. 

Let us now assume, that the nanorods grow in c direction only. The volume increment of total ZnO 

nanorod array 𝑑𝑉/𝑑𝑡 can be expressed as 

  
𝑑𝑉𝑇𝑂𝑇

𝑑𝑡
=

𝑑ℎ

𝑑𝑡
𝑆𝑇𝑂𝑇𝑆 (S3.7) 

where 𝑅ℎ =
𝑑ℎ

𝑑𝑡
 is the growth velocity in c direction, 𝑆𝑇𝑂𝑇 is the total area covered by nanorods and 

 𝑆𝑇𝑂𝑇𝑆 is the total area of nanorod top faces. If we consider that 𝑉𝑇𝑂𝑇 = 𝑛𝑇𝑂𝑇𝑉𝑀, where 

𝑉𝑀 = 1.45 × 10−5 m3mol−1 is the molar volume of ZnO and 𝑛 is the number of moles corresponding 

to the ZnO volume 𝑉, we can then write 

 𝑅ℎ =
𝑑ℎ

𝑑𝑡
=

𝑉𝑀

𝑆

𝑑𝑛𝑇𝑂𝑇

𝑆𝑇𝑂𝑇𝑑𝑡
=

𝑉𝑀

𝑆
𝑟𝑁𝑅 (S3.8) 

Using eq S3.2, we can rewrite equation eq S3.8 

   
1

𝑅ℎ
=

1

𝑘𝑁𝑅𝑉𝑀𝑐𝐵
+

𝛿

𝐷𝑉𝑀𝑐𝐵
𝑆 (S3.9) 

which is the equation used for the fitting of the measured data. From the linear fit of the dependence 

of the inverse growth velocity 1/𝑅ℎ on the surface coverage ratio 𝑆, we can extract the reaction 

constant 𝑘𝑁𝑅 and the stagnant layer thickness 𝛿.  

 
1

𝑅ℎ
= 𝐴 + 𝐵𝑆 (S3.10) 

where 𝐴 is the intercept and 𝐵 is the slope of the linear fit. Then 

 𝑘𝑁𝑅 = (𝐴𝑉𝑀𝑐𝐵)−1, 𝛿 = 𝐵𝑉𝑀𝐷𝑐𝐵 (3.11) 

 

 

Assumptions: 

1. The nanorod array has infinite lateral dimensions and the height of the nanorods is uniform. Effects 

at the borders of the arrays are neglected. 

2. Only the concentration of Zn2+ ions is responsible for the growth kinetics of ZnO nanorods. 

3. The nanorods grow only in the direction of c-axis. Radial growth is neglected. 

4. The growth of the nanorods is driven by first-order kinetics. 

5. The system is in equilibrium. 

6. The system is in a steady state, which is not valid for batch reactors, where the total concentration 

of reactants decreases with time. 
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SUPP 4. Experimental determination of the surface coverage ratio. 

 

The diameter of the nanorod 𝑑1𝑁𝑅 was calculated from the measured area of the top nanorod face 

using SEM images. From this value, the nanorod diameter was calculated using eq S2.2. Since the shape 

of the nanorods is usually not a regular hexagon, the value of 𝑑1𝑁𝑅 is only an approximation, i.e. it is a 

diameter of a regular hexagon with the same area as is the measured area. 

Since the height and diameter of the ZnO nanorods depends on the position within the nanorod 

array, only the nanorods around the middle of the array were considered for further analysis. The 

heights and diameters were calculated as the average of the nanorod dimensions in the center and of 

the six nanorods surrounding the one in the center. 
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SUPP 5. Finite element method implementation in COMSOL. 

 

COMSOL Multiphysics software package was used to solve the diffusion equation by finite element 

method (FEM) to obtain the concentration 𝑐 of the growth units (here Zn2+ ions) in the vicinity of the 

nanorod array. We solved the diffusion equation on the domain illustrated in Figure SUPP 5.1 

𝜕𝑐

𝜕𝑡
+ 𝐷∆𝑐 = 𝑅 

where 𝐷 is the diffusion coefficient of Zn2+ in aqueous media, and 𝑅 = −𝑘𝑡𝑖𝑡𝑐 is the rate of 

homogeneous reaction. Here, 𝑘𝑡𝑖𝑡 is the rate constant of homogeneous reactions which was measured 

by titration of the growth solution at different growth times.  

 

Figure SUPP 5.1. The 2D domain shape used in FEM calculations. 19 rectangles at the bottom part of 

the domain represent 19 nanorods within a pattern. 

 

The diffusion equation was solved in 2D on the domain shown in Figure SUPP 5.1. The domain had 

a rectangular shape with 19 smaller rectangles at the bottom part of this domain representing 19 

nanorods within the nanorod array. The top nanorod faces (see the bottom part of Figure SUPP 5.1 – 

blue lines) acted as sinks and the rate of consumption of the growth units by these top nanorod faces 

was represented by a flux through them: 

𝐽 = −𝑘𝑁𝑅𝑐 

where 𝑘𝑁𝑅 is the reaction constant determined by the diffusion/reaction model and 𝑐 is the local 

concentration at the nanorod top surface. The size of the computation domain was selected to be 100 

times larger than the size of the 19 nanorod pattern (at minimum). This domain was found to be 
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sufficiently large, so that further increase of its size had no impact on the results. The simulation mesh 

was composed of free triangular elements with the density of 100 elements at the nanorod top faces 

and 50 elements at the walls. Further increase of the density of the mesh elements did not lead to any 

significant change of the results. From the calculated solution of the diffusion equation, the diffusive 

fluxes of Zn2+ ions through each of the nanorod top face 𝐽𝑡𝑜𝑝_𝑓𝑎𝑐𝑒 were computed and integrated over 

the length of the nanorod top face (represented by blue lines in Figure SUPP 5.1) and over the whole 

time period of nanorod growth 𝑇, giving the total amount of moles of Zn2+ ions consumed by the 

particular nanorod 𝑛𝑇𝑂𝑇 

𝑛𝑇𝑂𝑇 = ∫ ∫ 𝐽𝑡𝑜𝑝_𝑓𝑎𝑐𝑒𝑑𝑙 𝑑𝑡
𝑇

0

 

The calculated 𝑛𝑇𝑂𝑇 was used for the calculation of the nanorod height ℎ𝑁𝑅 taking the nanorod as a 

rectangle with both the top and bottom side of the same length 𝑑𝑁𝑅 

ℎ𝑁𝑅 =
𝑉𝑀𝑛𝑇𝑂𝑇

𝑑𝑁𝑅
 

where 𝑉𝑀 is the molar volume of ZnO. The ratio of the nanorod height at the boundary and in the 

center of the array is plotted in Figure 7. 
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SUPP 6. SEM images of the time evolution of the growth of ZnO nanorods. 

 

Figure SUPP 6.1. Tilted-view SEM images of hexagonal ZnO nanorod arrays with different internanorod 

distances (0.8 µm, 1 µm, 2 µm, 5 µm, and 10 µm). The growth time was varied from 15 min to 120 min. 

Other parameters of the growth were fixed (concentration of the reactants 2.5 mM, growth time 2 h, 

temperature 95°C). 
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Figure SUPP 6.2. Top-view SEM images of hexagonal ZnO nanorod arrays with different internanorod 

distances (0.8 µm, 1 µm, 2 µm, 5 µm, and 10 µm). The growth time was varied from 15 min to 120 min. 

Other parameters of the growth were fixed (concentration of the reactants 2.5 mM, growth time 2 h, 

temperature 95°C). 
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Figure SUPP 6.3. Dependence of the inverse growth velocity 1/𝑅ℎ on the surface coverage ratio 𝑆 for 

hexagonal ZnO nanorod arrays with different internanorod distances (0.8 µm, 1 µm, 2 µm, 5 µm, and 

10 µm) grown at different growth times (15, 30, 60, 90, 120 min) shown in Figures SUPP 6.1 and 

SUPP 6.2.  
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SUPP 7. TEM measurements. 

 

Figure SUPP 7. Bright field TEM image showing the nanorods growing from the trenches fabricated by 

FIB. The first crystallites appear around the upper part of the trench, which further develop and merge 

into a nanotube with a facetted outer and rough inner surface. By lateral growth the nanotubes are 

gradually filled and transform into nanorods. There is a hollow left in the trench, as the growth units 

have a spatial a temporal limitation to diffuse through the upper part of the nanotube. The growth 

time was 120 min, and the growth temperature 95°C. The measured upper diameter of the FIB trench 

was 360 nm and the measured depth of the trench was 490 nm. 
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SUPP 8. Used Constants and Symbols 

 

Table of constants: 

𝑫 diffusion coefficient 2.91×10-9 m2/s 
𝝆𝑴 ZnO molar density 6.8×104 mol/m3 

𝑽𝑴 molar volume of ZnO 1.452×10-5 m3/mol 

𝒌𝒕𝒊𝒕 reaction constant from titrations 0.026 min-1 

   
 

Table of symbols: 

𝒄𝟎 initial concentration mol/m3 

𝒄∞ concentration at 𝑡 → ∞ from titration  mol/m3 

𝒄𝑵𝑹 interface concentration between nanorods and 
solution 

m3/mol 

𝒄𝑩 bulk concentration m3/mol 
𝒄𝒆𝒒 equilibrium concentration from MINTEQ 

calculations 
m3/mol 

𝑫𝑵𝑹 distance between nanorods m 

𝒉𝑵𝑹 height of nanorod m 
𝑹𝒉 c-plane growth velocity m/s 
𝜹 stagnant layer thickness (SUPP 3) m 
𝒌𝑵𝑹 first-order surface reaction rate constant m/s 

 


