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To determine the charge on dot i we can solve the Heisenberg equations of motion for the 

expectation values of the operators Êi, i  for the wave function that initially, at time t! "#  , 

is the ground state. Or we can propagate an initial state by converting the time dependent 

Schroedinger equation to a matrix differential equation for the expansion coefficients of the 

wave function in the zero order basis states, 
 
ihdc / dt = Hc . Here c(t) is a column vector of 

eight components such that c(t! "#) are the expansion coefficients of the initial state of the 

array. In this letter the initial state is the ground state before the gating. H is the matrix 

representation of the Hamiltonian given in (1) in the zero order basis states. H is diagonal 

except for the matrix elements of the transfer operator, the term multiplied by β in (1). See, 

e.g., 41 for explicit expressions for the matrix elements of the operators Ê . In particular, note 

that the numbering of the states as shown in figure 2 facilitates the computation of the off 

diagonal matrix elements of Ĥ . The occupancy of dot i at the time t is given by cTÊi,i c  

where the superscript T denotes the transpose of the vector. When the time-dependent gating 

is over, the occupancy settles down to a constant value because the basis states are 

eigenstates of the site occupation operators Êi, i . As a result of the gating, typically the long 

time state is such that the energy differences between the valence orbitals of the three dots are 

much larger than the exchange coupling, β. Then the zero-order basis states (see figure 2) are 

practically eigenstates of the Hamiltonian and of Êi, i . To include the Coulomb repulsion the 

Hamiltonian has a bilinear term. Therefore propagating the time dependent Schroedinger 

equation requires taking a rather small time step. But a ns switching spans billions of such 

steps and care needs to be exercised that unitarity is not lost. It is the same dephasing that will 

cause problems for using the device as a quantum computer. For this reason we only read 

probabilities and do not rely on amplitudes. In our integration charge is conserved to better 

than 1%. 

For realistic weak coupling the switching of the gate potential on a ns scale results in an 

essentially adiabatic behavior so that, for practical purpose because the switching is far 

slower than the charge migration time, the system remains throughout in its (time-dependent) 



 2 

ground electronic state. It is therefore possible to simplify the computation by diagonalizing 

the Hamiltonian at every instant of time. If all one needs is to simulate the final state (= the 

function evaluation) then just one diagonalization, at a long time after the switching, is 

enough. We do not however take advantage of the adiabatic approximation except as an aid 

to our thinking. 

 
 
 


