Catalytic asymmetric diarylphosphine addition to α-diazoesters for the synthesis of P-stereogenic phosphinates via P^{*}-N bond formation

László B. Balázs, ${ }^{\dagger}$ Yinhua Huang, ${ }^{\ddagger}$ Jasmina B. Khalikuzzaman, ${ }^{\dagger}$ Yongxin Li, ${ }^{\dagger}$ Sumod A. Pullarkat*† and Pak-Hing Leung*†
${ }^{\dagger}$ Division of Chemistry \& Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
${ }^{\ddagger}$ College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China

Supporting Information

Table of content

1. Optimization of the reaction conditions S2
2. Mechanistic studies S4
3. NMR spectra S18
4. HPLC spectra S49
5. Stereochemical investigation on 6eb S61
6. X-Ray measurement data S63
7. References S71

1. Optimization of the reaction conditions

(R)
(R, R)-PCP-OAc (5)
(R)-9
(S)-10

(R)-CN

(R, R)-NCS

(R)-BINAP

[(R)-BINAP]- PdCl_{2}

Table S1 Reaction condition optimization of asymmetric phosphination of α-diazoesters.

Entry	Catalyst [mol\%]	Solvent	Base (1 equiv)	$\mathrm{T}\left[{ }^{\circ} \mathrm{C}\right]$	t	Conversiona ${ }^{\text {a }}$ [\%]	$\begin{aligned} & e e^{b} \\ & {[\%]} \end{aligned}$
1	-	CHCl_{3}	-	-40	16 h	-	-
2	-	CHCl_{3}	$\mathrm{Et}_{3} \mathrm{~N}$	-40	16 h	-	-
3	5\% Pd(OAc) ${ }_{2}$	CHCl_{3}	-	-40	16 h	-	-
4	$5 \% \mathrm{Pd}(\mathrm{OAc})_{2}$	acetone	-	rt	22 h	$19^{\text {c }}$	-
5	$5 \% \mathrm{Pd}(\mathrm{MeCN})_{2} \mathrm{Cl}_{2}$	CHCl_{3}	DBU	rt	24 h	$26^{\text {c }}$	-
6	5\% (R)-CP (4)	CHCl_{3}	$\mathrm{Et}_{3} \mathrm{~N}$	-40	65 h	69	35
7	10\% (R)-СР (4)	CHCl_{3}	$\mathrm{Et}_{3} \mathrm{~N}$	-40	65 h	79	39
8	15\% (R)-CP (4)	CHCl_{3}	$\mathrm{Et}_{3} \mathrm{~N}$	-40	65 h	93	38
9	20\% (R)-CP (4)	CHCl_{3}	$\mathrm{Et}_{3} \mathrm{~N}$	-40	65 h	90	38
10	10\% (R,R)-РСР-OAc (5)	CHCl_{3}	-	-40	72 h	$3{ }^{\text {c }}$	N.D.
11	10\% (R, R)-PCP-OAc (5)	CHCl_{3}	-	rt	48 h	$8{ }^{\text {c }}$	16
12	$5 \%(R, R)-\mathrm{PCP}-\mathrm{Cl} / 10 \% \mathrm{AgClO}_{4}$	CHCl_{3} /acetone (8:1)	DBU	-80	15 h	$29^{\text {c }}$	8
13	2.5\% $\mathrm{Pd}_{2} \mathrm{dba}_{3} / 6 \%(\mathrm{R})$-BINAP	CHCl_{3} /acetone (8:1)	DBU	-80	15 h	$16^{\text {c }}$	3
14	5\% Pd(OAc) 2 / 6\% (R)-BINAP	CHCl_{3}	DBU	-40	65 h	no reaction	N.D.
15	5\% [(R)-BINAP]-PdCl $/ 10 \% \mathrm{AgClO}_{4}$	CHCl_{3}	DBU	-40	65 h	no reaction	N.D.
16	5\% (R)-CN	CHCl_{3}	DBU	-40	65 h	no reaction	N.D.
17	5\% (R,R)-NCS	CHCl_{3}	DBU	-40	65 h	no reaction	N.D.
18	5\% Pd(OAc) 2 / 6\% (R)-QUINAP	CHCl_{3}	DBU	-40	65 h	no reaction	N.D.
19	5\% Pd(OAc) ${ }_{2} / 6 \%$ (R)-MeO-BIPHEP	CHCl_{3}	DBU	-40	65 h	no reaction	N.D.
20	5\% (R)-9	CHCl_{3} /acetone (8:1)	DBU	-80	40 h	$30^{\text {c }}$	0
21	5\% (S)-10	CHCl_{3} /acetone (8:1)	DBU	-80	24 h	$54^{\text {c }}$	-15
22	5\% (R)-CP (4)	CHCl_{3}	DMA ${ }^{\text {d }}$	-40	24 h	no reaction	N.D.
23	5\% (R)-CP (4)	CHCl_{3}	DMA ${ }^{\text {d }}$	rt	15 h	61	4

24	5\% (R)-CP (4)	CHCl_{3}	DBU	-40	24 h	99	36
25	5\% (R)-CP (4)	CHCl_{3}	TBDe, ${ }^{\text {h }}$	-40	3 h	99	34
26	5\% (R)-CP (4)	CHCl_{3}	TMG ${ }^{\text {f,h }}$	-40	3 h	99	38
27	5\% (R)-CP (4)	CHCl_{3}	DABCO	-40	65 h	30	39
28	5\% (R)-CP (4)	MeCN	$\mathrm{Et}_{3} \mathrm{~N}$	-40	65 h	99	29
29	5\% (R)-CP (4)	toluene	$\mathrm{Et}_{3} \mathrm{~N}$	-40	65 h	57	17
30	5\% (R)-CP (4)	DCM	$\mathrm{Et}_{3} \mathrm{~N}$	-40	72 h	95	31
31	5\% (R)-CP (4)	DCM	$\mathrm{Et}_{3} \mathrm{~N}$	-80	72 h	60	40
32	5\% (R)-CP (4)	acetone	$\mathrm{Et}_{3} \mathrm{~N}$	-40	72 h	99	28
33	5\% (R)-CP (4)	$\mathrm{Et}_{2} \mathrm{O}$	$\mathrm{Et}_{3} \mathrm{~N}$	-40	65 h	32	25
34	5\% (R)-CP (4)	THF	$\mathrm{Et}_{3} \mathrm{~N}$	-40	65 h	7	35
35	5\% (R)-CP (4)	neat	$\mathrm{Et}_{3} \mathrm{~N}$	-40	24 h	47	10
36	5\% (R)-CP (4)	$\mathrm{MeOH}^{\text {h }}$	$\mathrm{Et}_{3} \mathrm{~N}$	-40	40 h	99	36
37	5\% (R)-CP (4)	EtOH	$\mathrm{Et}_{3} \mathrm{~N}$	-40	40 h	75	29
38	5\% (R)-CP (4)	iPrOH	$\mathrm{Et}_{3} \mathrm{~N}$	-40	40 h	79	23
39	5\% (R)-CP (4)	DCE	$\mathrm{Et}_{3} \mathrm{~N}$	-40	40 h	28	38
40	5\% (R)-CP (4)	$\mathrm{CHBr}_{3} / \mathrm{DCM}$ (1:1)	$\mathrm{Et}_{3} \mathrm{~N}$	-40	40 h	no reaction	N.D.
41	5\% (R)-CP (4)	$\mathrm{CHCl}_{3} /$ acetone (5:1)	$\mathrm{Et}_{3} \mathrm{~N}$	-80	17 h	78	49
42	10\% (R)-CP (4)	CHCl_{3} /acetone (8:1)	$\mathrm{Et}_{3} \mathrm{~N}$	-80	96 h	60	53
43	10\% (R)-CP (4)	CHCl_{3} /acetone (8:1)	DBU	-80	24 h	94 (78\%) ${ }^{\text {s }}$	55
44	10\% (R)-CP (4)	$\mathrm{CHCl}_{3} / \mathrm{THF}(8: 1)$	DBU	-80	24 h	90	55

${ }^{\text {a }}$ Conversion was determined by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR measurement of the crude mixture. ${ }^{\mathrm{b}}$ Enantiomeric excess was
 dimethylaniline. ${ }^{\text {eTBD: }}$ 1,5,7-triazabicyclo[4.4.0]dec-5-ene. ${ }^{\text {fTMG: 1,1,3,3-tetramethylguanidine. }{ }^{\text {II }} \text { solated yield }}$ in parentheses. ${ }^{\text {h}}$ Remark: Methanol as solvent, TBD and TMG as external bases were reasonable choices based on these results; however, at $-80^{\circ} \mathrm{C}$ the obtained selectivity was low in the test reactions on substrate 3 ca .

2. Mechanistic studies

a) Role of palladium and base:

Table S2 Control experiments for mechanistic investigations.

Entry	Catalyst [mol\%]	Solvent	Base (1 equiv)	$\mathrm{T}\left[{ }^{\circ} \mathrm{C}\right]$	t	Conversion [
1	-	acetone	-	rt	15 h	8
2	-	acetone	$\mathrm{Et}_{3} \mathrm{~N}$	rt	15 h	13
3	$5 \% \mathrm{Pd}(\mathrm{OAc})_{2}$	acetone	$\mathrm{Et}_{3} \mathrm{~N}$	rt	1.5 h	$87(80)^{\mathrm{b}}$

${ }^{\text {a }}$ The conversion was calculated based on the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR measurement of the crude mixture. ${ }^{\text {b }}$ Isolated yield in parentheses.

Table S2, entry 1: In the first test reaction, neither catalyst nor base was added to the reaction mixture. The product was formed in 8% conversion based on ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR measurement during overnight.

Table S2, entry 2: In case if 1 equivalent triethylamine was added to the reactants, the conversion was slightly higher (13\%).

Table S2, entry 3: If both palladium salt and triethylamine was applied, after 1,5 hours reaction time, 6ai was produced in 87% NMR conversion and it was isolated in 80% yield. The presence of the base and the palladium salt significantly accelerated the reaction.

b) Coordination studies for catalyst-substrate interaction:

Our previous studies on asymmetric hydrophosphination of activated alkenes proved that the $\mathrm{P}-\mathrm{H}$ addition can occur either via intra- ${ }^{1,2}$ or intermolecular ${ }^{3}$ mechanism in the presence of palladacycle catalyst. In order to confirm any possible catalyst-substrate interaction between (R)-4 and 1a, coordination studies were conducted.

Coordination experiment 1:

At first, equivalent amount of palladacycle and diazo substrate were mixed in CDCl_{3} at room temperature, then multi nuclei NMR spectra were recorded of the mixture after 15 minutes. The observed spectra were compared with the pure (R)-4 and 1a NMR spectra (Figure S1).

Figure S1 Comparison of the ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $(R)-4$ (blue), $\mathbf{1}$ a (red) and coordination experiment 1 (green).

Full spectra

Figure S2 Comparison of the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of (R) -4 (blue), 1a (red) and coordination experiment 1 (green).

Figure S3 Comparison of the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of (R) - $\mathbf{4}$ (blue) and coordination experiment 1 (green).

In coordination experiment 1 established the interaction between $(R) \mathbf{- 4}$ and 1a. New chemical peaks appeared in both the ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra after mixing the reactants in stoichiometric amount. Unfortunately, we were unable to fully characterize any exact structure based on these measurements; however, some general considerations have been made. Diazo compounds are known to develop various coordination modes to transition metals: ${ }^{4-9}$

Among these structures, the monodentate coordination to the metal center via the α-carbon is well established, as the first step of metal carbene synthesis from diazo compounds. ${ }^{10-12}$ Upon coordination, the α-carbon becomes highly electron-deficient in this species due to electron donation to the metal center. In the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(\mathrm{CDCl}_{3}\right)$ NMR spectrum of coordination experiment 1, a new singlet peak can be detected in the low field region at $\delta 186.4 \mathrm{ppm}$ after substrate addition. This peak also indicates the presence of an electron-deficient carbon. This observation supports the plausible monocoordination of the α-carbon to the palladium.

Coordination experiment 2:

In order to prove or exclude any possible interaction between the diazoester's oxygen atom and the palladium, we performed control experiment 2 by mixing stoichiometric amount of (R)-4 and ethyl phenylacetate. In this case, we did not observe any interaction between the reactants.

Figure S4 Comparison of the ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $(R)-4$ (blue), ethyl phenylacetate (red) and coordination experiment 2 (green).

Figure S5 Comparison of the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $(R)-4$ (blue), ethyl phenylacetate (red) and coordination experiment 2 (green).

Coordination experiment 3:

To gain more information on the substrate's coordination mode in the presence of phosphines, further control experiments were performed:

STEP 1:

For this coordination study, triphenylphosphine was used to replace the secondary phosphine, to avoid any product formation and to allow us to examine the coordinating properties. In the first step, stoichiometric amount of palladacycle was mixed with triphenylphosphine at room temperature, then multi nuclei NMR spectra were recorded after 15 minutes.

Figure $\mathbf{S 6}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of STEP 1.

Figure $\mathbf{S 7}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of STEP 1.

Figure S8 ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of STEP 1.

At this stage, the recorded ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}\left(\mathrm{CDCl}_{3}\right) \mathrm{NMR}$ spectrum shows two pairs of doublets, which are consistent to the formation of two isomers, compound \mathbf{A} and \mathbf{B} in 1 to 0.3 ratio. Significantly higher coupling constant $\left(\mathrm{d}, \mathrm{J}_{\mathrm{PP}(\text { trans }}=361.5 \mathrm{~Hz}\right.$) belongs to the trans P-Pd-P moiety in compound \mathbf{A} (at $\delta 57.25$ and 25.72 ppm), compared to the cis P-Pd-P fragment ($\mathrm{d}, \mathrm{J}_{\mathrm{PP}(\mathrm{cis})}=29 \mathrm{~Hz}$) in case of compound B (at $\delta 62.83$ and 17.42 ppm). The observed ratio of the generated complexes indicates that the coordination of the triphenylphosphine to the cis position is less favorable compared to trans to the palladacycle's phosphorus atom. This phenomenon is consistent to our previous studies on the stereoelectronic properties of the CP palladacycle complex, which established that the aromatic carbon donor of the metallacycle induces a significantly stronger trans-influence than the phosphorus atom. ${ }^{13}$ Due to the significant electron withdrawing effect of the aromatic ring, the d-orbitals of the palladium are less available for backdonation in trans position to the carbon donor. The weaker backdonation indicates more labile ligand coordination to this site. This feature is important in our proposed mechanism.

STEP 2

In the second step of our control experiment, equivalent amount of α-diazoacetate was introduced to the same reaction mixture, followed by the spectroscopic measurements after 15 minutes stirring:

Figure S9 ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of STEP 2.

Figure S10 ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of STEP 2.

Figure S11 ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of STEP 2.

NMR spectroscopic measurements revealed that interactions between the diazo substrate and the complexes arose, just as we have seen it in the first coordination study. In the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(\mathrm{CDCl}_{3}\right) \mathrm{NMR}$ spectrum, the singlet carbon peak in the low field (at $\delta 186.4 \mathrm{ppm}$) was detected again, as in the previous experiment. In this case, we predict only trans coordination to the aromatic carbon donor, due to the labile ligand interaction at this position. The diazo substrate's coordination properties are not strong enough to replace the coordinated phosphines in the cis position to the carbon donor. The recorded ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}\left(\mathrm{CDCl}_{3}\right) \mathrm{NMR}$ spectrum at this stage shows similar chemical peak pattern as we observed in the first step of this experiment (STEP 1); however, a few new minor peaks arose upon the diazoester addition. This suggests the formation of new species in the reaction mixture; however, the small intensity indicates continuous coordination-decoordination between the diazo acetate and the palladium complexes. Bidentate substrate coordination in this case can be excluded, due to the single coordination site available at one time around the metal center.

The special electronic features of the palladacycle is one of the reasons why we did not observe any nitrogen molecule elimination from the diazoester. As we have mentioned above, the diazo compounds tend to coordinate to transition metals via the α-carbon to generate metal carbene species via nitrogen elimination. In the Fisher type metal carbenes, the sp^{2}-hybridized carbenic carbon donates σ electrons to the vacant d-orbital of the metal and at the same time, π-backdonation takes place from the metal's d-orbital to the available p-orbital of the carbon. Since the CP-ligand scaffold of the applied palladacycle catalyst ($(R)-4)$ develops significant backdonation from the palladium to both of the phosphorus and the aromatic carbon donor, the d-orbitals of the metal are much less available for backdonation to the coordinating diazosubstrate. This is one of the reasons why the formation of metal carbene species was not observed in our case; however, further investigations are necessary to establish this statement.

Coordination experiment 4:

The first step of the proposed mechanism is the replacement of the coordinated acetonitrile molecules of complex 4 to secondary phosphines. In our proposed mechanism, intermediate A contains two molecules of phosphines coordinated to the metal center. To experimentally prove the existence of intermediate \mathbf{A}, the following coordination experiment was performed:

In this experiment, 1 equivalent of $\mathbf{4}$ was mixed with 2 equivalents of $\mathbf{2 i}$ at room temperature in chloroform. After 15 minutes, multi-nuclei NMR spectra were recorded (Figures S12 to S14). By analyzing the ${ }^{31} P\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the experiment (Figure S14), it can be clearly seen that all the diphenylphosphine molecules took part in the coordination, which is supported by the absence of the non-coordinated diphenylphosphine chemical peak at -40 ppm . The chemical peak at 59.5 ppm belongs to the phosphorus of the bidentate ligand scaffold (integration value: 1) and the chemical peaks at -7.4 ppm (integration value: 2) support the coordination of the phosphine compounds to the palladium. The observed broad peaks and the absence of P-P coupling represent labile ligand coordination.

Figure $\mathbf{S 1 2}{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of coordination experiment 4 .

Figure $\mathbf{S 1 3}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of coordination experiment 4 .

Figure S14 ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of coordination experiment 4.

Considering all of the results of our control investigations, we have proposed a possible intramolecular mechanism for the diazoacetate phosphination:

In the first step of the proposed mechanism, the secondary phosphines occupy the two available coordination sites around the palladium center (\mathbf{A}). The next step is the coordination of the diazoester, followed by the deprotonation of the racemic secondary phosphine by external base to generate a prochiral phosphido species (B). Nucleophilic attack on the terminal nitrogen of the coordinated diazoester by the phosphide species (C) results in the formation of a five-member chelate to the palladium (D). Noteworthy to mention, that according to our previous findings, asymmetric hydrophosphinations of activated alkenes proceed via six-member ring at this stage of the catalytic cycle. ${ }^{1,2}$ Due to the rigid nature of the five-member ring, this can be an explanation why the phosphination of the diazoacetates are significantly slower compared to the alkene substrates. In the last step of the catalytic cycle, a new set of diarylphosphines coordinate to palladium causing the elimination of the final product and regeneration of the active catalyst (\mathbf{E} to \mathbf{A}).

3. NMR spectra

Figure $\mathbf{S 1 5}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{2 a}$.

Figure S16 ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 2a.

Figure $\mathbf{S 1 7}{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of $\mathbf{2 a}$.

Figure $\mathbf{S 1 8}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{2 b}$.

Figure S19 ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{2 b}$.

Figure S20 ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of $\mathbf{2 b}$.

\qquad

T	1	1	1	1	1	1	1	1	1	
250	200	150	100	50	$\stackrel{0}{\mathrm{f} 1(\mathrm{ppm})}$	-50	-100	-150	-200	-250

Figure S21 ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{2 c}$.

Figure $\mathbf{S 2 2}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of $\mathbf{2 c}$.

Figure S23 ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 2c.

$\vec{\sigma}$
$\underset{\sim}{0}$

Figure S24 ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{2 d}$.
$\stackrel{m}{i}$

Figure S25 ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR（ $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）spectrum of 2d．
 na m m m m m m mor mor
$\stackrel{\sim}{\circ} \underset{\sim}{\mathrm{m}}$

Figure $\mathbf{S 2 6}{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR（ $162 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）spectrum of $\mathbf{2 d}$ ．

Figure $\mathbf{S 2 7}{ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）spectrum of $\mathbf{1 b}$ ．
\qquad

$1 b$

Figure S28 ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR（ $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）spectrum of $\mathbf{1 b}$ ．

路 会 哭

Figure S29 ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{1 d}$.

Figure $\mathbf{S 3 0}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of 1 d .

$\stackrel{\rightharpoonup}{i}$

Figure $\mathbf{S 3 1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3aa.

$\stackrel{n}{\sim}$

Figure $\mathbf{S 3 2}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum 3aa.

Figure S33 ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 3aa.

1	1	1	1	1	1	1	I	1	1	T
250	200	150	100	50	$\stackrel{0}{\mathrm{f} 1(\mathrm{ppm})}$	-50	-100	-150	-200	-250

Figure S34 ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{6 a a}$.

in Nicn

Figure S35 ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum 6aa.

Figure S36 ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 6aa.

\sim

Figure $\mathbf{S 3 7}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{6 b a}$.

Figure $\mathbf{S 3 8}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum $\mathbf{6 b a}$.

Figure S39 ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{6 b a}$.

Figure $\mathbf{S 4 0}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{6 c a}$.

$\stackrel{m}{i} \stackrel{8}{i}$

Figure S41 ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum $\mathbf{6 c a}$.

Figure S42 ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{6 c a}$.

Figure $\mathbf{S 4 3}{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of $\mathbf{6 c b}$.

Figure $\mathbf{S 4 4}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum $\mathbf{6 c b}$.

Figure $\mathbf{S 4 5}{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of $\mathbf{6 c b}$.
-26.08

		1	1	1						
250	200	150	100	50	$\begin{gathered} 0 \\ \mathrm{f1}(\mathrm{ppm}) \end{gathered}$	-50	-100	-150	-200	-250

Figure $\mathbf{S 4 6}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{6 d b}$.

Figure $\mathbf{S 4 7}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum $\mathbf{6 d b}$.

Figure S48 ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{6 d b}$.

Figure $\mathbf{S 4 9}{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{6 b c}$.

$\stackrel{\sim}{\sim}$
$\stackrel{N}{i}$

Figure $\mathbf{S 5 0}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum $\mathbf{6 b c}$.

Figure $\mathbf{S 5 1}{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR（ $162 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）spectrum of $\mathbf{6 b c}$ ．

Figure $\mathbf{S 5 2}{ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）spectrum of $\mathbf{6 c c}$ ．

$\stackrel{\text { n }}{i}$

べNNNNNNNNNNNNNNNNNNNNN゙N

\qquad
μ

Figure $\mathbf{S 5 3}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum $\mathbf{6 c c}$.

Figure S54 ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{6 c c}$.

Figure $\mathbf{S 5 5}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{6 c d}$.

Figure $\mathbf{S 5 6}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum $\mathbf{6 c d}$.

Figure $\mathbf{S 5 7}{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of $\mathbf{6 c d}$. $\stackrel{\stackrel{y}{\sim}}{\stackrel{\sim}{n}}$

Figure $\mathbf{S 5 8}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{6 c e}$.

Figure $\mathbf{S 5 9}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum $\mathbf{6 c e}$.

Figure $\mathbf{S 6 0}{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{6 c e}$.

Figure $\mathbf{S 6 1}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture, de=68\%) spectrum of (R, S, R, R)-6eb (major isomer).

シíN

Figure $\mathbf{S 6 2}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture, de=68\%) spectrum (R, S, R, R)-6eb (major isomer).

Figure $\mathbf{S 6 3}{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture, de=68\%) spectrum of (R, S, R, R)-6eb (major isomer).

Figure $\mathbf{S 6 4}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture, de=70\%) spectrum of (R, S, R, S)-6eb (major isomer).

Figure $\mathbf{S 6 5}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, mixture, de=$=70 \%$) spectrum (R, S, R, S)-6eb (major isomer).

Figure $\mathbf{S 6 6}{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture, de=70\%) spectrum of $(R, S, R, S$)-6eb (major isomer).

Figure $\mathbf{S 6 7}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 6ai.

Figure $\mathbf{S 6 8}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum 6ai.

Figure $\mathbf{S 6 9}{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of 6ai.

$$
\begin{aligned}
& \underset{\sim}{0} \\
& \underset{\sim}{1}
\end{aligned}
$$

$\mathrm{Ph}_{2} \mathrm{P}_{\mathrm{N}}^{\mathrm{N}} \mathrm{N}$
6ai

Figure $\mathbf{S 7 0}{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of $\mathbf{8 a}$.

Figure $\mathbf{S 7 1}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum 8a.

Figure $\mathbf{S 7 2}{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of $\mathbf{8 a}$.
$\stackrel{\leftrightarrow}{\infty}$

Figure $\mathbf{S 7 3}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{8 b}$.

Figure $\mathbf{S 7 4}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum $\mathbf{8 b}$.

Figure $\mathbf{S 7 5}{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of $\mathbf{8 b}$.

4. HPLC spectra

The enantioselectivities of the asymmetric hydrophosphination reactions were determined with Agilent 1200 Series HPLC machine fitted with specified Daicel Chiralpak columns eluted with a mixture of n -hexane/2-propanol. The samples were prepared in 2-propanol. The solvent peaks (if any) appear at the beginning of the HPLC spectra (within 6 minutes retention time).

Figure S76 Racemic HPLC spectrum of 3aa.

HPLC column: Daicel Chiralpak IE,
Temperature: $23^{\circ} \mathrm{C}$,
Flow rate: $1 \mathrm{ml} / \mathrm{min}$.;
Eluent system: Hexane/IPA (90:10)

Figure $\mathbf{S 7 7}$ Asymmetric HPLC spectrum of 3aa.

HPLC column: Daicel Chiralpak IE, Temperature: $23^{\circ} \mathrm{C}$, Flow rate: $1 \mathrm{ml} / \mathrm{min}$.; Eluent system: Hexane/IPA (90:10)
$e e=55 \%$

Figure S78 Racemic HPLC spectrum of (\pm)-6aa.

Signal 2: MWD1 B, Sig=254,16 $\operatorname{Ref}=360,100$

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \text { \% } \end{gathered}$
1	23.773		0.7859	7582.41943	160.80194	49.8915
2	25.915		0.9082	7615.40332	139.75473	50.1085

25.915 FM	0.9082	7615.40332	139.75473	50.1085
Totals :	1.51978 e 4	300.55667		

HPLC column: Daicel Chiralpak IE,
Temperature: $23^{\circ} \mathrm{C}$,
Flow rate: $1 \mathrm{ml} / \mathrm{min}$.;
Eluent system: Hexane/IPA (60:40)

Figure S79 Asymmetric HPLC spectrum of (R)-6aa.

Signal 2: MWD1 B, Sig=254,16 Ref=360,100

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	23.260	MF	0.8581	3.83763 e 4	745.40894	77.3830
2	25.806		0.9460	1.12164 e 4	197.60953	22.6170
Total	s :			$4.95927 e 4$	943.01846	

HPLC column: Daicel Chiralpak IE,
Temperature: $23^{\circ} \mathrm{C}$,
Flow rate: $1 \mathrm{ml} / \mathrm{min}$.;

Eluent system: Hexane/IPA (60:40), ee=55\%

Figure S80 Asymmetric HPLC spectrum of (S)-6aa.

(S)-6aa was synthesized by using (S)-CP (4) catalyst for the transformation.

Figure S81 Racemic HPLC spectrum of (\pm)-6ba.

HPLC column: Daicel Chiralpak IE,
Temperature: $23^{\circ} \mathrm{C}$,
Flow rate: $1.2 \mathrm{ml} / \mathrm{min}$.;

Totals :
$2.94049 e 4 \quad 408.61540$
Eluent system: Hexane/IPA (60:40)

Figure S82 Asymmetric HPLC spectrum of (R)-6ba.

Signal 2: MWD1 B, Sig=254, 16 Ref=360, 100

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \mathrm{~S}]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	25.830		0.9731	7747.16357	121.29618	23.0847
2	29.342		1. 2283	2.58126 e 4	320.25778	76.9153

Totals :

$$
3.35598 e 4 \quad 441.55396
$$

HPLC column: Daicel Chiralpak IE,
Temperature: $23^{\circ} \mathrm{C}$,
Flow rate: $1.2 \mathrm{ml} / \mathrm{min}$;
Eluent system: Hexane/IPA (60:40)

Figure S83 Racemic HPLC spectrum of (\pm)-6ca.

Signal 2: MWD1 B, Sig=254,16 $\operatorname{Ref}=360,100$

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[m A U^{*} s\right]} \end{gathered}$	Height [mAU]	Area \%
1	20.666		0.6264	3.86713 e 4	939.17560	47.7025
2	22.781		0.6721	$4.23965 e 4$	936.62646	52.2975
Total	S :			8.10678 e 4	1875.80206	

HPLC column: Daicel Chiralpak IE,
Temperature: $23^{\circ} \mathrm{C}$,
Flow rate: $1 \mathrm{ml} / \mathrm{min}$.;
Eluent system: Hexane/IPA (70:30)

Figure S84 Asymmetric HPLC spectrum of (R)-6ca.

Silgnal 2: MWD1 B, Sig=254,16 Ref=360,100

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	```RetTime [min]```	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \mathrm{~s}]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	20.906	BV	0.5628	5405.74219	145.71727	21.2099
2	22.664	VB	0.6971	2.00812 e 4	423.53925	78.7901

Totals : $2.54869 \mathrm{e} 4 \quad 569.25652$

HPLC column: Daicel Chiralpak IE,
Temperature: $23^{\circ} \mathrm{C}$,
Flow rate: $1 \mathrm{ml} / \mathrm{min}$.;
Eluent system: Hexane/IPA (70:30)
$e e=58 \%$

Figure S85 Racemic HPLC spectrum of (\pm)-6cb.

Signal 8: MWD1 H,	$g=22$	6 Ref=36			HPLC column: Daicel Chiralpak ID,
```Peak RetTime Type # [min]```	$\begin{gathered} \text { width } \\ \text { [min] } \end{gathered}$	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \mathrm{~s}]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	Area $\%$	Temperature: $23{ }^{\circ} \mathrm{C}$,
1 13.569 MF	0.4553	7466.93555	273.31036	47.7224	Flow rate: $1 \mathrm{ml} / \mathrm{min} . ;$
214.812 FM	0.4806	8179.67773	283.66522	52.2776	
Totals :		1.56466 e 4	556.97559		Eluent system: Hexane/IPA (85:15)

Figure $\mathbf{S 8 6}$ Asymmetric HPLC spectrum of (R)-6cb.


Signal 8: MWD1 H, Sig=220, 16 Ref=360, 100

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime   [min]	Type	$\begin{gathered} \text { Width } \\ \text { [min] } \end{gathered}$	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{\star} \mathrm{s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	13.561		0.5744	5244.36475	146.94856	11.1906
2	14.670	VB	0.5666	4.16198 e 4	1138.20630	88.8094

Totals :
$e e=78 \%$

HPLC column: Daicel Chiralpak ID,
Temperature: $23^{\circ} \mathrm{C}$,
Flow rate: $1 \mathrm{ml} / \mathrm{min}$.;
Eluent system: Hexane/IPA (85:15)

Figure $\mathbf{S 8 7}$ Racemic HPLC spectrum of ( $\pm$ )-6db.


Signal 2: MWD1 B, Sig=254, 16 Ref $=360,100$

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { Ret Time } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	15.272	BV	0.4117	5494.72266	203.07724	51.7554
2	16.273	VB	0.4529	5121.99072	171.25340	48.2446
Totals :						

HPLC column: Daicel Chiralpak ID,
Temperature: $23^{\circ} \mathrm{C}$,
Flow rate: $1 \mathrm{ml} / \mathrm{min}$;
Eluent system: Hexane/IPA (70:30)

Figure $\mathbf{S 8 8}$ Asymmetric HPLC spectrum of ( $R$ )-6db.



HPLC column: Daicel Chiralpak ID,
Temperature: $23^{\circ} \mathrm{C}$,
Flow rate: $1 \mathrm{ml} / \mathrm{min}$.;
Eluent system: Hexane/IPA (70:30)
$e e=69 \%$

Figure S89 Racemic HPLC spectrum of ( $\pm$ )-6bc.



HPLC column: Daicel Chiralpak ID,
Temperature: $23^{\circ} \mathrm{C}$,
Flow rate: $1 \mathrm{ml} / \mathrm{min}$;
Eluent system: Hexane/IPA (85:15)

Figure S90 Asymmetric HPLC spectrum of (R)-6bc.


Figure $\mathbf{S 9 1}$ Racemic HPLC spectrum of ( $\pm$ )-6cc.


Peak \#	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{\star} \mathrm{s}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	Area $\%$
1	11.072		0.3776	1715.34119	71.07420	50.6176
2	14.377		0.5001	1673.48218	52.18726	49.3824
Total	s :			3388.82336	123.26146	

HPLC column: Daicel Chiralpak ID,
Temperature: $23^{\circ} \mathrm{C}$,
Flow rate: $1 \mathrm{ml} / \mathrm{min}$;
Eluent system: Hexane/IPA (90:10)

Figure S92 Asymmetric HPLC spectrum of (R)-6cc.


Figure S93 Racemic HPLC spectrum of ( $\pm$ )-6cd.


Peak \#	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \mathrm{~s}]} \end{gathered}$	Height   [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	16.223		0.4906	2.08155 e 4	707.11145	51.7992
2	17.407		0.5699	$1.93695 e 4$	566.47260	48.2008

Totals :
$4.01849 \mathrm{e} 4 \quad 1273.58405$

HPLC column: Daicel Chiralpak IE,
Temperature: $23^{\circ} \mathrm{C}$,
Flow rate: $1 \mathrm{ml} / \mathrm{min}$;
Eluent system: Hexane/IPA (70:30)

Figure $\mathbf{S 9 4}$ Asymmetric HPLC spectrum of (R)-6cd.


Figure S95 Racemic HPLC spectrum of ( $\pm$ )-6ce.


Peak \#	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width   [min]	$\begin{gathered} \text { Area } \\ {\left[m A U^{\star} s\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	23.565		0.5544	3449.41113	93.93780	49.6534
2	24.857		0.6107	3497.56641	85.60771	50.3466
Total	s :			6946.97754	179.54551	

Totals :

HPLC column: Daicel Chiralpak IE,
Temperature: $23^{\circ} \mathrm{C}$,
Flow rate: $1 \mathrm{ml} / \mathrm{min}$.;
Eluent system: Hexane/IPA (85:15)

Figure S96 Asymmetric HPLC spectrum of (S)-6ce.


Signa	1 2: MW	B,	$g=254$	6 Ref=36			HPLC column: Daicel Chiralpak IE,
Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width   [min]	$\begin{gathered} \text { Area } \\ {\left[m A U^{*} s\right]} \end{gathered}$	Height [mAU]	Area $\%$	Temperature: $23{ }^{\circ} \mathrm{C}$,
1	23.638		0.5345	2097.96777	59.33110	29.6196	Flow rate: $1 \mathrm{ml} / \mathrm{min}$
2	24.800		0.5957	4985.08008	124.35921	70.3804	Iow rate. 1 m//min.
Total	5 :			7083.04785	183.69032		Eluent system: Hexane/IPA (85:15)

$e e=41 \%$

Figure $\mathbf{S 9 7}$ Racemic HPLC spectrum of ( $\pm$ )-8a.


Signal 7: MWD1 G,	Sig=260	$6 \operatorname{Ref}=36$			HPLC column: Daicel Chiralpak ID,
```Peak RetTime Type # [min]```	Width   [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$	Temperature: $23{ }^{\circ} \mathrm{C}$,
$1 \quad 13.289 \mathrm{BV}$	0.3039	653.49774	33.16544	50.0957	Flow rate: $1 \mathrm{ml} / \mathrm{min}$;
214.129 VB	0.3361	651.00208	30.12320	49.9043	
Totals :		1304.49982	63.28863		Eluent system: Hexane/IPA (85:15)

Figure S98 Asymmetric HPLC spectrum of (R)-8a.

Figure $\mathbf{S 9 9}$ Racemic HPLC spectrum of (\pm)-8b.

HPLC column: Daicel Chiralpak IC,
Temperature: $23^{\circ} \mathrm{C}$,
Flow rate: $1 \mathrm{ml} / \mathrm{min}$.;
Eluent system: Hexane/IPA (80:20)

Figure S100 Asymmetric HPLC spectrum of (R)-8b.

Peak \#	$\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \mathrm{~s}]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	12.856		0.3536	6324.26270	269.68747	88.5531
2	16.045		0.4460	817.51233	27.56480	11.4469

Totals : $\quad 7141.77502 \quad 297.25227$
$e e=77 \%$

HPLC column: Daicel Chiralpak IC,
Temperature: $23^{\circ} \mathrm{C}$,
Flow rate: $1 \mathrm{ml} / \mathrm{min}$.;
Eluent system: Hexane/IPA (80:20)

5. Stereochemical investigation on 6eb.

Experiment 1:

(R, S, R, R)-6eb
$e e=67 \%$ (determined by chiral HPLC)
$d e=68 \%$ (determined by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR)
To identify the stereochemistry of the generated 6eb diastereomers at the first place, the isolated compounds were transformed to diarylphosphinates via acidic methanolysis. The enantiomeric excess of the generated enantioenriched diarylphosphinates were measured via chiral HPLC and the results were compared with the previous measurements (Figure S97 and S98). According to the investigation, $(R)-\mathbf{4}$ catalyst generated $(R, S, R, R)-6 \mathbf{e b}$, which was further derivatized to $(R)-\mathbf{8 b}$.

Figure S101 Asymmetric HPLC spectrum of (R)-8b generated from (R, S, R, R)-6eb.

Signal 2: MWD1 B, Sig=254,16 Ref=360,100

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & \text { [min] } \end{aligned}$	Type	$\begin{gathered} \text { Width } \\ {[\mathrm{min}]} \end{gathered}$	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	13.046	MM	0.3768	3139.10376	138.86555	83.6573
2	16.229	MM	0.4811	613.23328	21.24221	16.3427

Totals :
$e e=67 \%$

Experiment 2:

$d e=70 \%$ (determined by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$)

Figure S102 Asymmetric HPLC spectrum of (R) - $\mathbf{8 b}$ generated from (R, S, R, R)-6eb.

Signal 2: MWD1 B, Sig=254,16 $\operatorname{Ref}=360,100$

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{\star} \mathrm{s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	13.058		0.3429	6332.87012	278.85968	13.8680
2	16.191		0.4548	3.93326 e 4	1300.71960	86.1320

Totals :
$e e=72 \%$

HPLC column: Daicel Chiralpak IC,
Temperature: $23^{\circ} \mathrm{C}$,
Flow rate: $1 \mathrm{ml} / \mathrm{min}$.;
Eluent system: Hexane/IPA (80:20)

6. X-Ray measurement data

Crystallographic data of (R)-3aa.

Figure S103 ORTEP structure of compound (R)-3aa with ellipsoids at 50% probability.

A colorless block-like specimen of $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{PS}$, approximate dimensions $0.140 \mathrm{~mm} \times 0.180 \mathrm{~mm} \times 0.210 \mathrm{~mm}$, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured ($\lambda=0.71073 \AA$).

The total exposure time was 0.21 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using an orthorhombic unit cell yielded a total of 26681 reflections to a maximum θ angle of $35.63^{\circ}(0.61 \AA$ resolution $)$, of which 10359 were independent (average redundancy 2.576 , completeness $=99.5 \%, \mathrm{R}_{\text {int }}=5.44 \%, \mathrm{R}_{\text {sig }}=8.64 \%$) and $7687(74.21 \%)$ were greater than $2 \sigma\left(\mathrm{~F}^{2}\right)$. The final cell constants of $\underline{a}=8.3139(2) \AA, \underline{\mathrm{b}}=16.3794(3) \AA, \underline{c}=16.6172(4) \AA$, volume $=2262.88(9) \AA^{3}$, are based upon the refinement of the XYZ-centroids of 6880 reflections above $20 \sigma(\mathrm{I})$ with $5.479^{\circ}<2 \theta<69.38^{\circ}$. Data were corrected for absorption effects using the Multi-Scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.841 . The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.9520 and 0.9680 .

The structure was solved and refined using the Bruker SHELXTL Software Package, using the space group P 21 21 21, with $\mathrm{Z}=4$ for the formula unit, $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{PS}$. The final anisotropic full-matrix least-squares refinement on F^{2} with 274 variables converged at $\mathrm{R} 1=5.14 \%$, for the observed data and $w R 2=11.01 \%$ for all data. The goodness-of-fit was 1.027. The largest peak in the final difference electron density synthesis was $0.525 \mathrm{e}^{-} / \AA^{3}$ and the largest hole was $-0.479 \mathrm{e}^{-} / \AA^{3}$ with an RMS deviation of $0.079 \mathrm{e}^{-} / \AA^{3}$. On the basis of the final model, the calculated density was $1.281 \mathrm{~g} / \mathrm{cm}^{3}$ and $\mathrm{F}(000), 920 \mathrm{e}^{-}$.

Crystallization method: concentrated solution of pure (R)-3aa was prepared in DCM (20 mg compound in 2 mL solvent), followed by the slow addition Hexanes in small portions, over a period of one week.

Table S3. Sample and crystal data for (R)-3aa.

Identification code
Crystallization solvent
Chemical formula
Formula weight
Temperature
Wavelength

CCDC 1965254
DCM/ Hexanes
$\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{PS}$
$436.49 \mathrm{~g} / \mathrm{mol}$
100(2) K
0.71073 A

Crystal size	$0.140 \times 0.180 \times 0.210 \mathrm{~mm}$	
Crystal habit	colorless block	
Crystal system	orthorhombic	
Space group	P 212121	$\alpha=90^{\circ}$
Unit cell dimensions	$\mathrm{a}=8.3139(2) \AA$	$\beta=90^{\circ}$
	$\mathrm{b}=16.3794(3) \AA$	$\gamma=90^{\circ}$
	$\mathrm{c}=16.6172(4) \AA$	
Volume	$2262.88(9) \AA^{3}$	
Z	4	
Density (calculated)	$1.281 \mathrm{~g}^{\circ} \mathrm{cm}^{3}$	
Absorption coefficient	$0.236 \mathrm{~mm}^{-1}$	
F(000)	920	

Table S4. Data collection and structure refinement for (R)-3aa.

Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Coverage of independent reflections
Absorption correction
Max. and min. transmission
Structure solution technique
Structure solution program
Refinement method
Refinement program
Function minimized
Data / restraints / parameters
Goodness-of-fit on \mathbf{F}^{2}
$\Delta / \sigma_{\text {max }}$
Final R indices

Weighting scheme
Absolute structure parameter
Largest diff. peak and hole
R.M.S. deviation from mean
2.74 to 35.63°
$-13<=\mathrm{h}<=11,-26<=\mathrm{k}<=21,-27<=1<=24$
26681
$10359[\mathrm{R}($ int $)=0.0544]$
99.5\%

Multi-Scan
0.9680 and 0.9520
direct methods
XT, VERSION 2014/5
Full-matrix least-squares on F^{2}
SHELXL-2017/1 (Sheldrick, 2017)
$\Sigma \mathrm{w}\left(\mathrm{F}_{\mathrm{o}}{ }^{2}-\mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2}$
10359 / 0 / 274
1.027
0.001

7687 data; $\mathrm{I}>2 \sigma(\mathrm{I}) \mathrm{R} 1=0.0514, \mathrm{wR} 2=0.0919$
all data $\quad \mathrm{R} 1=0.0843, \mathrm{wR} 2=0.1101$
$\mathrm{w}=1 /\left[\mathrm{\sigma}^{2}\left(\mathrm{~F}_{\mathrm{o}}^{2}\right)+(0.0346 \mathrm{P})^{2}+0.5814 \mathrm{P}\right]$
where $\mathrm{P}=\left(\mathrm{F}_{\mathrm{o}}{ }^{2}+2 \mathrm{~F}_{\mathrm{c}}{ }^{2}\right) / 3$
0.06(3)
0.525 and $-0.479 \mathrm{e}^{-3}{ }^{-3}$
$0.079 \mathrm{e}^{-3}{ }^{-3}$

Crystallographic data of (R)-6ca.

Figure S104 ORTEP structure of compound (R)-6ca with ellipsoids at 50\% probability.
A colorless block-like specimen of $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{P}$, approximate dimensions $0.080 \mathrm{~mm} \times 0.120 \mathrm{~mm} \times 0.200 \mathrm{~mm}$, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured ($\lambda=0.71073 \AA$).

A total of 174 frames were collected. The total exposure time was 0.19 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using an orthorhombic unit cell yielded a total of 25200 reflections to a maximum θ angle of $29.60^{\circ}(0.72 \AA$ resolution), of which 6637 were independent (average redundancy 3.797 , completeness $=99.6 \%, \mathrm{R}_{\text {int }}=8.45 \%, \mathrm{R}_{\text {sig }}=8.00 \%$) and $5168(77.87 \%)$ were greater than $2 \sigma\left(\mathrm{~F}^{2}\right)$. The final cell constants of $\underline{a}=8.9507(3) \AA, \underline{b}=11.6512(5) \AA, \underline{c}=22.9288(9) \AA$, volume $=2391.16(16) \AA^{3}$, are based upon the refinement of the XYZ-centroids of 3997 reflections above $20 \sigma(\mathrm{I})$ with $4.984^{\circ}<2 \theta<55.26^{\circ}$. Data were corrected for absorption effects using the Multi-Scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.828 . The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.9720 and 0.9890 .

The structure was solved and refined using the Bruker SHELXTL Software Package, using the space group P 21 21 21, with $\mathrm{Z}=4$ for the formula unit, $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{P}$. The final anisotropic full-matrix least-squares refinement on F^{2} with 295 variables converged at $\mathrm{R} 1=5.89 \%$, for the observed data and $\mathrm{wR} 2=13.93 \%$ for all data. The goodness-of-fit was 1.057. The largest peak in the final difference electron density synthesis was $0.819 \mathrm{e}^{-} / \AA^{3}$ and the largest hole was $-0.414 \mathrm{e}^{-} / \AA^{3}$ with an RMS deviation of $0.070 \mathrm{e}^{-} / \AA^{3}$. On the basis of the final model, the calculated density was $1.246 \mathrm{~g} / \mathrm{cm}^{3}$ and $\mathrm{F}(000)$, $952 \mathrm{e}^{-}$.

Crystallization method: concentrated solution of pure (R)-6ca was prepared in DCM (20 mg compound in 2 mL solvent), followed by the slow addition Hexanes in small portions, over a period of one week.

Table S5. Sample and crystal data for (R)-6ca.

Identification code
Crystallization solvent
Chemical formula
Formula weight
Temperature
Wavelength
Crystal size

CCDC 1965253
DCM/ Hexanes
$\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{P}$
$448.48 \mathrm{~g} / \mathrm{mol}$
100(2) K
0.71073 Å
$0.080 \times 0.120 \times 0.200 \mathrm{~mm}$

Crystal habit	colorless block orthorhombic	
Crystal system	P 212121	$\alpha=90^{\circ}$
Space group	$\mathrm{a}=8.9507(3) \AA$	$\beta=90^{\circ}$
Unit cell dimensions	$\mathrm{b}=11.6512(5) \AA$	$\gamma=90^{\circ}$
	$\mathrm{c}=22.9288(9) \AA$	
Volume	$2391.16(16) \AA \AA^{3}$	
Z	4	
Density (calculated)	$1.246 \mathrm{~g} / \mathrm{cm}^{3}$	
Absorption coefficient	$0.144 \mathrm{~mm}^{-1}$	
F(000)	952	

Table S6. Data collection and structure refinement for (R)-6ca.

Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Coverage of independent reflections
Absorption correction
Max. and min. transmission
Structure solution technique
Structure solution program
Refinement method
Refinement program
Function minimized
Data / restraints / parameters
Goodness-of-fit on \mathbf{F}^{2}
$\Delta / \sigma_{\text {max }}$
Final R indices

Weighting scheme
Absolute structure parameter
Largest diff. peak and hole
R.M.S. deviation from mean
2.87 to 29.60°
$-12<=\mathrm{h}<=9,-15<=\mathrm{k}<=16,-30<=1<=31$
25200
$6637[\mathrm{R}(\mathrm{int})=0.0845]$
99.6\%

Multi-Scan
0.9890 and 0.9720
direct methods
XT, VERSION 2014/5
Full-matrix least-squares on F^{2}
SHELXL-2018/3 (Sheldrick, 2018)
$\Sigma \mathrm{w}\left(\mathrm{F}_{\mathrm{o}}{ }^{2}-\mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2}$
6637 / $0 / 295$
1.057
0.001

5168 data; $\mathrm{I}>2 \sigma(\mathrm{I}) \mathrm{R} 1=0.0589, \mathrm{wR} 2=0.1233$
all data $\quad \mathrm{R} 1=0.0874, \mathrm{wR} 2=0.1393$
$\mathrm{w}=1 /\left[\mathrm{\sigma}^{2}\left(\mathrm{~F}_{0}^{2}\right)+(0.0573 \mathrm{P})^{2}+0.7719 \mathrm{P}\right]$
where $\mathrm{P}=\left(\mathrm{F}_{\mathrm{o}}{ }^{2}+2 \mathrm{~F}_{\mathrm{c}}{ }^{2}\right) / 3$
0.25(16)
0.819 and $-0.414 \mathrm{e}^{-3}$
$0.070 \mathrm{e}^{-3}$

Crystallographic data of 6ai.

Figure S105 ORTEP structure of compound 6ai with ellipsoids at 50% probability.
A colorless needle-like specimen of $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{P}$, approximate dimensions $0.020 \mathrm{~mm} \times 0.040 \mathrm{~mm} \times 0.220 \mathrm{~mm}$, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured ($\lambda=0.71073 \AA$).

A total of 301 frames were collected. The total exposure time was 0.33 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using an orthorhombic unit cell yielded a total of 27042 reflections to a maximum θ angle of 32.57° (0.66 Å resolution), of which 7052 were independent (average redundancy 3.835 , completeness $=99.7 \%, \mathrm{R}_{\text {int }}=5.52 \%, \mathrm{R}_{\text {sig }}=5.83 \%$) and $6059(85.92 \%)$ were greater than $2 \sigma\left(\mathrm{~F}^{2}\right)$. The final cell constants of $\underline{a}=8.4671(2) \AA, \underline{\mathrm{b}}=10.4320(2) \AA, \underline{\mathrm{c}}=22.0317(4) \AA$, volume $=1946.03(7) \AA^{3}$, are based upon the refinement of the XYZ-centroids of 7853 reflections above $20 \sigma(\mathrm{I})$ with $5.154^{\circ}<2 \theta<64.81^{\circ}$. Data were corrected for absorption effects using the Multi-Scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.832 . The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.9640 and 0.9970 .

The structure was solved and refined using the Bruker SHELXTL Software Package, using the space group P 21 21 21, with $\mathrm{Z}=4$ for the formula unit, $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{P}$. The final anisotropic full-matrix least-squares refinement on F^{2} with 254 variables converged at $\mathrm{R} 1=4.38 \%$, for the observed data and $\mathrm{wR} 2=9.55 \%$ for all data. The goodness-of-fit was 1.066. The largest peak in the final difference electron density synthesis was $0.354 \mathrm{e}^{-/} / \mathrm{A}^{3}$ and the largest hole was $-0.343 \mathrm{e}^{-} / \AA^{3}$ with an RMS deviation of $0.059 \mathrm{e}^{-} / \AA^{3}$. On the basis of the final model, the calculated density was $1.339 \mathrm{~g} / \mathrm{cm}^{3}$ and $\mathrm{F}(000), 824 \mathrm{e}^{-}$.

Crystallization method: concentrated solution of pure 6ai was prepared in DCM (20 mg compound in 2 mL solvent), followed by the slow addition Hexanes in small portions, over a period of one week.

Table S7. Sample and crystal data for 6ai.

Identification code	CCDC 1965252
Crystallization solvent	$\mathrm{DCM} / \mathrm{Hexanes}$
Chemical formula	$\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{P}$
Formula weight	$392.38 \mathrm{~g} / \mathrm{mol}$
Temperature	$100(2) \mathrm{K}$

Wavelength	$0.71073 \AA$	
Crystal size	0.020 x 0.040 x 0.220 mm	
Crystal habit	colorless needle	
Crystal system	orthorhombic	
Space group	P 212121	$\alpha=90^{\circ}$
Unit cell dimensions	$\mathrm{a}=8.4671(2) \AA$	$\beta=90^{\circ}$
	$\mathrm{b}=10.4320(2) \AA$	$\gamma=90^{\circ}$
	$\mathrm{c}=22.0317(4) \AA$	
Volume	$1946.03(7) \AA^{3}$	
Z	4	
Density (calculated)	$1.339 \mathrm{~g} / \mathrm{cm}^{3}$	
Absorption coefficient	$0.167 \mathrm{~mm}^{-1}$	
F(000)	824	

Table S8. Data collection and structure refinement for 6ai.

Theta range for data collection Index ranges
Reflections collected
Independent reflections
Coverage of independent reflections
Absorption correction Max. and min. transmission
Structure solution technique
Structure solution program
Refinement method
Refinement program
Function minimized
Data / restraints / parameters
Goodness-of-fit on \mathbf{F}^{2}
Final \mathbf{R} indices

Weighting scheme
Absolute structure parameter
Largest diff. peak and hole
R.M.S. deviation from mean
2.69 to 32.57°
$-9<=\mathrm{h}<=12,-14<=\mathrm{k}<=15,-32<=1<=33$
27042
$7052[\mathrm{R}(\mathrm{int})=0.0552]$
99.7\%

Multi-Scan
0.9970 and 0.9640
direct methods
XT, VERSION 2014/5
Full-matrix least-squares on F^{2}
SHELXL-2018/3 (Sheldrick, 2018)
$\Sigma \mathrm{w}\left(\mathrm{F}_{\mathrm{o}}{ }^{2}-\mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2}$
7052 / 0 / 254
1.066

6059 data; $\mathrm{I}>2 \sigma(\mathrm{I}) \mathrm{R} 1=0.0438, \mathrm{wR} 2=0.0881$
all data $\quad \mathrm{R} 1=0.0580, \mathrm{wR} 2=0.0955$
$\mathrm{w}=1 /\left[\sigma^{2}\left(\mathrm{~F}_{\mathrm{o}}{ }^{2}\right)+(0.0371 \mathrm{P})^{2}+0.3454 \mathrm{P}\right]$
where $\mathrm{P}=\left(\mathrm{F}_{\mathrm{o}}{ }^{2}+2 \mathrm{~F}_{\mathrm{c}}{ }^{2}\right) / 3$
0.03(4)
0.354 and $-0.343 \mathrm{e}^{-3} \mathrm{~A}^{-3}$
$0.059 \mathrm{e}^{-3}$

Crystallographic data of (\pm) - 6 bc .

Figure S106 ORTEP structure of compound (\pm)-6bc with ellipsoids at 50% probability.

A colorless block-like specimen of $\mathrm{C}_{41} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{P}$, approximate dimensions $0.140 \mathrm{~mm} \times 0.200 \mathrm{~mm} \times 0.220 \mathrm{~mm}$, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured ($\lambda=0.71073 \AA$).

A total of 635 frames were collected. The total exposure time was 0.18 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using a triclinic unit cell yielded a total of 72111 reflections to a maximum θ angle of 29.58° ($0.72 \AA$ resolution), of which 19085 were independent (average redundancy 3.778, completeness $=99.6 \%, \quad \mathrm{R}_{\text {int }}=11.31 \%$, $\mathrm{R}_{\text {sig }}=11.50 \%$) and $9211(48.26 \%)$ were greater than $2 \sigma\left(\mathrm{~F}^{2}\right)$. The final cell constants of $\underline{a}=11.2032(6) \AA, \underline{b}=11.6162(6) \AA, \underline{c}=27.3632(15) \AA, \alpha=79.7546(18)^{\circ}, \beta=79.3863(19)^{\circ}, \gamma=80.302(2)^{\circ}$, volume $=3410.2(3) \bar{\AA}^{3}$, are based upon the refinement of the XYZ-centroids of 7188 reflections above $20 \sigma(\mathrm{I})$ with $4.810^{\circ}<2 \theta<59.06^{\circ}$. Data were corrected for absorption effects using the Multi-Scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.885 . The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.9740 and 0.9830 .

The structure was solved and refined using the Bruker SHELXTL Software Package, using the space group P -1 , with $\mathrm{Z}=4$ for the formula unit, $\mathrm{C}_{41} \mathrm{H}_{43} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{P}$. The final anisotropic full-matrix least-squares refinement on F^{2} with 859 variables converged at $\mathrm{R} 1=7.35 \%$, for the observed data and $\mathrm{wR} 2=20.41 \%$ for all data. The goodness-of-fit was 1.033 . The largest peak in the final difference electron density synthesis was $0.978 \mathrm{e}^{-} / \AA^{3}$ and the largest hole was $-0.543 \mathrm{e}^{-} / \AA^{3}$ with an RMS deviation of $0.076 \mathrm{e}^{-} / \AA^{3}$. On the basis of the final model, the calculated density was $1.252 \mathrm{~g} / \mathrm{cm}^{3}$ and $\mathrm{F}(000), 1368 \mathrm{e}^{-}$.

Crystallization method: concentrated solution of pure 6ai was prepared in DCM (20 mg compound in 2 mL solvent), followed by the slow addition Hexanes in small portions, over a period of one week.

Table S9. Sample and crystal data for (\pm)-6bc.

Identification code	CCDC 1965255	
Crystallization solvent	$\mathrm{DCM} / \mathrm{Hexanes}$	
Chemical formula	$\mathrm{C}_{41} \mathrm{H}_{43} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{P}$	
Formula weight	$642.74 \mathrm{~g} / \mathrm{mol}$	
Temperature	$100(2) \mathrm{K}$	
Wavelength	$0.71073 \AA$	
Crystal size	0.140 x 0.200 x 0.220 mm	
Crystal habit	colorless block	
Crystal system	triclinic	
Space group	$\mathrm{P}-1$	$\alpha=79.7546(18)^{\circ}$
Unit cell dimensions	$\mathrm{a}=11.2032(6) \AA$	$\beta=79.3863(19)^{\circ}$
	$\mathrm{b}=11.6162(6) \AA$	$\gamma=80.302(2)^{\circ}$
	$\mathrm{c}=27.3632(15) \AA$	
Volume	$3410.2(3) \AA^{3}$	
Z	4	
Density (calculated)	$1.252 \mathrm{~g} / \mathrm{cm}^{3}$	
Absorption coefficient	$0.123 \mathrm{~mm}^{-1}$	
F(000)	1368	

Table S10. Data collection and structure refinement for (\pm)-6bc.

Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Coverage of independent reflections
Absorption correction
Max. and min. transmission
Structure solution technique
Structure solution program
Refinement method
Refinement program
Function minimized
Data / restraints / parameters
Goodness-of-fit on \mathbf{F}^{2}
Final R indices

Weighting scheme
Largest diff. peak and hole
R.M.S. deviation from mean
2.30 to 29.58°
$-15<=\mathrm{h}<=15,-16<=\mathrm{k}<=14,-37<=\mathrm{l}<=37$
72111
$19085[\mathrm{R}(\mathrm{int})=0.1131]$
99.6\%

Multi-Scan
0.9830 and 0.9740
direct methods
XT, VERSION 2014/5
Full-matrix least-squares on F^{2}
SHELXL-2018/3 (Sheldrick, 2018)
$\Sigma \mathrm{w}\left(\mathrm{F}_{\mathrm{o}}{ }^{2}-\mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2}$
19085 / 0/859
1.033

9211 data; $\mathrm{I}>2 \sigma(\mathrm{I}) \mathrm{R} 1=0.0735$, $\mathrm{wR} 2=0.1574$
all data $\quad \mathrm{R} 1=0.1657, \mathrm{wR} 2=0.2041$
$\mathrm{w}=1 /\left[\sigma^{2}\left(\mathrm{~F}_{\mathrm{o}}{ }^{2}\right)+(0.0621 \mathrm{P})^{2}+2.3549 \mathrm{P}\right]$
where $\mathrm{P}=\left(\mathrm{F}_{\mathrm{o}}{ }^{2}+2 \mathrm{~F}_{\mathrm{c}}{ }^{2}\right) / 3$
0.978 and $-0.543 \mathrm{e}^{-3}$
$0.076 \mathrm{e}^{-3}$

5. References

1. Huang, Y.; Pullarkat, S. A.; Li, Y.; Leung, P.-H., Palladium(ii)-catalyzed asymmetric hydrophosphination of enones: efficient access to chiral tertiary phosphines. Chem. Comm. 2010, 46 (37), 6950-6952.
2. Huang, Y.; Pullarkat, S. A.; Li, Y.; Leung, P.-H., Palladacycle-Catalyzed Asymmetric Hydrophosphination of Enones for Synthesis of C^{*} - and P^{*}-Chiral Tertiary Phosphines. Inorg. Chem. 2012, 51 (4), 2533-2540.
3. Yang, X.-Y.; Gan, J. H.; Li, Y.; Pullarkat, S. A.; Leung, P.-H., Palladium catalyzed asymmetric hydrophosphination of α, β - and $\alpha, \beta, \gamma, \delta$-unsaturated malonate esters - efficient control of reactivity, stereo- and regio-selectivity. Dalton Trans. 2015, 44 (3), 1258-1263.
4. Messerle, L.; Curtis, M. D., Reaction of diaryldiazomethanes with a metal-metal triple bond: synthesis, structural characterizations, and reactivity of novel bridging diazoalkane and alkylidene complexes. J. Am. Chem. Soc. 1980, 102 (26), 7789-7791.
5. Maxwell, J. L.; Brown, K. C.; Bartley, D. W.; Kodadek, T., Mechanism of the Rhodium Porphyrin-Catalyzed Cyclopropanation of Alkenes. Science 1992, 256 (5063), 1544-1547.
6. Straub, B. F.; Rominger, F.; Hofmann, P., Transition metal α-carbonyl diazoalkane coordination chemistry: structures derived from a side-on diazomalonate platinum complex. Inorg. Chem. Comm. 2000, 3 (5), 214-217.
7. Straub, B. F., $\mathrm{Pd}(0)$ Mechanism of Palladium-Catalyzed Cyclopropanation of Alkenes by CH2N2: A DFT Study. J. Am. Chem. Soc. 2002, 124 (47), 14195-14201.
8. Harrold, N. D.; Corcos, A. R.; Hillhouse, G. L., Synthesis, structures, and catalytic reactivity of bis(N-heterocyclic carbene) supported diphenyldiazomethane and 1-azidoadamantane complexes of nickel. J. Org. Chem. 2016, 813, 46-54.
9. Rull, S. G.; Álvarez, E.; Fructos, M. R.; Belderrain, T. R.; Pérez, P. J., The Elusive PalladiumDiazo Adduct Captured: Synthesis, Isolation and Structural Characterization of [(ArNHC-PPh2)Pd(n2N2C(Ph)CO2Et)]. Chem. Eur. J. 2017, 23 (32), 7667-7671.
10. Wong, F. M.; Wang, J.; Hengge, A. C.; Wu, W., Mechanism of Rhodium-Catalyzed Carbene Formation from Diazo Compounds. Org. Lett. 2007, 9 (9), 1663-1665.
11. de Frémont, P.; Marion, N.; Nolan, S. P., Carbenes: Synthesis, properties, and organometallic chemistry. Coord. Chem. Rev. 2009, 253 (7), 862-892.
12. Xia, Y.; Qiu, D.; Wang, J., Transition-Metal-Catalyzed Cross-Couplings through Carbene Migratory Insertion. Chem. Rev. 2017, 117 (23), 13810-13889.
13. Jia, Y.-X.; Li, B.-B.; Li, Y.; Pullarkat, S. A.; Xu, K.; Hirao, H.; Leung, P.-H., Stereoelectronic and Catalytic Properties of Chiral Cyclometalated Phospha-palladium and -platinum Complexes. Organometallics 2014, 33 (21), 6053-6058.
