Residue	e Chemical shift (ppm)							
	NH	a-CH	β-CH	Other H	α-С			
Gly1	n.o*.	3.96, 3.85			42.1			
Phe2	8.63	4.64	3.22, 3.11	H2, H6 7.30	58.2			
				H3, H5 7.39				
				H4 7.36				
Gly3	8.57	4.03, 3.95			45.5			
Ala4	8.00	4.25	1.56		53.8			
Leu5	7.68	4.33	1.81	γ-CH 1.72	56.5			
				δ-CH ₃ 1.05, 0.97				
Phe6	8.01	4.35	3.28, 3.19	H2, H6 7.29	60.0			
				H3, H5 7.41				
				H4 7.37				
Lys7	7.96	4.08	2.03, 1.94	γ-CH ₂ 1.52, 1.42	58.4			
				δ-CH ₂ 1.79				
				ε-CH ₂ 3.07				
				ϵ -NH ₃ ⁺ n.o.				
Phe8	7.93	4.43	3.43, 3.35	H2, H6 7.36	59.7			
				H3, H5 7.40				
				H4 7.30				
Leu9	8.53	4.07	1.92, 1.69	γ-CH ₂ 1.96	56.9			
				δ-CH ₃ 1.01				
Ala10	8.42	4.01	1.44		54.2			
Lys11	7.70	4.13	2.06	γ-CH ₂ 1.62	58.0			
				δ-CH ₂ 1.96				
				ε-CH ₂ 3.06				
				ϵ -NH ₃ ⁺ n.o.				
Lys12	7.94	4.07	2.03	γ-CH ₂ 1.43	58.1			
				δ-CH ₂ 1.92				
				ε-CH ₂ 3.04				
				ϵ -NH ₃ ⁺ n.o.				
Val13	8.72	3.67	2.27	γ-CH ₃ 1.13, 1.02	66.1			
Ala14	8.30	4.11	1.63		54.7			
Lys15	8.19	4.15	2.08, 2.01	γ-CH ₂ 1.62	58.2			
				δ-CH ₂ 1.79				
				ε-CH ₂ 3.07				
				ϵ -NH ₃ ⁺ n.o.				
Thr16	8.02	4.05	4.61	γ-CH ₃ 1.37	66.1			
Val17	8.66	3.74	2.26	γ-CH ₃ 1.14, 1.04	65.6			
Ala18	8.25	4.19	1.63		54.1			

Table S1: ¹H and ¹³C chemical shifts for cupiennin 1a in TFE/H₂O.

Residue	Chemical shift (ppm)						
	NH	α-CH	β-CH	Other H	α-С		
Lys19	7.98	4.19	2.15, 2.09	γ-CH ₂ 1.63	58.2		
				δ-CH ₂ 1.84			
				ε-CH ₂ 3.09			
				ϵ -NH ₃ ⁺ n.o.			
Gln20	8.13	4.26	2.36, 2.30	γ-CH ₂ 2.59	57.0		
				δ-NH ₂ 7.25, 6.72			
Ala21	8.75	4.21	1.59		54.0		
Ala22	8.15	4.28	1.65		53.7		
Lys23	7.95	4.22	2.08	γ-CH ₂ 1.58	57.6		
				δ-CH ₂ 1.83, 1.77			
				ε-CH ₂ 3.09			
				ϵ -NH ₃ ⁺ n.o.			
Gln24	8.17	4.29	2.29	γ-CH ₂ 2.57	56.7		
				δ-NH ₂ 7.31, 6.74			
Gly25	8.35	4.10, 4.02			45.4		
Ala26	8.03	4.28	1.58		53.6		
Lys27	7.92	4.10	1.92	γ-CH ₂ 1.58	57.4		
				δ-CH ₂ 1.75			
				ε-CH ₂ 3.06			
				ϵ -NH ₃ ⁺ n.o.			
Tyr28	7.86	4.46	3.35, 3.19	H2, H6 7.25	59.2		
				H3, H5 6.92			
Val29	7.90	3.84	2.32	γ-CH ₃ 1.20, 1.06	64.3		
Val30	8.20	3.90	2.20	γ-CH ₃ 1.14, 1.06	64.3		
Asn31	8.15	4.61	2.95, 2.88	γ-NH ₂ 7.54, 6.73	54.6		
Lys32	8.15	4.17	1.96, 1.94	γ-CH ₂ 1.50	57.0		
				δ-CH ₂ 1.76			
				ε-CH ₂ 3.06			
				ϵ -NH ₃ ⁺ n.o.			
Gln33	8.31	4.27	2.28	γ-CH ₂ 2.53	56.8		
				δ-NH ₂ 7.18, 6.62			
Met34	8.20	4.46	2.26	γ-CH ₂ 2.81, 2.68	55.7		
				ε-CH ₃ 2.24			
Glu35	7.93	4.38	2.29, 2.19	γ-CH ₂ 2.68, 2.59	55.0		
				CONH ₂ 7.31, 7.00			

Table S1 (continued):

*n.o. indicates resonance was not observed.

Figure S1: Partial TOCSY and NOESY spectra of cupiennin 1a in TFE/ H_2O . Vertical lines connect resonances of the same spin system. NOEs between sequential amide protons are indicated in the NOESY spectrum.

Figure S3: Ramachandran plot for cupiennin 1a in TFE/H₂O (1:1 v/v). Favourable regions for α -helices are labelled A, allowable and generous regions are labelled a and ~a, respectively. Gly residues are indicated by \blacktriangle , remaining residues are indicated by \bullet , and well-defined residues are indicated by filled symbols.

Figure S4: Plot of the angular order parameters $S\phi$ (black) and $S\psi$ (grey) for the individual residues of cupiennin 1a in TFE/H₂O (1:1 v/v).

Figure S5: (A) ²H NMR spectra of d_{54} -DMPC in DMPC MLV at 30°C. The dashed line represents the spectrum of the lipid sample alone while the solid line represents the spectrum with cupiennin 1a (1:40); and (B) Molecular order parameter profiles of chain perdeuterated DMPC, for DMPC MLV (upper) and DMPC/DMPG MLV (lower). The order parameter S_{CD} at 30°C is expressed in relation to acyl chain carbon position. —O— represents the order parameters of lipid alone, while —**I**— represents the order parameters upon addition of cupiennin 1a.

