Preparation of uniform rich cholesterol unilamellar nanovesicles using CO₂-expanded solvents

Mary Cano-Sarabia,[†] Nora Ventosa,^{*,†} Santi Sala,[†] Cristina Patiño,[‡] Rocío

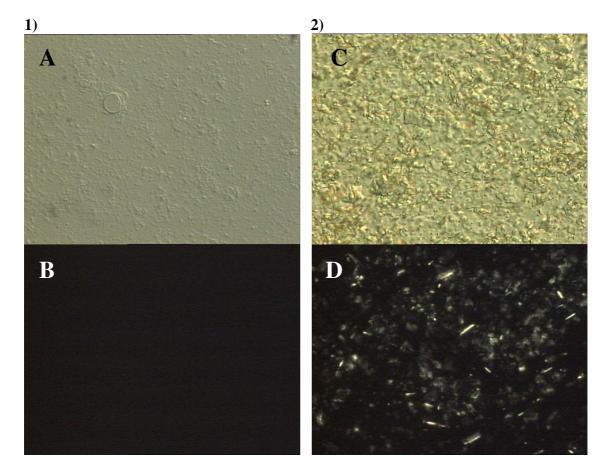
Arranz,[‡] and Jaume Veciana^{*,†}

Institut de Ciència de Materials de Barcelona (CSIC)-CIBER-BBN, Campus Universitario de Bellaterra, 08193 Cerdanyola, Spain

[‡]Centro Nacional de Biotecnología (CSIC), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain

Supporting Information

Solubility measurements


Solubility measurements of cholesterol in CO_2 -expanded acetone were performed in a home made high pressure phase equilibrium analyzer. The main components of this configuration are a Jergusson T-40 view cell, a JASCO PU-1580 HPLC pump to introduce liquid solvents or solutions, an ISCO 260D pump to introduce CO_2 and a micropump to re-circulate the internal mixture. The variation of the cell volume is performed by means of a stainless-steel piston introduced into the view cell and moved by a pneumatic system. In this way, the cell internal volume can be varied from 50 to 75mL. Solid samples can be introduced into the cell previously to pressurization by a stainless steel cylinder supported in a Teflon base. The vanishing-point method was employed to measure solubility of cholesterol at 10 MPa, 313K and at different solvent composition, X_{CO2} . The use of this procedure with our equipment has a systematic relative error lower than 1% in the determination of solubilities and lower than 2% in the determination of CO₂ molar fractions. These errors arise from the weighing of the solute and organic solvent components, from the CO₂ volume delivery and from the calculation of CO₂-density in the pump. Solubilities in acetone and CO₂ neat solvents were measured through a static and a dynamic method respectively. In both methods the systematic relative errors were lower than 1%.

Solubilities of cholesterol in different "acetone-CO₂" expanded solutions at $P_w = 10$ MPa and $T_w = 308$ K, measured through the "Vanishing Point" method

Х _{CO2}	$C_{\rm S}$ (mol cholesterol/mol solvent)
 0	6.42E-03
0.082	5.75E-03
0.222	4.52E-03
0.352	3.84E-03
0.458	3.27E-03
0.569	2.41E-03
0.657	1.72E-03
0.704	1.08E-03
0.798	6.26E-04
0.9	2.12E-04
1	5.00E-05

 X_{CO2} C_s (mol cholesterol/mol solvent)

Optical microscope images of cholesterol dispersed systems obtained by DELOS-SUSP procedure in the presence and absence of cetyl trimethyl ammonium bromide (CTAB)

1) Optical microscope images of the system "cholesterol/CTAB/water/acetone" obtained by a DELOS-SUSP procedure, viewed by (A) transmission and (B) under polarized light.

2) Optical microscope images of the system "cholesterol/water/acetone" in the absence of CTAB surfactant a DELOS-SUSP procedure, viewed by (C) transmission and (D) under polarized light.

Both systems were obtained using the same DELOS-SUSP operational parameters, and keeping constant the molar relationship between cholesterol, water and acetone.