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S1 Materials and methods

Figure S1. Schematic of the home-made experimental cell. The cell size is 1 cm in diameter and 2 mm 

in height. The coverslips and PDMS are bonded using oxygen plasma.
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Figure S2. The image process of image filtering and particle identification. (a) raw image of three 100 

nm NPs; (b) after noise filtering and Gaussian blur, the background noise is lowered and the grey-scale 

value distribution near each particle region is re-constructed; (c) very sharp peaks of particle grey-scale 

value distribution, which makes particle identification very easy. (d, e, f) the image process for 40 nm, 

corresponding to (a, b, c), respectively. 

(f)



Figure S3. Some typical trajectories of the intermittent long-distance hops. The corresponding Mw, c 

and NP diameter d are labelled below the trajectories.



Figure S4. (a) - (d) The measured viscosity η as a function of shear rate γ at three concentrations for 8 

M, 4 M, 2 M and 0.6 M PEO solution, respectively. (e)-(f) The measured storage G′ and loss G′′ 

moduli corresponding to (a) – (d). The concentration c* is the overlap concentration that are listed in 

Table S1 below. The zero shear viscosity ηzs can be extrapolated from the measured viscosity curve at 

about γ = 10-2 s-1 for each case. The measured reptation time τrep was identified τrep = 1/ωc, where ωc 

is the angular frequency at G′/G′′ = 1, as shown in panel (e).



Tube diameter dt and average mesh size ξ. For PEO solutions, the gyration radius can 

be obtained using Rg = 0.02Mw0.58 [nm],1 and the overlap concentration is then calculated by c* = 

3Mw/4πRg
3NA, where NA is the Avogadro constant.2 The tube diameter is calculated as dt(c) = 

dt(1)c-v/(3v-1), where dt(1) ≈ 4 nm and v ≈ 0.588 is the Flory exponent. The calculated values of dt for 

various Mw and c are listed in Table S1 (note that the concept of tube diameter is only valid for 

entangle solutions where c > 7c*). To compare, the correlation lengths ξ = Rg(c/c*)-0.76 when c = 

5c* that represent the average mesh size of PEO networks are also listed.2 From Table S1, we can 

see that the NP’s sizes d in current experiments are usually comparable to or larger than PEO tube 

diameters dt, and d are much larger than the average mesh sizes ξ. 

Table S1. The calculated values of tube diameters dt and averages mesh sizes ξ for various Mw and c. 

Mw 
[g/mol]

c*  
[wt.%]

dt [nm] ξ [nm]

10c* 20c* 30c* 40c* 5c*

8 M 0.04 251 150 110 89 59

4 M 0.065 175 104 77 62 40

2 M 0.10 126 75 55 45 26

1 M 0.18 81 48 36 29 18

0.6 M 0.26 62 37 27 22 13

0.3 M 0.44 42 25 18 15 9

S2 Determination of reptation time τrep and plateau modulus Ge

From the measured curves of Figure S4 (viscosity vs. shear rate), the “zero shear” viscosity 

ηzs can be approximately extrapolated at very low shear rate (10-2 s-1). For each Mw, the values of 

ηzs show similar concentration scaling as ηzs ~ cβ, and the exponents of β are consistent with 



theoretically predicted value of 3.9.3 From the measured curves of moduli, we can see that at low 

frequencies G′′ > G′ and G′′ ~ ω, while at high frequencies G′ > G′′. According to the Maxwell 

model of a viscoelastic fluid, the measured reptation time τrep was identified as the reciprocal of the 

angular frequency ω where G′/G′′ = 1, as shown in Figure S4e. Some specific values of the 

measured reptation time τrep are listed in Table S2, in which the corresponding values of crossover 

time τc are also given for contrast. The measured τrep for various Mw and c are presented in Figure 

2d, where they always show good agreement with the theoretical prediction τrep = 

τ0N3/Ne(1)c3(1-v)/(3v-1).3, 4 In this theoretical formula, τ0 ≈ 0.2 ns is the monomer relaxation time at 

room temperature, N = (ɛMw)/M0 is the number of Kuhn monomers per chain, and Ne(1) ≈ 14 is 

the Kuhn monomer per entanglement in the melt. For PEO, the Kuhn monomer molar mass M0 = 

140, and a coefficient ɛ = 0.8 of the ratio between the actual Mw and the nominal Mw is 

introduced in actual calculation. 

Table S2. Typical values of τc and τrep for 200 nm NP.

Mw [g/mol] τ [s]

10c* 20c* 30c*

c 0.030 0.16 0.22
8 M

rep 0.19 3.03 4.09

 c 0.0043 0.0054 0.023
2 M

 rep 0.015 0.026 0.11

 c 0.0037 0.0047 0.028
1 M

 rep 0.0098 0.019 0.052

The plateau modulus Ge was then evaluated as Ge = ηzs/τrep.5-8 The experimentally obtained Ge 

values are well consistent with the theoretical prediction Ge = kBT/L3 (L3 = dtξ2),3, 7, 9 as shown in 

Figure S5. 



Figure S5. The experimentally obtained plateau moduli Ge as a function of normalized concentrations 

for 8 M, 4 M, 2 M, 1 M, 0.6 M and 0.3 M PEO, respectively. The dashed curves are the theoretical 

predictions based on Ge = kBT/L3 for each Mw.

S3 Calculation of the hopping time τhop

Two counterintuitive experimental findings mentioned above should be emphasized here: 1) 

an earlier transition from sub-diffusive regime to long-time linear regime, and 2) an enhanced 

diffusivity in entangled solutions with higher Mw. These are attributed to the existence of an 

activated hopping of “large” NP subjected to the constraint of crowded polymer networks. Figure 

3c illustrates these effects. Based on these facts, we propose our approach to calculate the typical 

hopping timescale τhop.

The measured MSD <r2(t)>exp manifests an earlier transition (c) and deviates from the 

prediction based on long-time reptation due to hopping. According to the fits based on Maxwell 

model (which is valid for Maxwell fluids such as PEO solutions and is consistent with the 

generalized Stokes-Einstein relation) as shown in Figure 2b in the main text, the long-time linear 

part of the measured MSD can be expressed as:

(S1)2 ( ) B
exp

ce

k T tr t
dG 

  

In addition, the presence of hopping introduces an additional contribution on the MSD. The linear 

part of the measured MSD is then actually a sum of two parts:10



 (S2)2 2 2( ) ( ) ( )exp rep hopr t r t r t       

The Maxwell model also assumes a linear MSD scaling at long-time stage since t > rep: 

(S3)2 ( ) B
rep

repe
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Using τhop as the typical timescale of hopping, the MSD resulted from hopping dynamics can be 

similarly written as:

(S4)2 ( ) B
hop

hope
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Thus, one obtains the equation of τhop:

(S5)1 1 1=
hop c rep  



Based on Equation S5, all the measured values of τhop can be calculated, as listed in Table S3.

Table S3. The calculated values of τhop of 200 nm NP for various PEO Mw and c 

Mw 
[g/mol]

c* 
[wt.%]

τhop [s]

10c* 20c* 30c* 40c*

8 M 0.040

4 M 0.065

2 M 0.10

1 M 0.18

0.035

0.0051

0.0059

0.0058

0.17

0.015

0.0068

0.0062

0.23

0.041

0.030

0.061

0.34

0.099

0.075

0.073

Also, as mentioned in Figure 1b, we measured the mean time interval between successive 

hops. For each cases, we used data containing hundreds of NPs to get the statistical mean value of 

thop. Table S4 displays the measured values of thop, which shows the good agreement with the 

values of τhop obtained by our approach. The measured value of the hopping interval is 

significantly dependent on the observation time resolution and requires a large number of data to 



achieve a reliable statistical result. As a result, we can only measure thop for the case of large MW 

and c.

Table S4. Several measured values of thop for 200 nm NP.

Mw

[g/mol]

c*

[wt.%]
thop

20c* 30c* 40c*

8 M 0.040 0.11 0.25 0.45

4 M 0.065 0.03 0.05 0.11

S4 Estimation of the measurement uncertainty

Figure S6. The three independent measurements of MSD for 200 nm NP in (a) 8 M (c = 20c*), and (b) 

0.3 M (c = 10c*) PEO, respectively. Grey dash-dot lines represent the cutoff value of 0.002 μm2.

In current particle tracking measurement, the centroid resolution is about θ ≈ 0.2 pixel by 

refining the locations of the local maxima of intensity (Figure S2), thus the uncertainty of the 

measured MSD is principally 2θ2 ≈ 0.002 μm2. In Figure 2A, the measured MSD of 20c* - 8 M 

below this cutoff value shows some fluctuation at short times t  0.1 s. However, this fluctuation 

will not introduce large uncertainty into determining τc by fitting the Maxwell model with data 



from short times to long times. All the results of other Mws also satisfy this argument. For most 

situations, we performed three independent experiments. As shown in Figure S6, the divergences 

among the three measurements are small. To cover the uncertainty at the largest degree, we 

estimate that the measurement uncertainty of MSD is within 30% of its average value in the 

short-time region. The overall estimation of the uncertainty of MSD and τc are estimated to be 

about 15%.

In the bulk rheological measurement, the cross points of G′ and G′′ (coordinate value 

corresponding to 1/τrep) in different measurements vary slightly. Taking 8M, 20c* PEO as 

example, in three different measurements, we obtain τrep ≈ 1.67, 3.03 and 4.09, respectively. 

Accordingly, we estimate that the uncertainty of τrep is about 40% of its average value based on the 

standard deviation of the data.

Figure S7 A plot of Figure 5 with error bars and the marked upper and lower bounds to show the 

tendency (left), and a linear plot of Figure 5 (right). The error bars represent the measured uncertainties.

We introduce here the uncertainty analysis of other measured data based on uncertainty 

propagation. For instance, based on the equation rep = 0(N3/Ne(1))c3(1-)/(3-1) ~ c1.5Mw3, the 

relative uncertainty of rep, written as rep/rep, is estimated to be about 40% by the propagation of 

the uncertainties from c (c/c ~ 10%) and Mw (Mw/Mw ~ 10%). Then the uncertainty of hop can 

be roughly estimated to be 60% according to 1/hop ~ 1/c - 1/rep. By the same approach, we obtain 

the uncertainties of the variables hop/e and d/dt in Fig. 5 to be up to 80% and 30%, respectively. In 

Table S5, we list the estimations for all the involved parameters. Then we can plot the error bars 

and the upper and lower bounds with the data of Fig. 5 to show the good tendency in Figure S7. A 

linear plot with the data from Fig. 5 and the error bars estimated above is also provided to show 

the data are actually within an exponential tendency.

Table S5. Estimation of the relative uncertainties



variable d c Mw dt c e

uncertainty 5-10% 5-10% 10% 20-25% 15% 20%

variable rep hop hop/e d/dt

uncertainty 40% 60% 80% 30%
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