Supporting Information for

Efficient All-Inorganic Perovskite Light Emitting Diodes with Improved Operation Stability

Guoqing Cheng,^{1,2,3, †} Yan Liu,^{2,3, †} Tao Chen, ^{1,2,3, †} Wenjing Chen,^{2,3} Zhibin Fang,^{2,3} Ji Zhang,^{2,3} Liming Ding,⁴ Xinhua Li,¹ Tongfei Shi,^{1,*} Zhengguo Xiao^{2,3,*}

¹Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China

²Hefei National Laboratory for Physical Sciences at the Microscale, University

of Science and Technology of China, Hefei, Anhui 230026, China

³Department of Physics, CAS Key Laboratory of Strongly-coupled Quantum

Matter Physics, University of Science and Technology of China, Hefei, Anhui

230026, China

⁴Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing 100190, China

Corresponding Authors

Supplementary Figures

Figure S1. (a) TRPL spectra and (b) PLQY of CsPbI₃ perovskite films with different molar ratios of 4-F-PMAI. The excitation intensity and wavelength for TRPL (PLQY) measurement is 0.6 mW/cm^2 (0.7 mW/cm^2) and a wavelength of 369 nm (400 nm), respectively.

Figure S2. (a) J-V and (b) EQE curves of CsPbI₃ PeLEDs with 60% 4-F-PMAI

fabricated with/without anti-solvent.

Figure S3. (a) Angular intensity profile and (b) angular spectra of $CsPbI_3$ PeLEDs with

60% molar ratio of 4-F-PMAI.

Figure S4. (a) J-V and (b) EQE curves of MAPbI₃ PeLEDs with 30% molar ratio of 4-

F-PMAI.

Table S1. TRPL decay profiles of CsPbI₃ films with different molar ratios of 4-F-PMAI.

Molar ratio [%]	τ_1 [ns]	$\tau_2 [ns]$	$\tau_3 [ns]$	B ₁ [%]	B ₂ [%]	B ₃ [%]	$\tau_{average} [ns]$
40	0.18	7.38	90.52	14.52	11.97	73.52	89.39
60	2.01	21.43	157.28	2.31	17.91	79.78	153.19
80	1.48	14.58	90.57	4.89	28.43	66.68	85.59

ratios of 4-F-PMAI. Molar ratio [%] Quantum yield [%] $k_{\rm rad} \, [{\rm s}^{-1}]$ $k_{\text{nonrad}}[s^{-1}]$ $T_{average}$ [ns] 10.59×10^{6} 89.39 5.3 0.59×10^6 40 60 153.19 1.04×10^{6} $5.49 imes 10^6$ 16.0

9.4

80

85.59

 $1.10 imes 10^{6}$

 $10.58 imes 10^6$

Table S2. Transient and steady-state optical properties of CsPbI₃ with different molar