Supporting Information for

C–H Sulfonylation via 1,3-Rearrangement of Sulfonyl Group in *N*-Protected 3-Bis-sulfonimidoindole Derivatives Using Fluorine Reagent

Kazuhiro Watanabe, Katsuhiko Moriyama,*

Department of Chemistry, Graduate School of Science and Soft Molecular Activation Research Center, Chiba University, Yayoi-cho 1-33, Inage-ku, Chiba, 263-8522, Japan

moriyama@faculty.chiba-u.jp

Table of contents

1. X-ray Diffraction Analysis of 2a .	 S2
2. X-ray Diffraction Analysis of 11.	 S3
3. X-ray Diffraction Analysis of 12 .	 S4
4. ¹ H and ¹³ C NMR Spectra of Materials.	 S5

1. X-ray Diffraction Analysis of 2a.

The single crystal of **2a** was obtained through vapor diffusion in EtOAc and hexane.

Figure S1. ORTEP drawing of **2a**. The ellipsoids correspond to 50% probability.

Formula	$C_{22}H_{20}N_2O_4S_2$
Formula Weight	440.54
Temperature	173 K
Wavelength	1.54178 Å
Crystal System	Monoclinic
Space Group	C 1 2/c 1
Unit Cell Dimensions	$a = 32.963(3)$ Å $\alpha = 90^{\circ}$
	$b = 8.7052(9)$ Å $\beta = 114.780(3)^{\circ}$
	$c = 15.5575(15) \text{ Å} \qquad \gamma = 90 ^{\circ}$
Volume	4053.2(7) Å ³
Z Value	8
Calculated Density	1.444 g cm ⁻³
Absorption coeficiente	2.663 mm ⁻¹
F(000)	1840
Crystal size	$0.20\times0.10\times0.10\ mm^3$
Theta Range for Data Collection	2.9531-68.2925
Index Ranges	$-37 \le h \le 39, -10 \le k \le 10, -18 \le l \le 18$
Reflections Collected	3709
Independent Reflections	3709 [R(int)=0.0182]
Completeness to Theta = 68.302°	99.9%
Refinement Method	Full-matrix least-squares on F ²
Data/Restraints/Parameters	3709/0/273
Goodness-of-Fit on F ²	1.366
Final R Indices [I>2sigma(I)]	$R_1 = 0.0378$ and $wR_2 = 0.1432$

R Indices (All Data)RLargest Diff. Peak and Hole0.

 $R_1 = 0.0387$ and $wR_2 = 0.1460$ 0.596 and -0.582 e^{-1} Å

2. X-ray Diffraction Analysis of 11.

The single crystal of 11 was obtained through vapor diffusion in benzene and hexane.

Figure S2. ORTEP drawing of 11. The ellipsoids correspond to 50% probability.

Formula	$C_{33}H_{30}N_2O_4S_2\\$	
Formula Weight	582.71	
Temperature	173 K	
Wavelength	1.54178 Å	
Crystal System	Monoclinic	
Space Group	P 1 21/c 1	
Unit Cell Dimensions	<i>a</i> = 13.1147(5) Å	$\alpha = 90^{\circ}$
	<i>b</i> = 22.8270(8) Å	$\beta = 98.306(2)^{\circ}$
	c = 9.7575(3) Å	$\gamma = 90~^\circ$
Volume	2890.46(17) Å ³	
Z Value	4	
Calculated Density	1.339 g cm ⁻³	
Absorption coeficiente	2.005 mm ⁻¹	
F(000)	1224	
Crystal size	$0.30 \times 0.020 \times 0.010 \text{ mm}^3$	

Theta Range for Data Collection	3.4057-68.1161
Index Ranges	$-15 \le h \le 15, -23 \le k \le 27, -11 \le l \le 11$
Reflections Collected	5276
Independent Reflections	5276 [R(int)=0.0507]
Completeness to Theta = 68.302°	99.8%
Refinement Method	Full-matrix least-squares on F ²
Data/Restraints/Parameters	5276/0/372
Goodness-of-Fit on F ²	1.048
Final R Indices [I>2sigma(I)]	$R_1 = 0.0394$ and $wR_2 = 0.0948$
R Indices (All Data)	$R_1 = 0.0525$ and $wR_2 = 0.1014$
Largest Diff. Peak and Hole	0.319 and -0.293 e ^{-/} Å

3. X-ray Diffraction Analysis of 12.

The single crystal of 12 was obtained through vapor diffusion in THF and hexane.

Figure S3. ORTEP drawing of 12. The ellipsoids correspond to 50% probability.

Formula	$C_{33}H_{30}N_2O_4S_2$		
Formula Weight	582.71	582.71	
Temperature	173 K		
Wavelength	1.54178 Å		
Crystal System	Monoclinic	Monoclinic	
Space Group	P 1 21/n 1		
Unit Cell Dimensions	a = 9.7296(6) Å	$\alpha = 90$ °	
	b = 28.0212(17) Å	$\beta = 106.7887(19)^{\circ}$	

Volume Z Value Calculated Density Absorption coeficiente F(000) Crystal size Theta Range for Data Collection Index Ranges **Reflections** Collected **Independent Reflections** Completeness to Theta = 68.302° **Refinement Method** Data/Restraints/Parameters Goodness-of-Fit on F² Final R Indices [I>2sigma(I)] R Indices (All Data) Largest Diff. Peak and Hole

c = 10.7123(7) Å $\gamma = 90^{\circ}$ 2796.1(3) Å³ 4 1.384 g cm⁻³ 2.073 mm⁻¹ 1224 $0.20 \times 0.10 \times 0.10 \text{ mm}^3$ 3.1542-68.2218 $-11 \le h \le 10, -33 \le k \le 31, -12 \le l \le 12$ 5044 5044 [R(int)=0.0202] 99.8% Full-matrix least-squares on F² 5044/0/384 1.085 $R_1 = 0.0368$ and $wR_2 = 0.0987$ $R_1 = 0.0370$ and $wR_2 = 0.0989$ 0.462 and -0.308 e⁻/ Å

¹H NMR spectrum of **2a** (400 MHz, DMSO-*d6*)

 $^{13}C{^{1}H}$ NMR spectrum of **2a** (400 MHz, DMSO-*d6*)

¹H NMR spectrum of **2b** (400 MHz, DMSO-*d6*)

 $^{13}C{^{1}H}$ NMR spectrum of **2b** (400 MHz, DMSO-*d6*)

¹H NMR spectrum of **2c** (400 MHz, DMSO-*d6*)

 $^{13}C{^{1}H}$ NMR spectrum of **2c** (400 MHz, DMSO-*d6*)

¹H NMR spectrum of **2d** (400 MHz, DMSO-*d6*)

 $^{13}C{^{1}H}$ NMR spectrum of **2d** (400 MHz, DMSO-*d6*)

¹H NMR spectrum of **2e** (400 MHz, DMSO-*d6*)

 $^{13}C{^{1}H}$ NMR spectrum of **2e** (400 MHz, DMSO-*d6*)

¹H NMR spectrum of **2f** (400 MHz, DMSO-*d6*)

¹³C{¹H} NMR spectrum of **2f** (400 MHz, DMSO-*d6*)

¹H NMR spectrum of **2g** (400 MHz, DMSO-*d6*)

 $^{13}C\{^{1}H\}$ NMR spectrum of **2g** (400 MHz, DMSO-*d6*)

¹H NMR spectrum of **2h** (400 MHz, DMSO-*d6*)

 $^{13}C{^{1}H}$ NMR spectrum of **2h** (400 MHz, DMSO-*d6*)

¹H NMR spectrum of **2i** (400 MHz, DMSO-*d6*)

¹H NMR spectrum of **2j** (400 MHz, DMSO-*d6*)

 $^{13}C\{^{1}H\}$ NMR spectrum of **2j** (400 MHz, DMSO-*d6*)

¹H NMR spectrum of **2k** (400 MHz, DMSO-*d6*)

190.0 180.0 170.0 160.0 150.0

200.0

X : parts per Million : Carbon13

110.0 100.0 90.0

80.0

70.0

60.0

50.0

30.0

40.0

40.132 39.711 39.500 39.578 39.078 39.078 10.0

ò

20.0

21.412

140.0 130.0 120.0

144.213 142.977 135.570 135.570 135.670 125.697 125.697 122.880 122.680 120.68

11.11

¹H NMR spectrum of **2l** (400 MHz, DMSO-*d6*)

¹³C{¹H} NMR spectrum of **2l** (400 MHz, DMSO-*d6*)

¹H NMR spectrum of **2m** (400 MHz, DMSO-*d6*)

oundance 0 0.01

110.0

100.0

98.289

90.0

80.0

70.0

60.0

30.0

40.0

40.149 39.292 39.290 39.290 39.290 39.290 38.861 20.0

21.035

10.0

ó

50.0

120.0

ũ

130.0

160.0

159.577

150.0

140.0

200.0 190.0 180.0 170.0

X : parts per Million : Carbon13

¹H NMR spectrum of **2n** (400 MHz, DMSO-*d6*)

¹H NMR spectrum of **20** (400 MHz, DMSO-*d6*)

 $^{13}C{^{1}H}$ NMR spectrum of **20** (400 MHz, DMSO-*d6*)

¹H NMR spectrum of **2p** (400 MHz, DMSO-*d6*)

 $^{13}C\{^{1}H\}$ NMR spectrum of **2p** (400 MHz, DMSO-*d6*)

¹H NMR spectrum of **2q** (400 MHz, DMSO-*d6*)

 $^{13}C\{^{1}H\}$ NMR spectrum of **2q** (400 MHz, DMSO-*d6*)

¹H NMR spectrum of **2r** (400 MHz, DMSO-*d6*)

¹³C{¹H} NMR spectrum of **2r** (400 MHz, DMSO-*d6*)

¹H NMR spectrum of **2s** (400 MHz, DMSO-*d6*)

¹³C{¹H} NMR spectrum of **2s** (400 MHz, DMSO-*d6*)

¹H NMR spectrum of **2t** (400 MHz, DMSO-*d6*)

 $^{13}C{^{1}H}$ NMR spectrum of **2t** (400 MHz, DMSO-*d6*)

¹H NMR spectrum of **2u** (400 MHz, CDCl₃)

 $^{13}C{^{1}H}$ NMR spectrum of **2u** (400 MHz, CDCl₃)

¹H NMR spectrum of **2w** (400 MHz, DMSO-*d6*)

 $^{13}C\{^{1}H\}$ NMR spectrum of 2w (400 MHz, DMSO-*d6*)

¹H NMR spectrum of **9** (400 MHz, CDCl₃)

¹H NMR spectrum of **10** (400 MHz, CDCl₃)

¹H NMR spectrum of **11** (400 MHz, CDCl₃)

¹H NMR spectrum of **12** (400 MHz, CDCl₃)