Copolymerization of Nonpolar Olefins and Allyl Acetate Using a Nickel Catalyst Bearing a Methylene-bridged Bisphosphine Monoxide Ligand

Jin Jung, Hina Yasuda, and Kyoko Nozaki*

Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

Table of Content

1. Experimental Section
2. NMR Spectra
3. SEC Traces
4. DSC Traces
5. X-ray Crystallographic Data of Complex 3
6. References

1. Experimental Section

Copolymerization of propylene with allyl acetate by in-situ generated palladium complex (Table S1).

Designated amount of ligand 1b, anhydrous dichloromethane (1.0 mL), and (cod) PdMeCl (1.0 equiv.) were added into a 20 mL Schlenk under inert atmosphere, and then the reaction mixture was stirred for overnight at room temperature. Subsequently, the reaction mixture was injected via syringe into the 50 mL autoclave charged with $\mathrm{NaBAr}^{\mathrm{F}}{ }_{4}$ (1.0 equiv.), designated amount of propylene, allyl acetate, and anhydrous toluene. After the autoclave was sealed, the reaction mixture was stirred in an isothermal heating block under designated condition. After cooling to room temperature and venting residual propylene, the volatile matters of reaction mixture were removed under reduced pressure. The product was then dried under vacuum for 6 h at $100^{\circ} \mathrm{C}$ to afford a copolymer. The molecular weight and polydispersity were determined by SEC. The contents of polar functional groups were determined by ${ }^{1} \mathrm{H}$ NMR spectra (Figures S32 and S33).

Table S1. Copolymerization with allyl acetate using in-situ generated Pd catalyst.

entry	propylene (g)	1b (mmol)	allyl acetate (mL)	temp. $\left({ }^{\circ} \mathrm{C}\right)$	time (h)	yield (g)	activity $(\mathrm{g} / \mathrm{mmol} \cdot \mathrm{h})$	M_{n} $(\mathrm{g} / \mathrm{mol})^{a}$	$M_{\mathrm{w}} / M_{\mathrm{n}}{ }^{a}$	FG content $(\mathrm{mol} /)^{b}$
1	6.4	0.020	1.0	50	12	0.053	0.22	870	1.5	0.25
2	9.3	0.010	0.1	100	6	0.026	0.43	740	1.4	0.16

$\operatorname{cod}=1,5-$ cyclooctadiene, $\mathrm{Ar}^{\mathrm{F}}=3,5-\left(\mathrm{CF}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3} .{ }^{a}$ Determined by size-exclusion chromatography using polystyrene standards and corrected by universal calibration. ${ }^{b}$ Determined by ${ }^{1} \mathrm{H}$ NMR analysis.

Complexation trial of phenylnickel chloride complex 2b

Ligand $\mathbf{1 b}(50.0 \mathrm{mg}, 0.156 \mathrm{mmol}), \mathrm{Ni}(\operatorname{cod})_{2}(42.9 \mathrm{mg}, 0.156 \mathrm{mmol})$, and anhydrous chlorobenzene $(1.0 \mathrm{~mL})$ were added into a 20 mL Schlenk under inert atmosphere, and then the reaction mixture was stirred for 14 h at room temperature. The color of reaction mixture changed from yellow to orange. Subsequently, the reaction mixture was concentrated under reduced pressure, and then n-hexane was added to afford an orange precipitate, but it rapidly decomposed during separation to black-brown solid.

Complexation trial of cationic phenylnickel complex

Ligand $\mathbf{1 b}(25.0 \mathrm{mg}, 78.0 \mu \mathrm{~mol}), \mathrm{Ni}(\operatorname{cod})_{2}(21.5 \mathrm{mg}, 78.2 \mu \mathrm{~mol})$, and anhydrous chlorobenzene $(1.0 \mathrm{~mL})$ were added into a 10 mL J. Young sample flask under inert atmosphere, and then the reaction mixture was stirred for 14 h at room temperature. The color of reaction mixture changed from yellow to orange. Subsequently, to the reaction mixture was added $\mathrm{NaBAF}^{\mathrm{F}}(69.1 \mathrm{mg}, 78.0 \mu \mathrm{~mol})$ and 2,6 -lutidine ($12.6 \mathrm{mg}, 117 \mu \mathrm{~mol}$). After stirring for 3 h at room temperature, n-hexane was added to the reaction mixture to afford a sticky solid which exhibited a complicated ${ }^{1} \mathrm{H}$ NMR spectrum and no polymerization activity.

Homopolymerization trial of allyl acetate by $\boldsymbol{i n}$-situ generated nickel $\boldsymbol{\eta}^{\mathbf{3}}$-allyl complex and MMAO.

Ligand 1b ($9.6 \mathrm{mg}, 0.030 \mathrm{mmol}), \mathrm{NaBAr}^{\mathrm{F}}{ }_{4}(28 \mathrm{mg}, 0.030 \mathrm{mmol}),\left[\mathrm{Ni}\left(\eta^{3}-\mathrm{allyl}\right) \mathrm{Br}\right]_{2}(5.4 \mathrm{mg}, 0.015 \mathrm{mmol})$, and anhydrous dichloromethane (3.0 mL) were added into a 20 mL Schlenk under inert atmosphere, and then the reaction mixture was stirred for overnight at room temperature. Subsequently, the yellow suspension including sodium bromide salt was injected via syringe into the mixture of AAc (5.0 mL), MMAO ($4.6 \mathrm{~mL}, \mathrm{Al} / \mathrm{Ni}=500$), and anhydrous toluene $(3.4 \mathrm{~mL})$. The reaction mixture was stirred for 47 h at $50^{\circ} \mathrm{C}$, then poured into $\mathrm{MeOH}(300 \mathrm{~mL})$. Trace amount of precipitated was obtained by filter, but it was not determined as poly(AAc).

2. NMR Spectra

NMR spectra of complex 3

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum of the complex $\mathbf{3}$ (THF- d_{8}, rt). Peak assignments were based on the previously reported palladium BPMO complex VII, ${ }^{1}$ palladium ${ }^{\text {BPMO }}$ complex VI, ${ }^{2}$ and ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR analysis.

Figure S2. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the complex $\mathbf{3}$ (THF- d_{8}, rt). Peak assignments were based on the previously reported palladium BPMO complex VII ${ }^{1}$ and palladium BPMO complex VI. ${ }^{2}$

Figure S3. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the complex $\mathbf{3}$ (THF- d_{8}, rt).

Figure S4. $\quad{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR spectrum of the complex $3\left(\mathrm{CDCl}_{3}, \mathrm{rt}\right)$.

NMR spectra of polymer from Table 2

Figure S5. ${ }^{1} \mathrm{H}$ NMR spectrum of the ethylene / allyl acetate copolymer obtained in Table 2, entry $2\left(\mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}, 120{ }^{\circ} \mathrm{C}\right.$, relaxation delay 5 s). Peak assignments were based on the literature. ${ }^{3}$

Note: Calculation of acetate group content in the polyethylene ${ }^{3}$: Assume (1-x) mol $\%$ ethylene and x mol $\%$ allyl acetate in the copolymer,

$$
x=\frac{(\mathbf{g} \times 2 \times 100)}{(\mathbf{b}+\mathbf{c}+\mathbf{j}+\mathbf{a}+\mathbf{h}+\mathbf{f}+\mathbf{e}+\mathbf{d}-\mathbf{g})}
$$

Therefore, the acetate group content is calculated as follows: $(7.14 \times 2 \times 100) /(2.00+25330-7.14)=0.06 \mathrm{~mol} \%$. This calculation was applied to entire cases in this paper.

Figure S6. ${ }^{1} \mathrm{H}$ NMR spectrum of the ethylene / allyl acetate copolymer obtained in Table 2, entry $3\left(\mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}, 120^{\circ} \mathrm{C}\right.$, relaxation delay 5 s)

Figure S7. ${ }^{1} \mathrm{H}$ NMR spectrum of the ethylene / allyl acetate copolymer obtained in Table 2, entry $4\left(\mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}, 120^{\circ} \mathrm{C}\right.$, relaxation delay 5 s).

Figure S8. ${ }^{1} \mathrm{H}$ NMR spectrum of the ethylene / allyl acetate copolymer obtained in Table 2, entry $5\left(\mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}, 120{ }^{\circ} \mathrm{C}\right.$, relaxation delay 5 s).
$\mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}$
e

Figure S9. ${ }^{1} \mathrm{H}$ NMR spectrum of the ethylene / allyl acetate copolymer obtained in Table 2, entry $7\left(\mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}, 120{ }^{\circ} \mathrm{C}\right.$, relaxation delay 5 s).

Figure S10. ${ }^{1} \mathrm{H}$ NMR spectrum of the propylene / allyl acetate copolymer obtained in Table 2, entry $6\left(\mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}, 120{ }^{\circ} \mathrm{C}\right.$, relaxation delay 5 s). Peak assignments were based on the literatures. ${ }^{4-5}$

Note: Calculation of acetate group content in the polypropylene ${ }^{4-5}$:
Assume $\mathrm{x} \mathrm{mol} \%$ acetate group in the copolymer,

$$
x=\frac{(\mathbf{o} / 2) \times 100}{(\mathbf{b}+\mathbf{e}+\mathbf{f}+\mathbf{c}+\mathbf{j}+\mathbf{a}+\mathbf{d}+\mathbf{h}+\mathbf{p}+\mathbf{n}+\mathbf{i}+\mathbf{l}+\mathbf{m}+\mathbf{k}) / 6}
$$

This calculation was applied to entire cases in this paper.
(

Figure S11. ${ }^{1} \mathrm{H}$ NMR spectrum of the propylene / 3-butenyl acetate copolymer obtained in Table 2, entry $7\left(\mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}, 120{ }^{\circ} \mathrm{C}\right.$, relaxation delay 5 s). Peak assignments were based on the poly(propylene-co-allyl acetate) ${ }^{4-5}$ and model compound (3-methyl-1-butyl acetate). ${ }^{6}$

NMR spectra of polymer from Table 3

Figure S12. ${ }^{1} \mathrm{H}$ NMR spectrum of the ethylene / allyl acetate copolymer obtained in Table 3, entry $2\left(\mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}, 120{ }^{\circ} \mathrm{C}\right.$, relaxation delay 5 s).

Figure S13. ${ }^{1} \mathrm{H}$ NMR spectrum of the ethylene / allyl acetate copolymer obtained in Table 3, entry $3\left(\mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}, 120^{\circ} \mathrm{C}\right.$, relaxation delay 5 s).

Figure S14. ${ }^{1} \mathrm{H}$ NMR spectrum of the ethylene / allyl acetate copolymer obtained in Table 3, entry $4\left(\mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}, 120{ }^{\circ} \mathrm{C}\right.$, relaxation delay 5 s).

Figure S15. Quantitative ${ }^{13} \mathrm{C}$ NMR spectrum of the ethylene / allyl acetate copolymer obtained in Table 3, entry $4\left(\mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}, 120^{\circ} \mathrm{C}\right)$. Peak assignments were based on the literature. ${ }^{1}$

Figure S16. ${ }^{1} \mathrm{H}$ NMR spectrum of the ethylene / allyl acetate copolymer obtained in Table 3, entry $5\left(\mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}, 120{ }^{\circ} \mathrm{C}\right.$, relaxation delay 5 s).

Figure S17. ${ }^{1} \mathrm{H}$ NMR spectrum of the polymer recovered from SEC eluent (retention time $18-20 \mathrm{~min} ., \mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}, 120^{\circ} \mathrm{C}$, relaxation delay 5 s). Polymer from Table 3 , entry

5 was used to the SEC measurement. Unassigned peaks were incorporated during SEC analysis and recollecting sample.
(

Figure S18. ${ }^{1} \mathrm{H}$ NMR spectrum of the polymer recovered from SEC eluent (retention time $21-23 \mathrm{~min} ., \mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}, 120^{\circ} \mathrm{C}$, relaxation delay 5 s). Polymer from Table 3 , entry 5 was used to the SEC measurement. Unassigned peaks were incorporated during SEC analysis and recollecting sample.

Figure S19. ${ }^{1} \mathrm{H}$ NMR spectrum of the ethylene / allyl acetate copolymer obtained in Table 3, entry $6\left(\mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}, 120{ }^{\circ} \mathrm{C}\right.$, relaxation delay 5 s).

Figure S20. Quantitative ${ }^{13} \mathrm{C}$ NMR spectrum of the ethylene / allyl acetate copolymer obtained in Table 3, entry $6\left(\mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}, 120{ }^{\circ} \mathrm{C}\right)$.
(

Figure S21. ${ }^{1} \mathrm{H}$ NMR spectrum of the polyethylene obtained in Table 3, entry $7\left(\mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}, 120{ }^{\circ} \mathrm{C}\right.$, relaxation delay 5 s). Characteristic peak of acetoxy group (f at $4.90-$ $4.80 \mathrm{ppm})^{7}$ was not detected.

Figure S22. ${ }^{1} \mathrm{H}$ NMR spectrum of the ethylene / methyl acrylate copolymer obtained in Table 3, entry $8\left(\mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}, 120{ }^{\circ} \mathrm{C}\right.$, relaxation delay 5 s). Peak assignments were based on the literatures. ${ }^{8-9}$

Note: Calculation of terminal α, β-unsaturated ester group content: Assume (1-x) $\mathrm{mol} \%$ ethylene and x mol $\%$ terminal α, β-unsaturated ester group in the copolymer,
$\frac{x}{x+4(1-x)}=\frac{H}{H+E+C+D+F+P E} \quad x=\frac{4 \times \mathrm{H} \times 100}{(4 \times H)+E+C+D+F+P E}$

Therefore, the terminal α, β-unsaturated ester group content is calculated as follows: $(4 \times 1.00 \times 100) /\{(4 \times 1.00)+0.46+0.16+2.15+709.41=0.56 \mathrm{~mol} \%$
(

Figure S23. ${ }^{1} \mathrm{H}$ NMR spectrum of the propylene / allyl acetate copolymer obtained in Table 3, entry $9\left(\mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}, 120{ }^{\circ} \mathrm{C}\right.$, relaxation delay 5 s).

Figure S24. Quantitative ${ }^{13} \mathrm{C}$ NMR spectrum of the propylene / allyl acetate copolymer obtained in Table 3, entry $9\left(\mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}, 120{ }^{\circ} \mathrm{C}\right)$.

Figure S25. Amplified quantitative ${ }^{13} \mathrm{C}$ NMR spectrum from Figure S24.

Note: Calculation of regiodefect (mol\%)
$x=\frac{[(\mathbf{q} 2+\mathbf{q 4}) / 2]+(\mathbf{r} 2 / 2)}{\text { all carbons } / 3} \times 100$

Therefore, the regiodefect is calculated as follows: $[\{(19.71 / 2)+(3.56 / 2)\} /\{(100+4+14.97+3.45+9.57+45.68+13.13+26.35+95.80+3.56+39.91+45.71+21.11+31.03+19.71) / 3\}]$
$=7.36 \mathrm{~mol} \%$. Among them, 1,2-/2,1-regiodefect ($\mathrm{q} 1-\mathrm{q} 8$) is estimated to be $c a .5 .91 \mathrm{~mol} \%$ while $1,3-$ enchainment $(\mathrm{r} 1-\mathrm{r} 3)$ is estimated to be $c a .0 .28 \mathrm{~mol} \%$
There are some other unidentified signals possibly from other defects structures. On the other hand, the triad abundances were determined by integral values of $\mathbf{u}_{m m}, \mathbf{u}_{m r}, \mathbf{u}_{r r}$.

Figure S26. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of the propylene / allyl acetate copolymer obtained in Table 3, entry $9\left(\mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}, 120{ }^{\circ} \mathrm{C}\right)$.

Figure S27. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC spectrum of the propylene / allyl acetate copolymer obtained in Table 3, entry $9\left(\mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl} 4,120^{\circ} \mathrm{C}\right)$.

Figure S28. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC spectrum of the propylene / allyl acetate copolymer obtained in Table 3, entry $9\left(\mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}, 120{ }^{\circ} \mathrm{C}\right)$.

Figure S29. DOSY spectrum of the propylene / allyl acetate copolymer obtained in Table 3, entry $9\left(\mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}, 120{ }^{\circ} \mathrm{C}\right)$.
(

Figure S30. ${ }^{1} \mathrm{H}$ NMR spectrum of the propylene / allyl acetate copolymer obtained in Table 3, entry $10\left(\mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}, 120{ }^{\circ} \mathrm{C}\right.$, relaxation delay 5 s).

Figure S31. DOSY spectrum of the propylene / allyl acetate copolymer obtained in Table 3, entry $10\left(\mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}, 120{ }^{\circ} \mathrm{C}\right.$, relaxation delay 5 s).

Figure S32. ${ }^{1} \mathrm{H}$ NMR spectrum of the propylene / allyl acetate copolymer obtained in Table S 1 , entry $1\left(\mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}, 120^{\circ} \mathrm{C}\right.$, relaxation delay 5 s).

Figure S33. ${ }^{1} \mathrm{H}$ NMR spectrum of the propylene / allyl acetate copolymer obtained in Table S 1 , entry $2\left(\mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}, 120{ }^{\circ} \mathrm{C}\right.$, relaxation delay 5 s).

3. SEC Traces

Chromatography Report

Title	
Sample Name	09-018-A55PE
Database Name	$2020-03-03 . c h d$
Saved File Name	RSLT0597
Method Data	meth8509_standard
Calc. Channel	RI EXT

Measurement Date \& Time	2020/03/03 17:20:46
Calculation Date \& Time	2020/03/03 18:30:33
Acquisition Time [min] [min]	$10.000-30.000$
Sampling Pitch [ms] [ms]	100
Vial Number	11
Calculation Method	Molecular Weight Column test

$\mathrm{RI}[\mathrm{mV}]$

Result of Calculation (RI) (RI)
Peak 1 Base Peak

硣	[min]	[mV]	[mol]	Mn	3,772
Peak Start	17.423	-24.179	114,599	Mw	9,399
Peak Top	20.137	46.184	7,438	Mz	17,462
Peak End	22.390	-24.395	157	$\mathrm{Mz}+1$	26,857
				Mv	9,399
Height [mV]			70.481	Mp	8,824
Area [mV*s]			8398.050	Mz/Mw	1.858
Area\% [\%]			100.000	$\mathrm{Mw} / \mathrm{Mn}$	2.492
[eta]			9399.39415	$\mathrm{Mz}+1 / \mathrm{Mw}$	2.857

Figure S34. SEC trace of the polyethylene obtained in Table 1, entry 1 (1,2-dichlorobenzene, $145^{\circ} \mathrm{C}$)

Chromatography Report

Title	
Sample Name	133-03-116
Database Name	$2018-10-17$. .chd
Saved File Name	RSLTO332
Method Data	meth8509_standard
Calc. Channel	RI EXT

Measurement Date
Calculation Date
Measurement Time [min]
Sampling Pitch [ms]
Cup Number
Calculation Method

2018/10/17 17:05:55 2018/10/17 18:01:07
10.000-30.000 100
4
Molecular Weight Column test
$\mathrm{RI}[\mathrm{mV}]$

Result of Calculation (RI)
Peak No. 1 Base Peak

	[min]	[mV]	[mol]	Mn	227,255
Peak Start	13.530	0.239	3,540,928	Mw	558,635
Peak Top	15.570	32.830	601,437	Mz	938,928
Peak End	19.853	2.104	10,415	$\mathrm{Mz}+1$	1,285,245
				Mv	558,635
Height [mV]			31.989	Mp	601,438
Area [mV ${ }^{\text {c }}$] $]$			4944.986	$\mathrm{Mz} / \mathrm{Mw}$	1.681
Area\% [\%]			92.593	$\mathrm{Mw} / \mathrm{Mn}$	2.458
[eta]			558635.26300	$\mathrm{Mz}+1 / \mathrm{Mw}$	2.301

Figure S35. SEC trace of the polyethylene obtained in Table 1, entry 2 (1,2-dichlorobenzene, $145{ }^{\circ} \mathrm{C}$)

High-temperature GPC Report

Title	
Sample Name	$133-03-121$
Database Name	$2018-10-22 . c h d$
Saved File Name	RSLT0334
Method Data	meth8509_standard
Calc. Channel	RI EXT

Measurement Date	2018/10/22 18:10:32
Calculation Date	$2018 / 10 / 22$ 18:26:13
Measurement Time [min]	$10.000-30.000$
Sampling Pitch [ms]	100
Cup Number	2
Calculation Method	Molecular Weight Column test

$\mathrm{RI}[\mathrm{mV}]$

Calculation Results (RI)
Peak No. 1 Base Peak

	$[\mathrm{min}]$	$[\mathrm{mV}]$	$[\mathrm{mol}]$		Mn	45,461
Peak Start	14.583	0.432	$1,438,609$		Mw	132,657
Peak Top	17.288	49.457	129,440		Mz	258,245
Peak End	21.298	1.544	1,418	$\mathrm{Mz}+1$	406,886	
				48.577	Mv	132,657
Height [mV]			8256.070	Mp	132,786	
Area [mV*s]			100.000	$\mathrm{Mw} / \mathrm{Mn}$	1.947	
Area\% [\%]			132656.70351	$\mathrm{Mz}+1 / \mathrm{Mw}$	2.918	
[eta]					3.067	

Figure S36. SEC trace of the polyethylene obtained in Table 1, entry 3 (1,2-dichlorobenzene, $145^{\circ} \mathrm{C}$)

Title	Measurement Date \& Time	2020/03/10 18:21:07	
Sample Name	019-PP50	Calculation Date \& Time	2020/03/10 18:56:03
Database Name	2020-03-10.chd	Acquisition Time [min] [min]	$10.000-30.000$
Saved File Name	RSLT0605	Sampling Pitch [ms] [ms]	100
Method Data	meth8509_standard	Vial Number	18
Calc. Channel	RI EXT	Calculation Method	Molecular Weight Column test

RI[mV]

Result of Calculation (RI) (RI)

Figure S37. SEC trace of the polypropylene obtained in Table 1, entry 4 (1,2-dichlorobenzene, $145^{\circ} \mathrm{C}$)

Chromatography Report

Title	Measurement Date \& Time	2020/03/10 18:51:08	
Sample Name	020-PP80	Calculation Date \& Time	2020/03/18 05:26:43
Database Name	2020-03-10.chd	Acquisition Time [min] [min]	$10.000-30.000$
Saved File Name	RSLT0606	Sampling Pitch [ms] [ms]	100
Method Data	meth8509_standard	Vial Number	19
Calc. Channel	RI EXT	Calculation Method	Molecular Weight Column test

$\mathrm{RI}[\mathrm{mV}]$

Result of Calculation (RI) (RI)

Peak 1 Base Peak					
	[min]	[mV]	[mol]	Mn	640
Peak Start	19.720	-1.786	12,122	Mw	1,232
Peak Top	21.565	355.071	890	Mz	2,082
Peak End	23.110	-1.110	21	$\mathrm{Mz}+1$	3,068
				Mv	1,232
Height [mV]			356.489	Mp	1,038
Area [mV*s]			25594.820	$\mathrm{Mz} / \mathrm{Mw}$	1.690
Area\% [\%]			100.000	$\mathrm{Mw} / \mathrm{Mn}$	1.925
[eta]			1231.68501	$\mathrm{Mz}+1 / \mathrm{Mw}$	2.491

Figure S38. SEC trace of the polypropylene obtained in Table 1, entry 5 (1,2-dichlorobenzene, $145^{\circ} \mathrm{C}$)

High-temperature GPC Report

Title	Measurement Date	2019/02/06 17:35:15	
Sample Name	133-04-063	Calculation Date	2019/02/06 18:14:03
Database Name	2019-02-06.chd	Measurement Time [min]	$10.000-30.000$
Saved File Name	RSLT0421	Sampling Pitch [ms]	100
Method Data	meth8509_standard	Cup Number	1
Calc. Channel	RI EXT	Calculation Method	Molecular Weight Column test

$\mathrm{RI}[\mathrm{mV}]$

Calculation Results (RI)
Peak No. 1 Base Peak

	[min]	[mV]	[mol]	Mn	4,820
Peak Start	17.770	0.215	83,650	Mw	10,858
Peak Top	19.922	169.004	9,620	Mz	17,546
Peak End	22.402	1.109	153	$\mathrm{Mz}+1$	24,441
				Mv	10,858
Height [mV]			168.374	Mp	10,617
Area [$\mathrm{mV}^{*} \mathrm{~s}$]			17685.165	$\mathrm{Mz} / \mathrm{Mw}$	1.616
Area\% [\%]			100.000	Mw/Mn	2.253
[eta]			10858.41942	$\mathrm{Mz}+1 / \mathrm{Mw}$	2.251

Figure S39. SEC trace of the polypropylene obtained in Table 1, entry 6 (1,2-dichlorobenzene, $145^{\circ} \mathrm{C}$)

High-temperature GPC Report

Title
Sample Name 133-03-119
Database Name 2018-10-22.chd
Saved File Name RSLT0333
Method Data meth8509_standard
Calc. Channel RI EXT

Measurement Date
2018/10/22 17:40:32
Calculation Date
Measurement Time [min] 10.000-30.000
Sampling Pitch [ms]
Cup Number
Calculation Method

2018/10/22 18:25:26

100
1
Molecular Weight Column test
$\mathrm{RI}[\mathrm{mV}]$

Calculation Results (RI)

Peak No. 1 Base Peak						
	$[\mathrm{min}]$	$[\mathrm{mV}]$	$[\mathrm{mol}]$			Mn
Peak Start	14.338	1.043	$1,780,805$		Mw	186,612
Peak Top	17.167	34.721	144,416		Mz	356,813
Peak End	21.177	1.048	1,733	$\mathrm{Mz}+1$	548,510	
				Mv	186,426	
Height [mV]			33.676	Mp	144,416	
Area [mV's]		5290.055	$\mathrm{Mz} / \mathrm{Mw}$	1.914		
Area\% [\%]		100.000	$\mathrm{Mw} / \mathrm{Mn}$	2.757		
[eta]		186425.75017	$\mathrm{Mz}+1 / \mathrm{Mw}$	2.942		

Figure S40. SEC trace of the ethylene / allyl acetate copolymer obtained in Table 2, entry 2 (1,2-dichlorobenzene,

High-temperature GPC Report

Title	
Sample Name	133-04-010
Database Name	$2018-12-07$. chd
Saved File Name	RSLT0384
Method Data	meth8509_standard
Calc. Channel	RI EXT

Measurement Date	2018/12/07 16:39:00
Calculation Date	$2018 / 12 / 07$ 16:48:34
Measurement Time [min]	$10.000-30.000$
Sampling Pitch [ms]	100
Cup Number	1
Calculation Method	Molecular Weight Column test

$\mathrm{RI}[\mathrm{mV}]$

Calculation Results (RI)
Peak No. 1 Base Peak

	[min]	[mV]	[mol]	Mn	81,297
Peak Start	14.118	1.661	2,153,247	Mw	216,818
Peak Top	17.137	33.872	148,362	Mz	444,101
Peak End	20.760	2.544	3,263	$\mathrm{Mz}+1$	711,246
				Mv	216,818
Height [mV]			31.810	Mp	148,362
Area [$\mathrm{mV}^{\mathrm{k}} \mathrm{s}$]			5229.402	$\mathrm{Mz} / \mathrm{Mw}$	2.048
Area\% [\%]			100.000	Mw/Mn	2.667
[eta]			216818.11663	$\mathrm{Mz}+1 / \mathrm{Mw}$	3.280

Figure S41. SEC trace of the ethylene / allyl acetate copolymer obtained in Table 2, entry 3 (1,2-dichlorobenzene,

High-temperature GPC Report

Title	
Sample Name	$133-04-011$
Database Name	$2018-12-07 . c h d$
Saved File Name	RSLT0385
Method Data	meth8509_standard
Calc. Channel	RI EXT

Measurement Date
Calculation Date
Measurement Time [min]
Sampling Pitch [ms]
Cup Number
Calculation Method

2018/12/07 17:09:01
2018/12/07 17:14:21
10.000-30.000

100
2
Molecular Weight Column test
$\mathrm{RI}[\mathrm{mV}]$

Calculation Results (RI)
Peak No. 1 Base Peak

	$[\mathrm{min}]$	$[\mathrm{mV}]$	$[\mathrm{mol}]$		Mn		111,591
Peak Start	13.922	1.195	$2,547,503$		Mw		
Peak Top	16.847	52.631	192,428		Mz		
Peak End	20.417	1.757	5,219	$\mathrm{Mz}+1$	253,439		
			51.183	Mv	470,118		
Height [mV]			7601.737	Mp	732,011		
Area [mV mz]			100.000	$\mathrm{Mw} / \mathrm{Mn}$	253,439		
Area\% [\%]			253439.01617	$\mathrm{Mz}+1 / \mathrm{Mw}$	192,428		
[eta]				1.855			
					2.271		
				2.888			

Figure S42. SEC trace of the ethylene / allyl acetate copolymer obtained in Table 2, entry 4 (1,2-dichlorobenzene,
$145^{\circ} \mathrm{C}$)

High-temperature GPC Report

Title	
Sample Name	133-04-028
Database Name	2019-01-11.chd
Saved File Name	RSLT0400
Method Data	meth8509_standard
Calc. Channel	RI EXT

Measurement Date	$2019 / 01 / 1116: 27: 12$
Calculation Date	$2019 / 01 / 1118: 07: 43$
Measurement Time [min]	$10.000-30.000$
Sampling Pitch [ms]	100
Cup Number	1
Calculation Method	Molecular Weight Column test

$\mathrm{RI}[\mathrm{mV}]$

Calculation Results (RI)
Peak No. 1 Base Peak

	[min]	[mV]	[mol]	Mn	33,187
Peak Start	14.803	4.213	1,186,113	Mw	101,151
Peak Top	18.033	39.893	65,675	Mz	231,507
Peak End	21.422	8.820	1,149	$\mathrm{Mz}+1$	402,513
				Mv	101,151
Height [mV]			33.432	Mp	70,166
Area [$\mathrm{mV}^{*} \mathrm{~s}$]			5505.964	$\mathrm{Mz} / \mathrm{Mw}$	2.289
Area\% [\%]			100.000	$\mathrm{Mw} / \mathrm{Mn}$	3.048
[eta]			101150.56782	$\mathrm{Mz}+1 / \mathrm{Mw}$	3.979

Figure S43. SEC trace of the ethylene / allyl acetate copolymer obtained in Table 2, entry 5 (1,2-dichlorobenzene,

Chromatography Report

Title	
Sample Name	$09-031$
Database Name	2020-03-17(3).chd
Saved File Name	RSLT0633
Method Data	meth8509_standard
Calc. Channel	RI EXT

Measurement Date \& Time	$2020 / 03 / 17$ 22:27:31
Calculation Date \& Time	$2020 / 03 / 1805: 34: 34$
Acquisition Time [min] [min]	$10.000-30.000$
Sampling Pitch [ms] [ms]	100
Vial Number	10
Calculation Method	Molecular Weight Column test

$\mathrm{RI}[\mathrm{mV}]$

Result of Calculation (RI) (RI)

Peak 1 Base Peak					
	[min]	[mV]	[mol]	Mn	5,155
Peak Start	17.035	-4.417	162,541	Mw	15,313
Peak Top	19.657	74.793	13,011	Mz	28,253
Peak End	22.353	-4.167	172	$\mathrm{Mz}+1$	43,158
				Mv	15,313
Height [mV]			79.087	Mp	14,766
Area [mV*s]			9995.126	$\mathrm{Mz} / \mathrm{Mw}$	1.845
Area\% [\%]			100.000	Mw/Mn	2.970
[eta]			15313.26166	$\mathrm{Mz}+1 / \mathrm{Mw}$	2.818

Figure S44. SEC trace of the ethylene / allyl acetate copolymer obtained in Table 2, entry 7 (1,2-dichlorobenzene,

High-temperature GPC Report

Title	
Sample Name	$133-04-071$
Database Name	$2019-02-12$. chd
Saved File Name	RSLT0423
Method Data	meth8509_standard
Calc. Channel	RI EXT

Measurement Date	$2019 / 02 / 12$ 17:30:40
Calculation Date	$2019 / 02 / 12$ 18:12:18
Measurement Time [min]	$10.000-30.000$
Sampling Pitch [ms]	100
Cup Number	1
Calculation Method	Molecular Weight Column test

$\mathrm{RI}[\mathrm{mV}]$

Calculation Results (RI)
Peak No. 1 Base Peak

	[min]	[mV]	[mol]	Mn	4,159
Peak Start	17.720	2.572	87,555	Mw	10,395
Peak Top	19.930	43.230	9,527	Mz	17,783
Peak End	22.525	3.190	113	Mz+1	25,320
				Mv	10,395
Height [mV]			40.374	Mp	10,699
Area [$\mathrm{mV}^{*} \mathrm{~s}$]			4632.445	$\mathrm{Mz} / \mathrm{Mw}$	1.711
Area\% [\%]			100.000	Mw/Mn	2.500
[eta]			10395.25528	$\mathrm{Mz}+1 / \mathrm{Mw}$	2.436

Figure S45. SEC trace of the propylene / allyl acetate copolymer obtained in Table 2, entry 9 (1,2-dichlorobenzene,

High-temperature GPC Report

Title	
Sample Name	$133-03-128$
Database Name	$2018-11-02 . c h d$
Saved File Name	RSLT0365
Method Data	meth8509_standard
Calc. Channel	RI EXT

Measurement Date	2018/11/02 17:33:55
Calculation Date	$2018 / 11 / 02$ 18:10:16
Measurement Time [min]	$10.000-30.000$
Sampling Pitch [ms]	100
Cup Number	2
Calculation Method	Molecular Weight Column test

$\mathrm{RI}[\mathrm{mV}]$

Calculation Results (RI)
Peak No. 1 Base Peak

	[min]	[mV]	[mol]	Mn	4,285
Peak Start	18.260	0.073	53,184	Mw	8,439
Peak Top	20.142	30.853	7,393	Mz	13,195
Peak End	22.083	3.580	318	$\mathrm{Mz}+1$	17,801
				Mv	8,439
Height [mV]			29.054	Mp	8,346
Area [$\mathrm{mV}^{*} \mathrm{~s}$]			2900.175	Mz/Mw	1.564
Area\% [\%]			100.000	$\mathrm{Mw} / \mathrm{Mn}$	1.969
[eta]			8438.80311	$\mathrm{Mz}+1 / \mathrm{Mw}$	2.109

Figure S46. SEC trace of the propylene / 3-butetyl acetate copolymer obtained in Table 2, entry 10 (1,2dichlorobenzene, $145^{\circ} \mathrm{C}$)

Title	
Sample Name	$068-\mathrm{Zn}$
Database Name	$2019-09-06 . c h d$
Saved File Name	RSLT0496
Method Data	meth8509_standard
Calc. Channel	RI EXT

Measurement Date \& Time	2019/09/06 19:24:39
Calculation Date \& Time	$2019 / 12 / 24$ 15:59:56
Acquisition Time [min] [min]	$10.000-30.000$
Sampling Pitch [ms] [ms]	100
Vial Number	24
Calculation Method	Molecular Weight Column test

$\mathrm{RI}[\mathrm{mV}]$

Result of Calculation (RI) (RI)

Peak 1 Base Peak					
	[min]	$[\mathrm{mV}]$	$[\mathrm{mol}]$		Mn
Peak Start	15.833	-0.059	475,684		Mw
Peak Top	18.513	34.998	41,850	Mz	49,231
Peak End	21.912	0.175	456	$\mathrm{Mz}+1$	49,895
				Mv	129,909
Height [mV]			34.954	Mp	49,895
Area [mV*s]			4674.963	$\mathrm{Mz} / \mathrm{Mw}$	44,243
Area\% [\%]			100.000	$\mathrm{Mw} / \mathrm{Mn}$	1.740
[eta]			49895.3259	$\mathrm{Mz}+1 / \mathrm{Mw}$	2.595
					2.604

Figure S47. SEC trace of the ethylene / allyl acetate copolymer obtained in Table 3, entry 2 (1,2-dichlorobenzene, $145^{\circ} \mathrm{C}$)

Chromatography Report

Title	Measurement Date \& Time	2019/09/06 18:24:37	
Sample Name	062-BCF	Calculation Date \& Time	2019/12/24 16:02:08
Database Name	2019-09-06.chd	Acquisition Time [min] [min]	$10.000-30.000$
Saved File Name	RSLT0494	Sampling Pitch [ms] [ms]	100
Method Data	meth8509_standard	Vial Number	22
Calc. Channel	RI EXT	Calculation Method	Molecular Weight Column test

RI[mV]

Result of Calculation (RI) (RI)
Peak 1 Base Peak

	[min]	[mV]	[mol]	Mn	13,386
Peak Start	15.882	0.085	455,622	Mw	36,736
Peak Top	18.827	92.189	30,885	Mz	66,491
Peak End	22.280	0.638	204	$\mathrm{Mz}+1$	102,518
				Mv	36,736
Height [mV]			91.849	Mp	33,082
Area [mV*s]			12380.172	$\mathrm{Mz} / \mathrm{Mw}$	1.810
Area\% [\%]			100.000	$\mathrm{Mw} / \mathrm{Mn}$	2.744
[eta]			36736.19678	$\mathrm{Mz}+1 / \mathrm{Mw}$	2.791

Figure S48. SEC trace of the ethylene / allyl acetate copolymer obtained in Table 3, entry 3 (1,2-dichlorobenzene,
$145^{\circ} \mathrm{C}$)

Chromatography Report

Title	
Sample Name	063-MAO
Database Name	$2019-09-06 . c h d$
Saved File Name	RSLT0495
Method Data	meth8509_standard
Calc. Channel	RI EXT

Measurement Date \& Time	2019/09/06 18:54:37
Calculation Date \& Time	$2019 / 12 / 2416: 01: 18$
Acquisition Time [min] [min]	$10.000-30.000$
Sampling Pitch [ms] [ms]	100
Vial Number	23
Calculation Method	Molecular Weight Column test

$\mathrm{RI}[\mathrm{mV}]$

Result of Calculation (RI) (RI)
Peak 1 Base Peak

	[min]	[mV]	[mol]	Mn	9,488
Peak Start	14.338	0.345	1,780,805	Mw	50,582
Peak Top	18.777	27.634	32,440	Mz	203,918
Peak End	22.427	0.377	144	$\mathrm{Mz}+1$	599,884
				Mv	50,582
Height [mV]			27.271	Mp	35,245
Area [mV*s]			4480.479	$\mathrm{Mz} / \mathrm{Mw}$	4.031
Area\% [\%]			100.000	$\mathrm{Mw} / \mathrm{Mn}$	5.331
[eta]			50582.42709	$\mathrm{Mz}+1 / \mathrm{Mw}$	11.860

Figure S49. SEC trace of the ethylene / allyl acetate copolymer obtained in Table 3, entry 4 (1,2-dichlorobenzene,

Chromatography Report

Title	
Sample Name	$70-08-079-5 \mathrm{~mL}$
Database Name	$2019-09-28(2)$. chd
Saved File Name	RSLT0503
Method Data	meth8509_standard
Calc. Channel	RI EXT

Measurement Date \& Time	2019/09/28 19:22:20
Calculation Date \& Time	$2019 / 12 / 24$ 16:05:37
Acquisition Time [min] [min]	$10.000-30.000$
Sampling Pitch [ms] [ms]	100
Vial Number	5
Calculation Method	Molecular Weight Column test

RI[mV]

Result of Calculation (RI) (RI)

Figure S50. SEC trace of the ethylene / allyl acetate copolymer obtained in Table 3, entry 5 (1,2-dichlorobenzene,

Figure S51. SEC traces of the collected eluents from SEC measurement of polymer from Table 3, entry 5 (1,2dichlorobenzene, $145^{\circ} \mathrm{C}$). Eluent of a, retention time 17-18 $\mathrm{min} . \mathbf{b}$, retention time $18-19 \mathrm{~min}$. \mathbf{c}, retention time 19-20 min. d, retention time $20-21 \mathrm{~min}$. e, retention time 21-22 min. and \mathbf{f}, retention time $22-23 \mathrm{~min}$.

Chromatography Report

Title	
Sample Name	$70-08-085-500 \mathrm{eq}$
Database Name	$2019-09-30$. chd
Saved File Name	RSLT0508
Method Data	meth8509_standard
Calc. Channel	RI EXT

Measurement Date \& Time	2019/09/30 06:35:13
Calculation Date \& Time	$2019 / 12 / 24$ 16:09:32
Acquisition Time [min] [min]	$10.000-30.000$
Sampling Pitch [ms] [ms]	100
Vial Number	7
Calculation Method	Molecular Weight Column test

$\mathrm{RI}[\mathrm{mV}]$

Result of Calculation (RI) (RI)
Peak 1 Base Peak

	[min]	[mV]	[mol]	Mn	2,062
Peak Start	17.207	1.305	139,314	Mw	8,528
Peak Top	20.608	51.047	4,036	Mz	22,870
Peak End	22.770	2.352	59	$\mathrm{Mz}+1$	39,886
				Mv	8,528
Height [mV]			49.102	Mp	6,545
Area [mV*s]			7794.272	$\mathrm{Mz} / \mathrm{Mw}$	2.682
Area\% [\%]			100.000	$\mathrm{Mw} / \mathrm{Mn}$	4.136
[eta]			8528.06827	$\mathrm{Mz}+1 / \mathrm{Mw}$	4.677

Figure S52. SEC trace of the ethylene / allyl acetate copolymer obtained in Table 3, entry 6 (1,2-dichlorobenzene, $145^{\circ} \mathrm{C}$)

Sample Name	70-08-111-EVA
Database Name	2019-11-08(2).chd
Saved File Name	RSLT0537
Method Data	meth8509_standard
Calc. Channel	RI EXT

Measurement Date \& Time	2019/11/08 23:20:14
Calculation Date \& Time	$2019 / 11 / 0911: 10: 46$
Acquisition Time [min] [min]	$10.000-30.000$
Sampling Pitch [ms] [ms]	100
Vial Number	2
Calculation Method	Molecular Weight Column test

$\mathrm{RI}[\mathrm{mV}$]

Result of Calculation (RI) (RI)

Peak 1 Base Peak					
	[min]	[mV]	[mol]	Mn	5,914
Peak Start	16.740	-12.181	211,704	Mw	18,629
Peak Top	19.878	9.409	10,118	Mz	38,471
Peak End	22.377	-12.247	163	$\mathrm{Mz}+1$	61,280
				Mv	18,629
Height [mV]			21.627	Mp	13,084
Area [mV*s]			3053.674	$\mathrm{Mz} / \mathrm{Mw}$	2.065
Area\% [\%]			100.000	$\mathrm{Mw} / \mathrm{Mn}$	3.150
[eta]			18629.24937	$\mathrm{Mz}+1 / \mathrm{Mw}$	3.289

Figure S53. SEC trace of the polyethylene obtained in Table 3, entry 7 (1,2-dichlorobenzene, $145^{\circ} \mathrm{C}$)

Chromatography Report

Title	
Sample Name	70-08-105-EMA
Database Name	$2019-11-08(2)$.chd
Saved File Name	RSLT0536
Method Data	meth8509_standard
Calc. Channel	RI EXT

Measurement Date \& Time 2019/11/08 22:50:13
Calculation Date \& Time 2019/11/09 11:10:29
Acquisition Time [min] [min] $10.000-30.000$
Sampling Pitch [ms] [ms] 100
Vial Number
Calculation Method

1
Molecular Weight Column test
$\mathrm{RI}[\mathrm{mV}]$

Result of Calculation (RI) (RI)

Figure S54. SEC trace of the ethylene / methyl acrylate copolymer obtained in Table 3, entry 8 (1,2dichlorobenzene, $145^{\circ} \mathrm{C}$)

Chromatography Report

Title
Sample Name 70-08-133-2
Database Name 2020-01-14.chd
Saved File Name RSLT0563
Method Data meth8509_standard
Calc. Channel RI EXT

Measurement Date \& Time	$2020 / 01 / 14$ 22:25:47
Calculation Date \& Time	$2020 / 01 / 1509: 19: 11$
Acquisition Time [min] [min]	$10.000-30.000$
Sampling Pitch [ms] [ms]	100
Vial Number	8
Calculation Method	Molecular Weight Column test

$\mathrm{RI}[\mathrm{mV}$]

Result of Calculation (RI) (RI)
Peak 1 Base Peak

	$[\mathrm{min}]$	$[\mathrm{mV}]$		[mol]		Mn		1,982
Peak Start	18.750	-9.021	33,297		Mw	4,051		
Peak Top	21.295	7.185	1.426		Mz	7,059		
Peak End	22.230	-8.600	229	$\mathrm{Mz}+1$	10.104			
					Mv	4,051		
Height [mV]			15.898	Mp	4,254			
Area [mV*s]			1674.795	$\mathrm{Mz} / \mathrm{Mw}$	1.742			
Area\% [\%]			100.000	$\mathrm{Mw} / \mathrm{Mn}$	2.044			
[eta]			4051.40028	$\mathrm{Mz}+1 / \mathrm{Mw}$	2.494			

Figure S55. SEC trace of the propylene / allyl acetate copolymer obtained in Table 3, entry 9 (1,2-dichlorobenzene,
$\left.145^{\circ} \mathrm{C}\right)$.

Chromatography Report

Title	Measurement Date \& Time	2020/01/14 22:55:48	
Sample Name	70-08-134	Calculation Date \& Time	$2020 / 01 / 16$ 18:49:08
Database Name	2020-01-14.chd	Acquisition Time [min] [min]	$10.000-30.000$
Saved File Name	RSLT0564	Sampling Pitch [ms] [ms]	100
Method Data	meth8509_standard	Vial Number	9
Calc. Channel	RI EXT	Calculation Method	Molecular Weight Column test

$\mathrm{RI}[\mathrm{mV}$]

Result of Calculation (RI) (RI)

Peak 1 Base Peak	[min]	[mV]	[mol]	Mn	2,403
Peak Start	19.138	-1.424	22,591	Mw	4,011
Peak Top	20.775	0.706	3,194	Mz	6,045
Peak End	22.142	-1.384	279	$\mathrm{Mz}+1$	8.229
				Mv	4,011
Height [mV]			2.108	Mp	3,750
Area [mV*s]			164.479	$\mathrm{Mz} / \mathrm{Mw}$	1.507
Area\% [\%]			100.000	$\mathrm{Mw} / \mathrm{Mn}$	1.670
[eta]			4011.04032	$\mathrm{Mz}+1 / \mathrm{Mw}$	2.052

Figure S56. SEC trace of the propylene / allyl acetate copolymer obtained in Table 3, entry 10 (1,2dichlorobenzene, $145^{\circ} \mathrm{C}$).

Title	
Sample Name	$09-032$
Database Name	2020-03-17(2).chd
Saved File Name	RSLT0631
Method Data	meth8509_standard
Calc. Channel	RI EXT

Measurement Date \& Time	2020/03/17 19:52:10
Calculation Date \& Time	$2020 / 03 / 1805: 32: 48$
Acquisition Time [min] [min]	$10.000-30.000$
Sampling Pitch [ms] [ms]	100
Vial Number	7
Calculation Method	Molecular Weight Column test

$\mathrm{RI}[\mathrm{mV}$]

Result of Calculation (RI) (RI)

Peak 1 Base Peak					
	[min]	[mV]	[mol]	Mn	1,165
Peak Start	19.913	-1.378	9,714	Mw	1,827
Peak Top	21.327	51.945	1,352	Mz	2,696
Peak End	22.557	-1.774	104	$\mathrm{Mz}+1$	3,649
				Mv	1,827
Height [mV]			53.535	Mp	1,488
Area [mV*s]			3399.011	$\mathrm{Mz} / \mathrm{Mw}$	1.475
Area\% [\%]			100.000	$\mathrm{Mw} / \mathrm{Mn}$	1.568
[eta]			1827.32879	$\mathrm{Mz}+1 / \mathrm{Mw}$	1.997

Figure S57. SEC trace of the propylene / allyl acetate copolymer obtained in Table S1, entry 1 (1,2dichlorobenzene, $145^{\circ} \mathrm{C}$).

Title	
Sample Name	$09-034$
Database Name	2020-03-17(3).chd
Saved File Name	RSLT0634
Method Data	meth8509_standard
Calc. Channel	RI EXT

Measurement Date \& Time	2020/03/17 22:57:32
Calculation Date \& Time	2020/03/18 05:35:25
Acquisition Time [min] [min]	$10.000-30.000$
Sampling Pitch [ms] [ms]	100
Vial Number	11
Calculation Method	Molecular Weight Column test

$\mathrm{RI}[\mathrm{mV}]$

Result of Calculation (RI) (RI)

Peak 1 Base Peak					
	[min]	[mV]	[mol]	Mn	991
Peak Start	20.220	-0.115	6,710	Mw	1,396
Peak Top	21.508	18.421	986	Mz	1,950
Peak End	22.303	-2.376	193	$\mathrm{Mz}+1$	2,581
				Mv	1,396
Height [mV]			19.934	Mp	1,091
Area [mV*s]			1070.835	$\mathrm{Mz} / \mathrm{Mw}$	1.396
Area\% [\%]			100.000	$\mathrm{Mw} / \mathrm{Mn}$	1.409
[eta]			1396.41967	$\mathrm{Mz}+1 / \mathrm{Mw}$	1.848

Figure S58. SEC trace of the propylene / allyl acetate copolymer obtained in Table S1, entry 2 (1,2dichlorobenzene, $145^{\circ} \mathrm{C}$).

4. DSC Traces

Figure S59. DSC trace of the ethylene / allyl acetate copolymer obtained in Table 3, entry 2.

Figure S60. DSC trace of the ethylene / allyl acetate copolymer obtained in Table 3, entry 3.

Figure S61. DSC trace of the ethylene / allyl acetate copolymer obtained in Table 3, entry 4.

Figure S62. DSC trace of the ethylene / allyl acetate copolymer obtained in Table 3, entry 5.

Figure S63. DSC trace of the ethylene / allyl acetate copolymer obtained in Table 3, entry 6.

Figure S64. DSC trace of the polyethylene obtained in Table 3, entry 7.

Figure S65. DSC trace of the polyethylene end-capped with ester obtained in Table 3, entry 8.

Figure S66. DSC trace of the propylene / allyl acetate copolymer obtained in Table 3, entry 9.

Figure S67. DSC trace of the propylene / allyl acetate copolymer obtained in Table 3, entry 10.

5. X-ray Crystallographic Data of Complex 3

Single crystal of $\mathbf{3}$ was mounted with mineral oil on a loop-type mount and transferred to the goniometer of a Rigaku Saturn CCD diffractometer. The radiation was performed with graphite-monochromated Mo K $\alpha(\lambda=0.71075$ \AA). The structure was solved by direct methods with (SHELXT 2018) ${ }^{10}$ and refined by full-matrix least-squares techniques against F^{2} (SHELXL 2018) ${ }^{10}$ on the Olex ${ }^{2}$ program. ${ }^{11}$ The intensities was corrected for Lorentz and polarization effects. The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were placed using AFIX instructions. The data are summarized in Table S1.

Table S1. Crystal Data and Structure Refinement for Complex 3.

Empirical formula	$\mathrm{C}_{52} \mathrm{H}_{55} \mathrm{BF}_{24} \mathrm{NiOP}_{2}$
Formula weight	1283.42
Temperature (K)	293
Crystal system	triclinic
Space group	P_{-1}
Unit cell dimensions $\mathrm{a}(\AA)$	12.36430(10)
b (\AA)	21.2593(2)
c (\AA)	25.0961(3)
$\alpha{ }^{\circ}$)	65.7360(10)
$\beta\left({ }^{\circ}\right)$	76.1750(10)
$\gamma\left(^{\circ}\right.$)	76.5800(10)
Volume (\AA^{3})	5772.53(11)
Z	2
Density (calculated) (g/cm ${ }^{3}$)	1.528
Absorption coefficient (mm^{-1})	0.50
F(000)	2714.0
Crystal size (mm^{3})	$0.50 \times 0.25 \times 0.40$
Theta range	$2.2960-28.9450$
	-16<=h<=16
Index ranges	-28<=k<=28
	$-34<=1<=34$
Reflections collected	202560
Independent reflections	28130
R (int)	0.0299
Data / restraints / parameters	28130 / 0 / 1484
Goodness-of-fit on F^{2}	1.032
Final R indices [$\mathrm{I}>2 \sigma(I)$]	$R_{1}=0.0953$
	$\mathrm{w} R_{2}=0.2809$
R indices (all data) $[\mathrm{I}>2 \sigma(I)]$	$R_{1}=0.1054$
	$\mathrm{w} R_{2}=0.2919$

5. References

(1) Mitsushige, Y.; Yasuda, H.; Carrow, B. P.; Ito, S.; Kobayashi, M.; Tayano, T.; Watanabe, Y.; Okuno, Y.; Hayashi, S.; Kuroda, J.; Okumura, Y.; Nozaki, K. Methylene-Bridged Bisphosphine Monoxide Ligands for Palladium-Catalyzed Copolymerization of Ethylene and Polar Monomers. ACS Macro Lett. 2018, 7, 305.
(2) Chen, M.; Chen, C. L. A Versatile Ligand Platform for Palladium- and Nickel-Catalyzed Ethylene Copolymerization with Polar Monomers. Angew. Chem. Int. Ed. 2018, 57, 3094.
(3) Tao, W. J.; Nakano, R.; Ito, S.; Nozaki, K. Copolymerization of Ethylene and Polar Monomers by Using Ni/IzQO Catalysts. Angew. Chem. Int. Ed. 2016, 55, 2835.
(4) Nakano, R.; Nozaki, K. Copolymerization of Propylene and Polar Monomers Using Pd/IzQO Catalysts. J. Am. Chem. Soc. 2015, 137, 10934.
(5) Ota, Y.; Ito, S.; Kobayashi, M.; Kitade, S.; Sakata, K.; Tayano, T.; Nozaki, K. Crystalline Isotactic Polar Polypropylene from the Palladium-Catalyzed Copolymerization of Propylene and Polar Monomers. Angew. Chem. Int. Ed. 2016, 55, 7505.
(6) Yang, Y. C.; Leung, D. Y. C.; Toy, P. H. Rasta Resin-TBD as a Reusable Catalyst for Transesterification Reactions. Synlett 2013, 24, 1870.
(7) Ito, S.; Munakata, K.; Nakamura, A.; Nozaki, K. Copolymerization of Vinyl Acetate with Ethylene by Palladium/Alkylphosphine-Sulfonate Catalysts. J. Am. Chem. Soc. 2009, 131, 14606.
(8) Guironnet, D.; Roesle, P.; Rünzi, T.; Göttker-Schnetmann, I.; Mecking, S. Insertion Polymerization of Acrylate. J. Am. Chem. Soc. 2009, 131, 422.
(9) Tao, W.; Akita, S.; Nakano, R.; Ito, S.; Hoshimoto, Y.; Ogoshi, S.; Nozaki, K. Copolymerisation of ethylene with polar monomers by using palladium catalysts bearing an N -heterocyclic carbene-phosphine oxide bidentate ligand. Chem. Commun. 2017, 53, 2630.
(10) Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr C 2015, 71, 3.
(11) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J Appl Crystallogr 2009, 42, 339.

