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Figure S1. Top and front views of the models of (A) Ni17W3(111)-plane, (B) Ni4W 

(211)-plane. The pink and cyan balls denote Ni and W atoms, respectively.
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Figure S2. XRD pattern of 450 oC-annealed sample under air atmosphere.
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Figure S3. Raman spectra of the 400 oC- and 600 oC-reduced samples. For the 400 

oC-reduced sample, the bands at 778, 616, 597, 508 and 281 cm-1 can be safely 

assigned to the characteristic modes of WO2.1,2 For the 600 oC-reduced sample, the 

bands at 710, 802 and 964 cm-1 should be ascribed to the vibration modes of WO3. 

Specifically, the bands at 710 and 802 cm-1 correspond to the symmetric stretching 

and bending modes of W-O, and the band at 964 cm-1 to the stretching mode of 

terminal W=O bonds.3,4 The band at 885 cm-1 was ascribed to the symmetric 

stretching mode of terminal W=O bonds of the residual NiWO4 phase.5,6
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Figure S4. The kinetic curves of N2H4·H2O decomposition over the reduced catalysts 

with the different molar ratios of Ni to W precursors at 400 oC H2 atmosphere. The 

catalytic decomposition of N2H4·H2O was conducted in a solution (2 mL) of 0.5 M 

N2H4·H2O + 2.0 M NaOH at 50 oC.
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Figure S5. (A) N2 sorption isotherms and (B) the corresponding pore size distribution 

curves for the samples reduced at various temperatures.
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Figure S6. XRD patterns of the nanocomposite samples annealed at 350 oC for 

different time.
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Figure S7. The kinetic curves of N2H4·H2O decomposition over the reduced catalysts 

at different temperatures or annealing time. The catalytic decomposition of N2H4·H2O 

was conducted in a solution (2 mL) of 0.5 M N2H4·H2O + 2.0 M NaOH at 50 C. 
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Figure S8. Possible adsorption conformations of N2H4 on (a-f) Ni17W3 (111) and (g-j) 

Ni4W (211) surfaces and the corresponding adsorption energies. Same adsorption 

conformation of N2H4 can be obtained from different initial conformations after 

optimization, for example, (i) can be obtained from both anti and gauche 

configurations of N2H4 adsorbed on W atom of Ni4W (211) surface.
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Figure S9. XRD patterns of 400 oC-reduced catalyst sample before (A) and after (B) 

the stability test.
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Figure S10. TEM images of the 400 oC-reduced catalyst sample before (A) and after 

(B) the stability test.
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Figure S11. UV–vis spectra of hydrous hydrazine solution before and after the 

catalytic decomposition reaction over the 400 oC-reduced catalyst sample.
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Table S1. Comparison of catalytic performance of the noble-metal-free catalysts 

towards hydrogen generation from N2H4·H2O.

Catalyst
Reaction 
rate (h1)

Selectivity
(%)

Temperature
(oC)

Activity 
attenuationa

(%)
Reference

NiMoB-La(OH)3 13.3 100 50 52 7

Ni-Al2O3-HT 2.0 93 50 40 8

Ni10Mo/Ni-Mo-O 54.5 97 50 <5 9

NiCO/NiO-CoOx 5.49 99 25 30 10

2D NiFe/CeO2 5.73 99 50 35 11

6 wt%Ni/CeO2 34.0 100 50 15b 12

Ni nanofiber 6.9 100 60 24c 13

NiFe/CeZrO2 24.7 100 50 48c 14

Ni4W/WO2/NiWO4 33 99 50 <5 This work

a Activity attenuation after 10 cyclic usage; b 3 cyclic usage; c 5 cyclic usage.
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