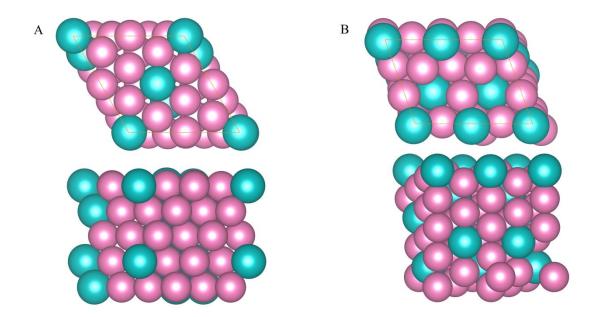
Supporting Information

Noble-metal-free Ni–W–O derived catalysts for high-capacity hydrogen production from hydrazine monohydrate

Qing Shi,[†] Deng-Xue Zhang,[†] Hui Yin,[†] Yu-Ping Qiu,[†] Liang-Liang Zhou,[†] Chen Chen,[†] Hui Wu,[‡] and Ping Wang^{†*}


- [†] School of Materials Science and Engineering, Key Laboratory of Advanced Energy Storage Materials of Guangdong Province, South China University of Technology, Guangzhou 510641, P.R. China
- * NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-6102, United States
- * Corresponding author. Tel: +86 20 3938 0583

E-mail address: mspwang@scut.edu.cn (P. Wang)

Number of pages: 15

Number of figures: 11

Number of tables: 1

Figure S1. Top and front views of the models of (A) $Ni_{17}W_3(111)$ -plane, (B) Ni_4W (211)-plane. The pink and cyan balls denote Ni and W atoms, respectively.

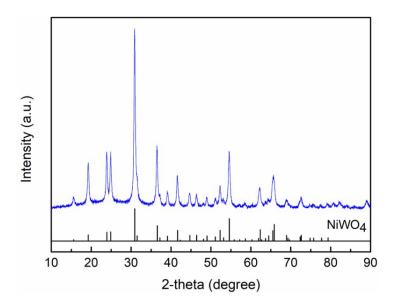
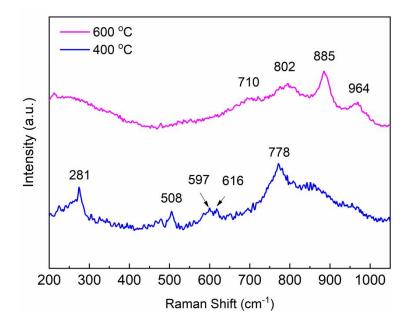



Figure S2. XRD pattern of 450 °C-annealed sample under air atmosphere.

Figure S3. Raman spectra of the 400 °C- and 600 °C-reduced samples. For the 400 °C-reduced sample, the bands at 778, 616, 597, 508 and 281 cm⁻¹ can be safely assigned to the characteristic modes of WO₂.^{1,2} For the 600 °C-reduced sample, the bands at 710, 802 and 964 cm⁻¹ should be ascribed to the vibration modes of WO₃. Specifically, the bands at 710 and 802 cm⁻¹ correspond to the symmetric stretching and bending modes of W-O, and the band at 964 cm⁻¹ to the stretching mode of terminal W=O bonds.^{3,4} The band at 885 cm⁻¹ was ascribed to the symmetric stretching stretching mode of terminal W=O bonds of the residual NiWO₄ phase.^{5,6}

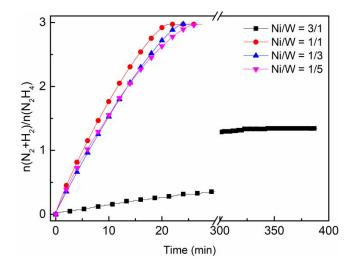


Figure S4. The kinetic curves of $N_2H_4 \cdot H_2O$ decomposition over the reduced catalysts with the different molar ratios of Ni to W precursors at 400 °C H₂ atmosphere. The catalytic decomposition of $N_2H_4 \cdot H_2O$ was conducted in a solution (2 mL) of 0.5 M $N_2H_4 \cdot H_2O + 2.0$ M NaOH at 50 °C.

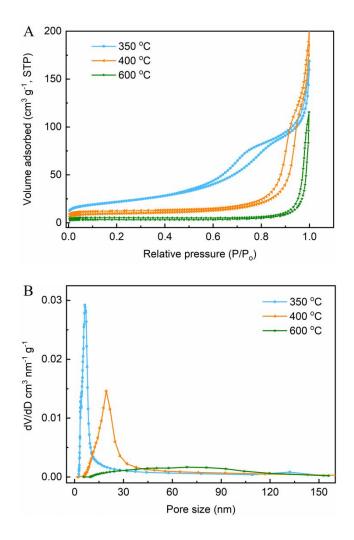
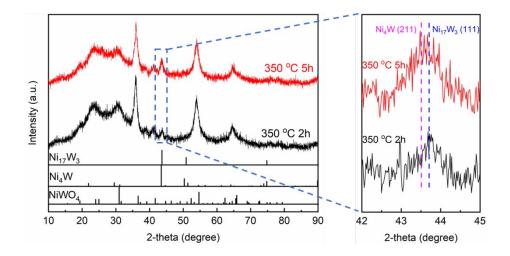
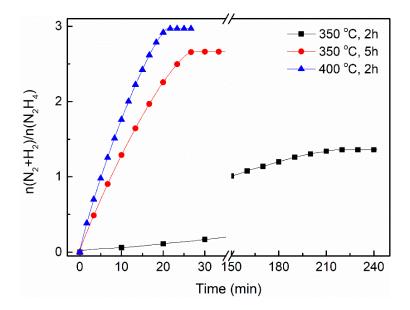
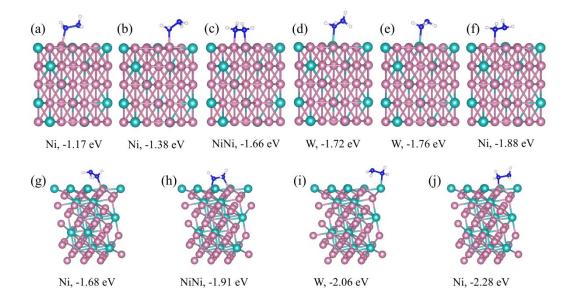
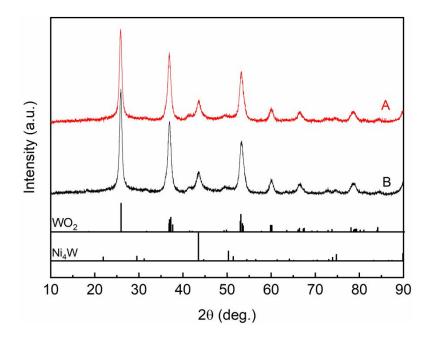
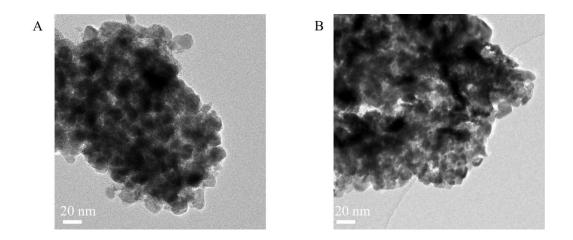


Figure S5. (A) N_2 sorption isotherms and (B) the corresponding pore size distribution curves for the samples reduced at various temperatures.


Figure S6. XRD patterns of the nanocomposite samples annealed at 350 °C for different time.


Figure S7. The kinetic curves of $N_2H_4 \cdot H_2O$ decomposition over the reduced catalysts at different temperatures or annealing time. The catalytic decomposition of $N_2H_4 \cdot H_2O$ was conducted in a solution (2 mL) of 0.5 M $N_2H_4 \cdot H_2O + 2.0$ M NaOH at 50 °C.

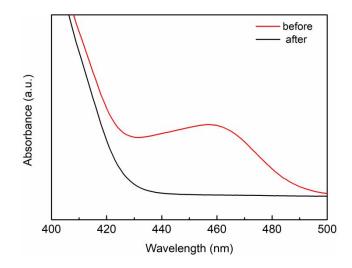

Figure S8. Possible adsorption conformations of N_2H_4 on (a-f) $Ni_{17}W_3$ (111) and (g-j) Ni_4W (211) surfaces and the corresponding adsorption energies. Same adsorption conformation of N_2H_4 can be obtained from different initial conformations after optimization, for example, (i) can be obtained from both anti and gauche configurations of N_2H_4 adsorbed on W atom of Ni_4W (211) surface.

Figure S9. XRD patterns of 400 °C-reduced catalyst sample before (A) and after (B) the stability test.

Figure S10. TEM images of the 400 °C-reduced catalyst sample before (A) and after (B) the stability test.

Figure S11. UV–vis spectra of hydrous hydrazine solution before and after the catalytic decomposition reaction over the 400 °C-reduced catalyst sample.

Catalyst	Reaction rate (h ⁻¹)	Selectivity (%)	Temperature (°C)	Activity attenuation ^a (%)	Reference
NiMoB-La(OH) ₃	13.3	100	50	52	7
Ni-Al ₂ O ₃ -HT	2.0	93	50	40	8
Ni ₁₀ Mo/Ni-Mo-O	54.5	97	50	<5	9
NiCO/NiO-CoO _x	5.49	99	25	30	10
2D NiFe/CeO ₂	5.73	99	50	35	11
6 wt%Ni/CeO ₂	34.0	100	50	15 ^b	12
Ni nanofiber	6.9	100	60	24 ^c	13
NiFe/CeZrO ₂	24.7	100	50	48 ^c	14
Ni ₄ W/WO ₂ /NiWO ₄	33	99	50	<5	This work

Table S1. Comparison of catalytic performance of the noble-metal-free catalyststowards hydrogen generation from $N_2H_4 \cdot H_2O$.

^{*a*} Activity attenuation after 10 cyclic usage; ^{*b*} 3 cyclic usage; ^{*c*} 5 cyclic usage.

References

- (1) Liu, F.; Li, L.; Mo, F.; etc. A Catalyzed-Growth route to directly form micropatterned WO₂ and WO₃ nanowire arrays with excellent field emission behaviors at low temperature. *Cryst. Growth Des.* **2010**, *10*, 5193–5199.
- (2) Frey, G. L.; Rothschild, A.; Sloan, J.; etc. Investigations of nonstoichiometric tungsten oxide nanoparticles. J. Solid State Chem. 2001, 162, 300–313.
- (3) Fang, G.; Liu, Z.; Yao, K. L. Fabrication and characterization of electrochromic nanocrystalline WO₃/Si(111) thin films for infrared emittance modulation applications. J. Phys. D: Appl. Phys. 2001, 34, 2260–2266.
- (4) Kim, D. S.; Ostromecki, M.; Wachs, I. E. Preparation and characterization of WO₃/SiO₂ catalysts. *Catal. Lett.* **1995**, *33*, 209–215.
- (5) Xing, X.; Wang, J.; Reduced graphene oxide incorporated NiWO₄ for high-performance energy storage. *J Mater Sci: Mater Electron* 2016, 27 (11), 11613–11622.
- (6) Xu, X.; Pei, L.; Yang, Y.; etc. Facile synthesis of NiWO₄/reduced graphene oxide nanocomposite with excellent capacitive performance for supercapacitors. J. Alloys Compd. 2016, 654, 23–31.
- (7) Zhang, J.; Kang, Q.; Yang, Z.; etc. A cost-effective NiMoB-La(OH)₃ catalyst for hydrogen generation from decomposition of alkaline hydrous hydrazine solution. *J. Mater. Chem. A* 2013, *1* (38), 11623–11628.

- (8) He, L.; Huang, Y.; Wang, A.; etc. A noble-metal-free catalyst derived from Ni-Al hydrotalcite for hydrogen generation from N₂H₄·H₂O decomposition. *Angew. Chem. Int. Ed.* **2012**, *51* (25), 6191–6194.
- (9) Qiu, Y. P.; Cao, G. X.; Wen, H.; etc. High-capacity hydrogen generation from hydrazine monohydrate using a noble-metal-free Ni₁₀Mo/Ni-Mo-O nanocatalyst. *Int. J. Hydrogen Energy*, **2019**, *44* (29), 15110–15117.
- (10) Wu, D.; Wen, M.; Lin, X.; etc. A NiCo/NiO–CoO_x ultrathin layered catalyst with strong basic sites for high-performance H₂ generation from hydrous hydrazine. *J. Mater. Chem. A*, **2016**, *4* (17), 6595–6602.
- (11)Wu, D.; Wen, M.; Gu, C.; etc. 2D NiFe/CeO₂ basic-site-enhanced catalyst via in-situ topotactic reduction for selectively catalyzing the H₂ generation from N₂H₄·H₂O. ACS Appl. Mater. Interfaces 2017, 9 (19), 16103–16108.
- (12)Kang, W.; Varma, A. Hydrogen generation from hydrous hydrazine over Ni/CeO₂ catalysts prepared by solution combustion synthesis. *Appl. Catal. B* **2018**, 220, 409–416.
- (13)Fu, Q.; Yang, P.; Wang, J.; etc. In situ synthesis of Ni nanofibers via vacuum thermal reduction and their efficient catalytic properties for hydrogen generation. *J. Mater. Chem. A* 2018, 6 (24), 11370–11376.
- (14)Zou, H.; Yao, Q.; Huang, M.; etc. Noble-metal-free NiFe nanoparticles immobilized on nano CeZrO₂ solid solutions for highly efficient hydrogen production from hydrous hydrazine. *Sustainable Energy Fuels*, **2019**, *3*, 3071–3077.