Supporting Information

A force field for poly(oxymethylene) dimethyl ethers (OMEn)

Aditya M. Kulkarni, Edder J. García, Angelo Damone, Michael Schappals, Simon Stephan, Maximilian Kohns^{*} and Hans Hasse

Laboratory of Engineering Thermodynamics (LTD), Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 44, 67663 Kaiserslautern, Germany.

Email: maximilian.kohns@mv.uni-kl.de

1. Dihedral potential with Fourier equation

Some simulation codes use the Fourier equation instead of the Ryckaert-Bellemans (RB) equation discussed in the main text. We thus provide the equivalents of our dihedral parameters if the Fourier equation is used instead. The dihedral potential using the Fourier equation with six coefficients a_i is 1:

$$u_{t} = a_{0} + \sum_{i=1}^{5} a_{i} \left[1 + (-1)^{i+1} \cos(i\theta) \right]$$
(1)

The a_i coefficients for OME for the Fourier equation are given in Table S1. The dihedral angle in the RB equation φ is related to the angle θ in the Fourier equation by 2:

$$\varphi = \theta - 180^{\circ} \tag{2}$$

$a_i \ / \ {\rm K}$	CH_3 -O- CH_2 -O (edge)	CH_2 -O- CH_2 -O (center)
a_0	1037.95	1112.16
a_1	225.21	525.59
a_2	-866.08	-1060.64
a_3	917.08	725.12
a_4	-81.66	-146.37
a_5	53.16	51.24

Table S1: Parameters for the dihedral potential using the Fourier equation.

2. Numerical values of liquid densities at 1 bar from *NPT* simulations

The liquid densities at 1 bar for OMEn (n = 1 - 4), calculated using NPT simulations with MedeA-Gibbs [1] are given in Table S2.

$T \ / \ {\rm K}$	$\rho^{\rm liq}$ / kg m $^{-3}$
	OME1
293.05	$850.69 {\pm} 1.15$
333.16	$797.92{\pm}2.39$
363.15	$755.73{\pm}1.38$
	OME2
293.15	$966.02{\pm}2.30$
333.15	$920.34{\pm}2.81$
363.15	881.52 ± 2.53
	OME3
293.15	1017.5 ± 3.17
333.15	$975.24{\pm}1.67$
942.35	$942.35 {\pm} 2.74$
	OME4
293.15	$1053.0{\pm}7.32$
333.15	$1018.9 {\pm} 4.00$
363.15	$993.46 {\pm} 3.11$

Table S2: Liquid densities at 1 bar for OMEn (n = 1 - 4).

3. Numerical values of VLE properties from GEMC simulations

VLE properties of OME1-OME4 modelled with the present force field, calculated using Gibbs Ensemble Monte Carlo simulations with MedeA-Gibbs [1] are given in Table S3.

T / K	$p^{\rm s}$ / bar	$ ho^{ m liq}$ / kg m ⁻³	$ ho^{ m vap}$ / kg m ⁻³
		OME1	
336.455	$2.179 {\pm} 0.073$	$794.76 {\pm} 0.968$	$6.276 {\pm} 0.219$
360.490	$4.071 {\pm} 0.110$	$759.59 {\pm} 1.402$	$11.300{\pm}0.376$
384.520	$7.042{\pm}0.107$	$723.34{\pm}0.641$	$19.129{\pm}0.312$
408.553	$11.563 {\pm} 0.104$	$683.97 {\pm} 0.532$	$31.605 {\pm} 0.466$
432.585	$17.979 {\pm} 0.238$	$638.52 {\pm} 1.523$	$50.690 {\pm} 0.877$
442.200	$21.253 {\pm} 0.241$	$618.69{\pm}1.482$	$61.127 {\pm} 0.864$
		OME2	
386.540	$1.237 {\pm} 0.032$	$850.37 {\pm} 1.267$	$3.895 {\pm} 0.046$
414.150	$2.549{\pm}0.051$	814.25 ± 1.295	$8.411 {\pm} 0.209$
441.760	$5.057 {\pm} 0.152$	$773.59{\pm}1.072$	$16.556 {\pm} 0.680$
469.370	$8.630 {\pm} 0.193$	$727.34{\pm}2.425$	$28.112{\pm}0.891$
496.980	$14.414{\pm}0.226$	$678.29{\pm}1.694$	$45.799 {\pm} 1.110$
508.024	$17.120{\pm}0.278$	$652.33 {\pm} 2.041$	$55.977 {\pm} 1.718$
		OME3	
452.550	$2.029 {\pm} 0.061$	$831.53 {\pm} 0.853$	$7.908 {\pm} 0.294$
482.720	$3.819 {\pm} 0.148$	$789.59 {\pm} 2.034$	$14.498 {\pm} 0.862$
512.890	$6.630 {\pm} 0.128$	$740.11 {\pm} 1.315$	$24.730{\pm}0.413$
543.060	$11.620{\pm}0.214$	$690.99 {\pm} 2.920$	$45.799 {\pm} 1.110$
		OME4	
485.175	$1.005 {\pm} 0.026$	$858.07 {\pm} 1.677$	$4.244{\pm}0.116$
517.520	$2.252{\pm}0.063$	$821.65 {\pm} 2.256$	$9.470 {\pm} 0.326$
549.865	$4.480{\pm}0.138$	$769.15 {\pm} 1.756$	$18.816{\pm}0.802$
582.210	$7.809 {\pm} 0.206$	$715.17{\pm}0.970$	$33.648{\pm}1.442$

Table S3: VLE properties for OME1-OME4.

4. Comparison between two independent MC codes

In addition to the GEMC results computed with MedeA-Gibbs [1], which are discussed in the main text, for several state-points we also calculated the VLE properties of OME1-OME4 with Cassandra [2]. Excellent agreement was observed between the two simulation codes, as illustrated in Figure S1.

Figure S1: Liquid densities (left) and saturated vapour pressures (right) for OME1-OME4 as a function of temperature. Full lines are correlations of experimental data and dashed lines are extrapolations of these correlations. Filled squares indicate the molecular simulation results obtained with MedeA-Gibbs, at temperatures that were considered for parametrisation. Open squares indicate the molecular simulation results obtained with MedeA-Gibbs, at temperatures that were not considered for parametrisation. Triangles indicate the molecular simulation results obtained with Cassandra. Error bars are within symbol size.

5. Numerical results for solubility from BPE-MC simulations

The numerical results for the pressures in vapour phase for CO_2 -OME*n* mixtures at 353.15 K, obtained with BPE-MC simulations with MedeA-Gibbs [1] are given in Table S4

$x_{\rm CO_2}$	p/bar
	OME2
0.064	$5.6709 {\pm} 0.4166$
0.150	$13.083{\pm}0.2655$
0.280	$26.921 {\pm} 0.2492$
	OME3
0.030	$2.5757 {\pm} 0.0321$
0.078	$7.2016 {\pm} 0.0530$
0.122	$10.152{\pm}0.3517$
0.264	$25.559 {\pm} 0.8138$
	OME4
0.034	$2.7402{\pm}0.1413$
0.088	$7.9732{\pm}0.3603$
0.192	$15.700{\pm}0.6535$
0.294	$27.961 {\pm} 0.8630$

Table S4: Solubilities of CO_2 in OMEn for n=2 - 4

6. Shear viscosity

The numerical values of the shear viscosity and density for OME1-OME4 modelled with the present force field are provided in Table S5.

T / K	$\rho^{\rm liq}\ /\ {\rm kg\ m}^{-3}$	η / mPa s
	OME	1
293.15	$851.181 {\pm} 0.025$	$0.2954{\pm}0.0151$
303.15	$838.642 {\pm} 0.029$	$0.2564{\pm}0.0136$
313.15	$825.579 {\pm} 0.024$	$0.2265{\pm}0.0115$
323.15	$812.746 {\pm} 0.028$	$0.2026{\pm}0.0103$
	OME	2
298.15	$960.930{\pm}0.033$	$0.5914{\pm}0.0333$
303.15	$955.111 {\pm} 0.024$	$0.5585{\pm}0.0273$
308.15	$949.402{\pm}0.038$	$0.5288 {\pm} 0.0253$
313.15	$943.536{\pm}0.042$	$0.4959 {\pm} 0.0255$
318.15	$937.635 {\pm} 0.060$	$0.4646{\pm}0.0215$
323.15	$931.690{\pm}0.038$	$0.4350{\pm}0.0193$
	OME	3
298.15	$1014.860{\pm}0.040$	$0.9125{\pm}0.0336$
303.15	$1009.340{\pm}0.031$	$0.8547 {\pm} 0.0306$
308.15	$1003.880{\pm}0.028$	$0.8011 {\pm} 0.0270$
313.15	$998.372 {\pm} 0.027$	$0.7515 {\pm} 0.0260$
318.15	$992.858 {\pm} 0.021$	$0.7103 {\pm} 0.0245$
323.15	$987.366 {\pm} 0.038$	$0.6671 {\pm} 0.0197$
	OME	4
298.15	$1067.770{\pm}0.036$	$1.7227{\pm}0.0497$
303.15	$1062.650{\pm}0.041$	$1.5934{\pm}0.0460$
308.15	$1057.520{\pm}0.052$	$1.4124{\pm}0.0435$
313.15	$1052.280{\pm}0.045$	$1.3385{\pm}0.0415$
318.15	$1047.110{\pm}0.045$	$1.2445 {\pm} 0.0394$
323.15	$1041.990{\pm}0.038$	$1.1229{\pm}0.0376$

Table S5: Shear viscosity for OME1-OME4.

7. Quantum-Mechanical Calculations

7.1. Bond Lengths and Partial Charges

This section explains the procedure to calculate the bond lengths and the partial charges. The procedure is divided into three subsequent steps: As the first step, a DFT calculation with the 6-311G^{**} Basis set was carried out for obtaining the polarisability α and the permanent dipolar moment μ_0 for each molecule. As

the second step, the Clausius-Mossotti-Debye equation 3

$$\frac{4}{3}\pi \frac{N_A}{V_m} \left(\alpha + \frac{\mu_0^2}{3k_B T} \right) = \frac{\epsilon_r - 1}{\epsilon_r + 2} \tag{3}$$

was applied in order to calculate the dielectric constant ϵ_r using the reference data [5] for temperature T and molar volume V_m given in Table S6.

Molecule	$T\ /\ {\rm K}$	$V_m \ / \ { m cm}^3$	α / Å^3	$\mu_0 \ / \ { m D}$	ϵ_r
OME1	293.15	88.56	7.29	0.0632	2.650
OME2	298.15	110.55	9.79	0.5078	4.471
OME3	298.15	132.98	12.30	0.0053	1.913
OME4	298.15	155.75	14.85	0.4914	3.407
OME5	298.15	178.32	17.42	0.1214	2.039

Table S6: DFT Results of the first calculation.

As the third step, the dielectric constants were used in a DFT calculation combined with the COSMO [6] solvation model to calculate the partial charges, the bond lengths and the angles. The RESP Method [7] uses 4 layers of spherical isosurfaces with a scaling factor of 1.4 VDW radii for the first shell. The step for each layer is 0.2 VDW radii with a distance of 0.8 Å for each point in the single layer.

In the next subsection of the supporting information the details about the Quantum-Chemical calculations for OMEs, i.e. bond lengths, angles and point charges for the united-atom model are shown. For each OMEn (with n = 1 to 5), the atom coordinates corresponding to the lowest energy configuration are provided including the center of mass and the Z-Matrix.

7.2. Angle Conformational Analysis

In this section, the results about the angle conformational analysis are provided for each angle type. The Quantum-chemical calculations were carried out using Hartree-Fock method with 6-311G^{**} basis set. The angle bending is modelled using a harmonic potential:

$$u_{\rm b} = k_{\rm b} (\theta - \theta_0)^2 / 2 \tag{4}$$

where $u_{\rm b}$ is the bending energy, $k_{\rm b}$ is the bending constant, and θ_0 and θ are the equilibrium and the bending angle, respectively.

Figure S2: Angle conformational analysis obtained from QM calculations for the CH_3 -O- CH_2 angle type. OME1 (black), OME2 (green), OME3 (red) and OME4 (blue). The solid black line (-) represents the fitted harmonic function (eq. 4) for all the OMEs QM calculation and the dotted red line (- - -) is the harmonic potential function from Dasgupta et al. [8].

Figure S3: Angle conformational analysis obtained from QM calculations for the CH_2 -O- CH_2 angle type. Squares indicate edge angles and triangles indicate central angles. OME1 (black), OME2 (green), OME3 (red) and OME4 (blue). The solid black line (-) represents the fitted harmonic function (eq. 4) for all the OMEs QM calculation and the dotted red line (- -) is the harmonic potential function from Dasgupta et al. [8].

Figure S4: Angle conformational analysis obtained from QM calculations for the $O-CH_2-O$ angle type. Squares indicate edge angles and triangles indicate central angles. OME1 (black), OME2 (green), OME3 (red) and OME4 (blue). The solid black line (-) represents the fitted harmonic function (eq. 4) for all the OMEs QM calculation and the dotted red line (- -) is the harmonic potential function from Dasgupta et al. [8].

7.3. OME1

In this section the full atom and center of mass coordinates for OME1 are shown in table S7. The table S8 represents the Z-Matrix for equilibrium geometry of united-atom model, and related partial charges are shown in table S9.

Atom	$x/\text{\AA}$	$y/{ m \AA}$	$z/{ m \AA}$	Group	$x_{\rm CM}/{\rm \AA}$	$y_{\rm CM}/{ m \AA}$	$z_{ m CM}/{ m \AA}$
С	1.856	0.553	0.308				
Н	2.312	-0.161	1.004	CHa	1 903	0.588	0 354
Н	1.311	1.309	0.878	0113	1.000	0.000	0.004
Н	2.638	1.034	-0.277				
0	1.004	-0.122	-0.616	0	1.004	-0.122	-0.616
С	0.000	-0.890	-0.003				
Н	0.423	-1.515	0.790	CH_2	0.000	-0.980	-0.004
Н	-0.422	-1.510	-0.801				
0	-1.006	-0.128	0.615	0	-1.006	-0.128	0.615
С	-1.854	0.557	-0.304				
Н	-1.305	1.313	-0.870	CHa	-1 901	0.592	-0.350
Н	-2.315	-0.150	-1.004	0113	1.501	1 0.392	-0.000
Н	-2.633	1.039	0.285				

Table S7: Full atom coordinates and center of mass (CM) for equilibrium geometry of OME1.

Figure S5: Equilibrium geometry of OME1. Top: full atom representation, bottom: united-atom model.

Group	ID	Bonds / Å	ID	Angles / $^\circ$	ID	Dihedrals / $^\circ$
CH_3						
О	1	1.500				
CH_2	2	1.456	1	114.811		
О	3	1.456	2	108.100	1	71.900
CH_3	4	1.500	3	114.804	2	71.600

Table S8: Z-Matrix for equilibrium geometry of OME1 using united-atom model.

Atom	Charge	Group	Total Charge
С	0.0265		
Н	0.0491	СНа	0.2105
Н	0.0772	0113	0.2135
Н	0.0667		
0	-0.3455	0	-0.3455
С	-0.0342		0.2539
Н	0.1436	CH_2	
Н	0.1445		
О	-0.3469	О	-0.3469
С	0.0312		
Н	0.0742	СНа	0.2189
Н	0.0489	0113	0.2109
Н	0.0646		

Table S9: Point Charges for OME1.

7.4. OME2

In this section the full atom and center of mass coordinates for OME2 are shown in table S10. The table S11 represents the Z-Matrix for equilibrium geometry of united-atom model, and related partial charges are shown in table S12.

Atom	$x/\text{\AA}$	$y/\text{\AA}$	$z/ m \AA$	 Group	$x_{\rm CM}/{\rm \AA}$	$y_{ m CM}/{ m \AA}$	$z_{ m CM}/{ m \AA}$
С	-2.870	-0.359	0.267				
Н	-3.273	0.431	0.912	CII	2 022	0.286	0.219
Н	-2.437	-1.146	0.889	$C\Pi_3$	-2.922	-0.580	0.512
Н	-3.672	-0.776	-0.340				
0	-1.903	0.177	-0.638	 О	-1.903	0.177	-0.638
С	-0.848	0.851	-0.007				
Н	-1.227	1.580	0.715	CH_2	-0.835	0.939	-0.012
Н	-0.289	1.347	-0.802				
0	-0.003	-0.008	0.742	 0	-0.003	-0.008	-0.742
С	0.838	-0.835	-0.047				
Н	0.275	-1.288	-0.864	CH_2	0.824	-0.922	-0.056
Н	1.213	-1.601	0.638				
0	1.897	-0.137	-0.644	 0	1.897	-0.137	-0.644
С	2.888	0.314	0.281				
Н	2.483	1.061	0.968	СН	2 0/1	0.337	0 397
Н	3.688	0.759	-0.307	\bigcirc 113	2.941	0.007	0.321
Н	3.286	-0.528	0.859				

Table S10: Full atom coordinates and center of mass (CM) for equilibrium geometry of OME2.

Figure S6: Equilibrium geometry of OME2. Top: full atom representation, bottom: united-atom model.

Group	ID	Bonds / Å	ID	Angles / $^\circ$	ID	Dihedrals / $^\circ$
CH ₃						
О	1	1.502				
CH_2	2	1.454	1	115.008		
О	3	1.469	2	107.424	1	69.100
CH_2	4	1.469	3	116.161	2	71.000
О	5	1.453	4	107.375	3	71.700
CH_3	6	1.502	5	114.999	4	70.900

Table S11: Z-Matrix for equilibrium geometry of OME2 using united-atom model.

Atom	Charge	Group	Total Charge	
С	-0.0110			
Н	0.0632	СНа	0.2097	
Н	0.0669	0113	0.2051	
Н	0.0906			
О	-0.4134	0	-0.4134	
С	0.2150			
Н	0.0907	CH_2	0.4040	
Н	0.0983			
0	-0.4083	0	-0.4083	
С	0.2338			
Н	0.0956	CH_2	0.4140	
Н	0.0846			
0	-0.4090	0	-0.4090	
С	-0.0395			
Н	0.0762	СН	0 2020	
Н	0.0997	0113	0.2029	
Н	0.0665			

Table S12: Point Charges for OME2.

7.5. OME3

In this section the full atom and center of mass coordinates for OME3 are shown in table S13. The table S14 represents the Z-Matrix for equilibrium geometry of united-atom model, and related partial charges are shown in table S15.

Atom	$x/\text{\AA}$	$y/\text{\AA}$	$z/{ m \AA}$	Group	$x_{\rm CM}/{\rm \AA}$	$y_{ m CM}/{ m \AA}$	$z_{\rm CM}/{ m \AA}$
С	-3.731	-0.612	0.333				
Η	-3.189	-1.237	1.048	CH	-3 770	3 770 0 642	0.281
Η	-4.450	-1.223	-0.211	0113	-0.119	-0.042	0.501
Н	-4.263	0.178	0.876				
0	-2.850	-0.049	-0.637	0	-2.850	-0.049	-0.637
\mathbf{C}	-1.894	0.821	-0.098				
Н	-1.413	1.306	-0.948	CH_2	-1.893	0.909	-0.112
Н	-2.361	1.560	0.560				
0	-0.933	0.164	0.714	0	-0.933	0.164	-0.714
\mathbf{C}	0.000	-0.618	-0.005				
Н	-0.501	-1.232	-0.753	CH_2	0.000	-0.707	-0.005
Н	0.500	-1.241	0.738				
0	0.934	0.169	-0.715	0	0.934	0.169	-0.715
\mathbf{C}	1.894	0.821	0.102				
Н	2.363	1.563	-0.551	CH_2	1.893	0.909	0.117
Н	1.412	1.301	0.954				
О	2.848	-0.052	0.639	О	2.848	-0.052	0.639
С	3.731	-0.611	-0.333				
Н	3.190	-1.233	-1.050	CHe	3 770	-0 641	-0 381
Н	4.449	-1.223	0.210	0113	5.119	-0.041	-0.001
Н	4.263	0.181	-0.872				

Table S13: Full atom coordinates and center of mass (CM) for equilibrium geometry of OME3.

Figure S7: Equilibrium geometry of OME3. Top: full atom representation, bottom: united-atom model.

Group	ID	Bonds / Å	ID	Angles / $^\circ$	ID	Dihedrals / $^\circ$
CH_3						
О	1	1.500				
CH_2	2	1.452	1	115.014		
О	3	1.469	2	107.436	1	69.500
CH_2	4	1.465	3	116.231	2	70.700
О	5	1.465	4	106.765	3	70.500
CH_2	6	1.469	5	116.278	4	70.300
О	7	1.452	6	107.456	5	70.600
CH_3	8	1.500	7	115.025	6	69.400

Table S14: Z-Matrix for equilibrium geometry of OME3 using united-atom model.

Atom	Charge	Group	Total Charge		
\mathbf{C}	0.0054				
Н	0.0537	CH_2	0.1941		
Н	0.0802	0113	0.1011		
Н	0.0548				
0	-0.3720	0	-0.3720		
С	0.1694				
Н	0.0763	CH_2	0.3476		
Н	0.1019				
О	-0.4398	О	-0.4398		
С	0.4858				
Н	0.0267	CH_2	0.5368		
Н	0.0243				
0	-0.4472	0	-0.4472		
С	0.2219				
Н	0.0866	CH_2	0.3713		
Н	0.0628				
0	-0.3781	0	-0.3781		
С	-0.0252				
Н	0.0586	СН	0 1873		
Н	0.0908	0113	0.1075		
Н	0.0631				

Table S15: Point Charges for OME3.

7.6. OME4

In this section the full atom and center of mass coordinates for OME4 are shown in table S16. The table S17 represents the Z-Matrix for equilibrium geometry of united-atom model, and related partial charges are shown in table S18.

Atom	$x/\text{\AA}$	$y/{ m \AA}$	$z/{ m \AA}$		Group	$x_{\rm CM}/{ m \AA}$	$y_{\rm CM}/{ m \AA}$	$z_{ m CM}/{ m \AA}$
С	4.736	-0.430	-0.285					
Н	5.464	-1.044	0.242		CH.	1 778	0.452	0 333
Н	5.241	0.440	-0.722		0113	4.110	-0.452	-0.555
Н	4.276	-1.017	-1.084					
0	3.768	-0.017	0.680		Ο	3.768	-0.017	0.680
С	2.796	0.854	0.174					
Н	2.256	1.244	1.037		CH_2	2.790	0.941	0.195
Н	3.253	1.667	-0.398					
0	1.900	0.227	-0.734		Ο	1.900	0.227	-0.734
С	0.987	-0.666	-0.127					
Н	0.538	-1.231	-0.944		CH_2	0.992	-0.754	-0.136
Н	1.496	-1.331	0.571					
0	-0.001	0.003	0.633		Ο	-0.001	-0.003	0.633
С	-0.989	0.665	-0.134					
Н	-1.498	1.336	0.558		CH_2	-0.993	0.753	-0.144
Н	-0.538	1.223	-0.956					
0	-1.901	-0.233	-0.735		Ο	-1.901	-0.233	-0.735
С	-2.796	-0.855	0.177					
Н	-3.256	-1.670	-0.390		CH_2	-2.790	-0.941	0.198
Н	-2.255	-1.241	1.041					
0	-3.766	0.020	0.681		О	-3.766	0.020	0.681
С	-4.734	0.431	-0.286	_				
Н	-4.273	1.009	-1.090		CHa	-4 786	0.453	-0 333
Н	-5.458	1.053	0.239		0113	-4.100	0.400	-0.000
Н	-5.245	-0.439	-0.714					

Table S16: Full atom coordinates and center of mass (CM) for equilibrium geometry of OME4.

Figure S8: Equilibrium geometry of OME4. Top: full atom representation, bottom: united-atom model.

Group	ID	Bonds / Å	ID	Angles / °	ID	Dihedrals / °
CH ₃		~ /		0 447		
0	1	1 509				
0	1	1.502				
CH_2	2	1.452	1	115.003		
О	3	1.471	2	107.395	1	71.000
CH_2	4	1.465	3	116.279	2	70.000
О	5	1.466	4	106.722	3	69.600
CH_2	6	1.466	5	116.415	4	71.800
О	7	1.465	6	106.752	5	71.800
CH_2	8	1.471	7	116.309	6	69.500
О	9	1.452	8	107.390	7	69.800
CH_3	10	1.502	9	114.998	8	70.900

Table S17: Z-Matrix for equilibrium geometry of OME4 using united-atom model.

Atom	Charge	Group	Total Charge
С	-0.0867		
Н	0.1037	СН	0 1830
Н	0.0852	0113	0.1055
Н	0.0817		
0	-0.3428	0	-0.3428
С	0.1024		
Н	0.0922	CH_2	0.3186
Н	0.1240		
0	-0.4268	0	-0.4268
С	0.4672		
Н	0.0112	CH_2	0.5197
Н	0.0413		
0	-0.4840	0	-0.4840
\mathbf{C}	0.3818		
Н	0.0675	CH_2	0.4808
Н	0.0315		
О	-0.4171	0	-0.4171
\mathbf{C}	0.1243		
Н	0.1181	CH_2	0.3296
Н	0.0872		
О	-0.3532	О	-0.3532
С	-0.0513		
Н	0.0759	СНа	0 1019
Н	0.0924	0113	0.1312
Н	0.0742		

Table S18: Point Charges for OME4.

7.7. OME5

In this section the full atom and center of mass coordinates for OME5 are shown in table S19. The table S20 represents the Z-Matrix for equilibrium geometry of united-atom model, and related partial charges are shown in table S21.

Atom	$x/\text{\AA}$	$y/\text{\AA}$	$z/ m \AA$	Group	$x_{\rm CM}/{ m \AA}$	$y_{ m CM}/{ m \AA}$	$z_{ m CM}/{ m \AA}$
С	5.650	0.558	0.476				
Н	5.100	0.974	1.324	СН	5 607	0.575	0.531
Н	6.368	1.292	0.114	0113	5.097	0.575	
Н	6.183	-0.343	0.801				
0	4.777	0.261	-0.613	0	4.777	0.261	-0.613
С	3.822	-0.720	-0.320				
Н	3.351	-0.979	-1.270	CH_2	3.821	-0.802	-0.356
Н	4.288	-1.600	0.134				
0	2.850	-0.288	0.621	0	2.850	-0.288	0.621
C	1.897	0.614	0.098				
Н	1.425	1.085	0.961	CH_2	1.898	0.701	0.114
Н	2.371	1.359	-0.541				
0	0.934	-0.032	-0.713	0	0.934	-0.032	0.713
С	-0.001	-0.814	0.004				
Н	0.499	-1.428	0.754	CH_2	-0.001	-0.903	0.005
Н	-0.500	-1.437	-0.737				
0	-0.935	-0.023	0.712	0	-0.935	-0.023	0.712
\mathbf{C}	-1.898	0.613	-0.107				
Н	-2.372	1.366	0.524	CH_2	-1.898	0.701	-0.124
Н	-1.427	1.075	-0.975				
0	-2.850	-0.295	-0.618	0	-2.850	-0.295	-0.618
\mathbf{C}	-3.821	-0.717	0.327				
Н	-4.289	-1.600	-0.119	CH_2	-3.821	-0.799	0.363
Н	-3.350	-0.968	1.279				
0	-4.776	0.267	0.612	0	-4.776	0.267	0.612
\mathbf{C}	-5.649	0.554	-0.480				
Н	-5.100	0.962	-1.332	CHa	-5 696	-5.696 -0.570	-0.534
Н	-6.367	1.290	-0.123	0113	0.000		0.001
Н	-6.183	-0.350	-0.796				

Table S19: Full atom coordinates and center of mass (CM) for equilibrium geometry of OME5.

Figure S9: Equilibrium geometry of OME5. Top: full atom representation, bottom: united-atom model.

Group	ID	Bonds / Å	ID	Angles / $^\circ$	ID	Dihedrals / $^\circ$
CH_3						
О	1	1.501				
CH_2	2	1.452	1	114.907		
О	3	1.470	2	107.250	1	69.800
CH_2	4	1.464	3	115.872	2	72.600
О	5	1.467	4	106.545	3	73.900
CH_2	6	1.466	5	116.069	4	70.900
О	7	1.465	6	106.640	5	71.000
CH_2	8	1.467	7	116.094	6	71.100
О	9	1.464	8	106.539	7	70.900
CH_2	10	1.470	9	115.911	8	73.800
О	11	1.452	10	107.261	9	72.400
CH_3	12	1.501	11	114.884	10	69.800

Table S20: Z-Matrix for equilibrium geometry of OME5 using united-atom model.

Atom	Charge	Group	Total Charge	
С	-0.0455			
Η	0.0698	СНа	0 1855	
Η	0.0912	0113	0.1000	
Η	0.0700			
0	-0.3301	0	-0.3301	
С	0.0376			
Η	0.1115	CH_2	0.2808	
Н	0.1317			
0	-0.3701	0	-0.3701	
С	0.3910			
Н	0.0223	CH_2	0.4677	
Н	0.0544			
О	-0.4730	0	-0.4730	
С	0.4516			
Н	0.0169	CH_2	0.4823	
Н	0.0138			
0	-0.4780	0	-0.4780	
С	0.3761			
Н	0.0646	CH_2	0.4638	
Н	0.0231			
О	-0.3686	0	-0.3686	
С	0.0549			
Н	0.1253	CH_2	0.2908	
Н	0.1106			
О	-0.3404	О	-0.3404	
С	-0.0343			
Н	0.0685	СН	0 1803	
Н	0.0890	0113	0.1099	
Н	0.0661			

Table S21: Point Charges for OME5.

8. References

- M. Yiannourakou, P. Ungerer, B. Leblanc, N. Ferrando, J.-M. Teuler, Overview of medea®-gibbs capabilities for thermodynamic property calculation and vle behaviour description of pure compounds and mixtures: application to polar compounds generated from ligno-cellulosic biomass, Molecular Simulation 39 (14-15) (2013) 1165–1211.
- [2] J. K. Shah, E. Marin-Rimoldi, R. G. Mullen, B. P. Keene, S. Khan, A. S. Paluch, N. Rai, L. L. Romanielo, T. W. Rosch, B. Yoo, E. J. Maginn, Cassandra: An open source monte carlo package for molecular simulation, Journal of computational chemistry 38 (19) (2017) 1727–1739.
- [3] T. Darden, D. York, L. Pedersen, Particle mesh ewald: An nlog(n) method for ewald sums in large systems, The Journal of Chemical Physics 98 (12) (1993) 10089–10092. doi:10.1063/1.464397.
- [4] B. Hess, H. Bekker, H. J. C. Berendsen, J. G. E. M. Fraaije, Lincs: A linear constraint solver for molecular simulations, Journal of Computational Chemistry 18 (12) (1997) 1463-1472. doi:10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H.
- [5] Boyd, R. H., Some physical properties of polyoxymethylene dimethyl ethers, J. Pol. Chem. 50 (153) (1961)
 133-141. doi:10.1002/pol.1961.1205015316.
- [6] S. A., Klamt; G., Cosmo: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient, J. Chem. Soc., Perkin Trans. 2 (1993) 799-805doi:10.1039/ P29930000799.
- [7] Bayly, C. I.; Cieplak, P.; Cornell, W.; Kollman, P. A., A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model, J. Phys. Chem. 97 (40) (1993) 10269–10280. doi:https://doi.org/10.1021/j100142a004.
- [8] S. Dasgupta, K.A. Smith, W.A. Goddard, Polyoxymethylene: the Hessian biased force field for molecular dynamics simulations., J. Phys. Chem. 97 (1993) 10891–10902. doi:doi:10.1021/j100144a001.