Supporting Information

Superhydrophobic Surfaces as a Source of Airborne Singlet Oxygen Through

Free Space for Photodynamic Therapy

David Aebisher,¹ Dorota Bartusik-Aebisher,¹ Sarah J. Belh,^{2,3} Goutam Ghosh,^{2,3} Andrés M. Durantini,^{2,4} Yang Liu,^{3,5} QianFeng Xu,⁵ Alan M. Lyons,^{3,5*} Alexander Greer^{2,3*}

¹ Faculty of Medicine, University of Rzeszów, 35-310, Rzeszów, Poland

² Department of Chemistry, Brooklyn College, City University of New York, Brooklyn, New York 10314, United States

³ Ph.D. Program in Chemistry, Graduate Center of City University of New York, New York, New York 10016, United States

⁴ IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina

⁵ Department of Chemistry, College of Staten Island, City University of New York, Staten Island, New York 10314, United States

Email addresses: alan.lyons@csi.cuny.edu; agreer@brooklyn.cuny.edu

Table of Contents	Page
Kinetic derivation for the steady-state (ss) approximation of [¹ O ₂] _{ss}	S2
Figure S1: Photograph of a water droplet poised on a SH surface	S2
Figure S2: Plot of ln [1] vs time for SH sandwich at a distance of 600 μ m	S3
Figure S3: Singlet oxygen luminescence intensity with various apparatus setups	S3
Figure S4: Singlet oxygen luminescence intensity for the SH sandwich system containing a H ₂ O droplet with various anthracene 1 concentrations	S4

Kinetic derivation for the steady-state (ss) approximation of [¹O₂]_{ss}

$$-d[{}^{1}O_{2}]/dt = k_{obs} [{}^{1}O_{2}] = \{k_{d} + (k_{r} + k_{q}) [\mathbf{1}]\} [{}^{1}O_{2}]$$
(a)

$$[{}^{1}O_{2}] = [{}^{1}O_{2}]_{0} e^{-(kobs t)} = [{}^{1}O_{2}]_{0} e^{-\{kd + (kr + kq)[1]\}t}$$
(b)

$$k_{\rm obs} = k_{\rm d} + (k_{\rm r} + k_{\rm q}) [1]$$
 (c)

where the steady-state (ss) approximation for $[{}^{1}O_{2}]_{ss}$ in eq 7 is taken to be

$$d[{}^{1}O_{2}]_{ss}/dt = -k_{d}[{}^{1}O_{2}]_{ss} - (k_{r} + k_{q})[{}^{1}O_{2}]_{ss} [\mathbf{1}] = 0$$
(d)

$$d[{}^{1}O_{2}]_{ss}/dt = [{}^{1}O_{2}]_{ss} (-k_{d} - (k_{r} + k_{q})[1]) = 0$$
(e)

$$[{}^{1}O_{2}]_{ss} = (-k_{d} - (k_{r} + k_{q}) [1])^{-1}$$
(f)

plugging eq f into eq 7, assuming $k_q = 0$ since 9,10-disubstituted anthracene traps are known to be mainly chemical quenchers not physical quenchers of ¹O₂, gives eq 9, in the main manuscript.

Figure S1. Photograph of a water droplet poised on a lower SH surface. The upper sensSH surface is embedded with sensitizer particles, where upon illumination airborne ${}^{1}O_{2}$ is delivered from this upper surface to the water droplet below. The lower SH surface bears no sensitizer particles.

Figure S2. Plot of *ln* [1] vs time for the distance of 600 µm between the upper sensSH surface and the top of the 25-µL water droplet in Table 1. The slope is k_{obs} (0.33 × 10⁻⁵ s⁻¹, R² = 0.9792).

Figure S3. Singlet oxygen luminescence intensity at 1270 nm as a function of time for the (A) native SH surface (single layer); (B) sensSH surface (single layer); (C) sensSH surface with oxygen gas flowing at a rate of 130 mL/min (single layer); (D) SH sandwich system with no H₂O droplet as quencher; (E) SH sandwich system using a 25 μ L H₂O droplet as quencher; (F) SH sandwich system with a 25 μ L H₂O droplet containing anthracene **1** (0.2 mM); and (G) sensSH surface with nitrogen flowing at a rate of 130 mL/min (single layer). The distance between the sensSH surface and the water droplet was 150 μ m.

Figure S4. Singlet oxygen luminescence intensity at 1270 nm as a function of time for the SH sandwich system containing a 25 μ L H₂O droplet with **1** in concentrations of (A) 0.2 mM, (B) 10 mM, and (C) 20 mM. The distance between the sensSH surface and the water droplet was 80 μ m.