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Part I. Supplementary experimental details 

 

Fabrication of microcapillary microfluidic device 

The coaxial microcapillary microfluidic devices are fabricated following previous protocol.1 Briefly, a 

cylinder capillary (inner diameter 700 μm, outer diameter 1 mm) was inserted into a square capillary 

(inner diameter 1mm, length 5 cm), before bonded onto a glass slide.  The two ends of the cylinder 

microcapillary were connected with a steel tube to protect the microcapillary.  Dispending needles as 

inlet/outlet for the ice-cold water were then connected at the junctions between capillaries using Epoxy 

resin. 

 

Preparation of the monomer precursor solution for the hydrogel microfibres 

To fabricate the cucurbit[8]uril (CB[8])-contained DN hydrogel microfibre, agar (20 mg, congealing 

temperature 30-35 ℃ , A7921 Sigma), Acrylamide (AAm, 250 mg), 2-hydroxy-1-[4-(2-

hydroxyethoxy)phenyl]-1-methyl-1-propaone (0.0059 g, Irgacure®2959, BASF, 1 mol% of AAm), 

CB[8] (0.014 g), 1-benzyl-3-vinylimidazolium bromide (BVIm, 0.0067 g) and milli-Q H2O (1 mL) 

were added into a vial to form a homogeneous solution under a heating condition. Controls of the 

hydrogel microfibres were fabricated following the same procedure.   
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Part II. Supplementary results 

 

 
Figure S1. Photographs showing the microfibre fabrication with (a) or without (b) the heat-

exchanging process. The monomer precursor solution can be immediately cooled down, 

inducing gelation of the first agar network.  
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Figure S2. Tensile test curves of the hydrogel microfiber controls: (a) nominal stress-strain 

curve and (b) true stress-strain curve (deformation rate of 100 mm min-1). 
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Figure S3. Toughness of the DN hydrogel microfibers including controls without CB[n], with 

CB[7], as well as a pure agar fiber (deformation rate of 100 mm min-1). 
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Figure S4. Cyclic tensile tests of the DN hydrogel microfibers at various strains (25-500%, 

deformation rate of 100 mm min-1).   
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Figure S5. Cyclic tensile tests of the DN hydrogel microfibers at various strains (750-1500%, 

deformation rate of 100 mm min-1). 
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Figure S6. (a) Consecutive cyclic tensile tests of the Agar DN w/o CB[n] hydrogel microfibers at 10% 

strain. (b) Hysteresis ratio of the Agar DN w/o CB[n] hydrogel microfibers for each cycle during the 

consecutive cyclic tensile tests at 10% strains. The deformation rates are 100 mm min-1. 

(a) (b)
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Figure S7. Consecutive cyclic tensile tests of the DN hydrogel microfibers at various strains 

(25-500%, deformation rate of 100 mm min-1). 
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Figure S8. Hysteresis ratio of the DN hydrogel microfibers for each cycle during the 

consecutive cyclic tensile tests at various strains (25-500%, deformation rate of 100 mm min-

1). 
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Figure S9. Resilience of the DN hydrogel microfibers for each cycle during the consecutive 

cyclic tensile tests at various strains (25-500%, deformation rate of 100 mm min-1). Resilience 

was quantified by the ratio of work (WN) of subsequent loadings and unloadings to the work 

of the first loading (WN=1,load).  
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Figure S10. Consecutive cyclic tensile tests with different at different waiting time between 

two cycles.  (strain of 100%, deformation rate of 100 mm min-1). 
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Figure S11. Self-healing performance of the DN hydrogel microfiber controls with CB[7] (a) 

or without CB[n] (b).   
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Part III. Supplementary Movies S1 and S2 

 

 

Movie 1 

Manual tensile test with the DN hydrogel microfibres. 

 

Movie 2 

Manual tensile test with the DN hydrogel microfibres control in the presence of CB[7]. 
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