Supporting Information

Composition tuning of ultrafine cobalt-based spinel nanoparticles for efficient oxygen evolution

Jingbo Han,^a Xiaohe Liu,^{a,*} Hao Wan,^a Dan Wu,^a Gen Chen,^a Junhui Li,^a Yijun Cao,^b Renzhi Ma^{c,*}

^a School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, P.R. China.

^b Henan Province Industrial Technology Research Institute of Resources and Materials, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China.

^c International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan.

Corresponding author

*Email: liuxh@csu.edu.cn (X. Liu)

*Email: MA.Renzhi@nims.go.jp (R. Ma)

Content	Page No.	Content	Page No.
Figure S1	Page S2	Figure S6	Page S7
Table S1	Page S2	Table S4	Page S7
Table S2	Page S3	Table S5	Page S7
Figure S2	Page S3	Figure S7	Page S8
Figure S3	Page S4	Figure S8	Page S9
Figure S4	Page S4	Figure S9	Page S10
Figure S5	Page S5	Figure S10	Page S11
Table S3	Page S6		

Number of pages: 14

Number of figures: 10

Number of tables: 5

Figure S1. XRD patterns of (a) binary oxides (b) ternary oxides in different molar ratios.

Designed ratio (Co : Fe : V)	Practical ratio (Co : Fe : V)
1:0:0 (Co ₃ O ₄)	1:0:0
2:0:1 (CV-1)	1.31 : 0 : 1
3:0:1 (CV-2)	1.88 : 0 : 1
5:0:1 (CV-3)	2.77:0:1
10:0:1 (CV-4)	4.49:0:1
2:1:1(CFV-1)	1.49 : 1.24 : 1
3 : 1 : 1 (CFV-2)	1.83 : 1.13 : 1
5:1:1(CFV-3)	2.81:0.94:1
10:1:1 (CFV-4)	4.68 : 1.19 : 1

Table S1. Composition analysis of the synthesized oxides by EDS.

Catalyst	d ₃₁₁ (nm)	d 440 (nm)	a (nm)
Co ₃ O ₄	0.244	0.143	0.809
CV-2	0.257	0.150	0.851
CFV-2	0.262	0.155	0.872

Table S2. Interplanar spacings of 311 and 440 in synthesized Co_3O_4 , CV-2 and CFV-2.

Figure S2. (a) TEM image (b) SAED pattern, (c) HRTEM image of as-synthesized Co_3O_4 . The two different interplanar spacings coincide with those of 311 and 111 planes of Co_3O_4 , respectively.

Figure S3. (a) TEM image (b) SAED pattern, (c) HRTEM image of as-synthesized CV-2. The two interplanar spacings in (c) respond to 311 and 400 planes of binary CoV spinel oxide, respectively.

Figure S4. Wide-scan XPS spectra of (a) Co_3O_4 , (b) CV-2 and (c)CFV-2.

Figure S5. XPS spectra (a) Co 2p of Co₃O₄, (b) Co 2p of CV-2, (c) V 2p of CV-2 and (d) V 2p of CFV-2.

Catalysts	Substrate	Overpotential	Tafel slope	Reference
CoFeVO ₄	Glassy carbon	$248 \text{ mV}@10 \text{ mA cm}^{-2}$	52.8 mV dec ⁻¹	This work
Co_2VO_4	Glassy carbon	$295 \text{ mV}@10 \text{ mA cm}^{-2}$	65.9 mV dec^{-1}	This work
Co_3O_4	Glassy carbon	$316 \text{mV}@10 \text{ mA cm}^{-2}$	78.6 mV dec ⁻¹	This work
Co ₃ O ₄ /N-rmGO	Ni foam	$310 \text{mV}@10 \text{ mA cm}^{-2}$	67 mV dec^{-1}	1
reduced Co ₃ O ₄	Glassy carbon	420mV@13.1 mA cm ⁻²	72 mV dec^{-1}	2
P-Co ₃ O ₄	Ni foam	$280 \text{mV}@10 \text{ mA cm}^{-2}$	51.6 mV dec^{-1}	3
$Co_3V_2O_8$	Glassy carbon	$359 \text{mV}@10 \text{ mA cm}^{-2}$	65 mV dec^{-1}	4
reduced CoFe ₂ O ₄ NS	Glassy carbon	320mV@10 mA cm ⁻²	48 mV dec^{-1}	5
CoFe-LDH	Ni foam	$300 \text{mV}@10 \text{ mA cm}^{-2}$	83 mV dec^{-1}	6
NiCoFe LTHs/CFC	Carbon fiber cloth	239mV@10 mA cm ⁻²	32 mV dec^{-1}	7
Fe-doped NiCo ₂ O ₄	Ni foam	$350 \text{mV}@10 \text{ mA cm}^{-2}$	27 mV dec^{-1}	8
CoFeZr oxides/NF	Ni foam	$264 \text{mV} @ 20 \text{ mA cm}^{-2}$	54.2 mV dec ⁻¹	9
NiV-LDH	Glassy carbon	318mV@10 mA cm ⁻²	50 mV dec^{-1}	10
NiFe-LDH/rGO	Glassy carbon	210mV@10 mA cm ⁻²	40 mV dec^{-1}	11
NiVFe-LDH	Ni foam	231mV@10 mA cm ⁻²	39.4 mV dec^{-1}	12
NiVFe-LDH	Ni foam	192mV@10 mA cm ⁻²	42 mV dec^{-1}	13
VOOH	Ni foam	270mV@10 mA cm ⁻²	68 mV dec^{-1}	14

Table S3. Comparison of OER activity of as-synthesized oxides with reportedelectrocatalysts in the electrolyte of 1 M KOH .

Figure S6. (a) EIS spectra of (a) binary oxides CV with different molar ratios, (b) ternary oxides CFV with different molar ratios. The inset of (a) and (b) are the corresponding equivalent circuits.

Catalyst	$R_s(\Omega)$	$R_{ct}(\Omega)$
CV-1	12.0	52.3
CV-2	11.5	32.5
CV-3	11.1	39.8
CV-4	11.8	55.2

Table S4. The fitted values of resistances of R_s and R_{ct} of binary oxides.

Table S5. The fitted values of resistances of R_{s_i} , R_{ct} and R_d of binary oxides.

Catalyst	$R_s(\Omega)$	$R_d(\Omega)$	$R_{ct}(\Omega)$
CFV-1	11.2	19.9	28.5
CFV-2	11.6	12.2	24.0
CFV-3	10.9	13.1	26.9
CFV-4	10.6	22.8	34.6

Figure S7. CV curves of (a) Co_3O_4 (b) RuO_2 (c) CV-2 (d) CFV-2 at incremental scan

rates.

Figure S8. (a) LSV curves (b) Histogram of overpotential at 10 mA cm⁻² (c) Tafel slopes (d) EIS spectra of binary oxides CV with different molar ratios.

Figure S9. The photograph of the device.

Faraday efficiency was defined as the ratio between the actual and theoretical amount of the product. The total charge $(Q = I \times t)$ passed during the reaction was divided by $n \times F$ (*n* is the number of electron transfer, *F* is the Faraday constant) to get the theoretical gas yield. *m* is the actual moles of the product (6122.5 µmol during the first 1.5 hour). The calculation process for the Faraday efficiency is as following:

Faraday Efficiency = actual gas yield / theoretical gas yield = m / $[(I \times t) / (n \times F)] = (m \times n \times F) / (I \times t) = (6122.5 \times 10^{-6} \text{ mol} \times 2 \times 96485 \text{ C mol}^{-1}) / (224 \times 10^{-3} \text{ A} \times 5400 \text{ s}) = 97.7\%$.

Figure S10. Irradiative spectrum of the Xe lamp (the major intensity is concentrated on the range of 400 nm $< \lambda < 800$ nm).

The average integral light intensity measured by the light meter is 0.3887 W cm^{-2} . The irradiated area for the silicon solar cell is 14.4 cm². The standard molar enthalpy of combustion for H₂ is -285.84 kJ mol⁻¹. The yield of H₂ during the first 1.5 hour is 6122.5 µmol. The calculation steps are as following:

Input: Solar energy (J) = light intensity (W cm⁻²) × illumination area (cm²) × time (s) = 0.3887 W cm⁻² × 14.4 cm² × 5400 s = 30.2253 kJ

Output: H_2 energy (kJ) = standard molar enthalpy of combustion (kJ mol⁻¹) × H_2 moles (mol) = 285.84 kJ mol⁻¹ × 6122.5 × 10⁻⁶ mol = 1.7501 kJ

Solar-to-Hydrogen energy conversion efficiency = H_2 energy (kJ) / Solar energy (kJ) = 1.7501 / 30.2253 = 5.8%

References

- (1) Liang, Y., Li, Y., Wang, H., Zhou, J., Wang, J., Regier, T., Dai, H. Co₃O₄ nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. *Nat. Mater.* **2011**, 10(10), 780-786, DOI 10.1038/nmat3087.
- (2) Wang, Y., Zhou, T., Jiang, K., Da, P., Peng, Z., Tang, J., Zheng, G. Reduced mesoporous Co₃O₄ nanowires as efficient water oxidation electrocatalysts and supercapacitor electrodes. *Adv. Energy Mater.* **2014**, 4(16), 1400696, DOI 10.1002/aenm.201400696.
- (3) Xiao, Z., Wang, Y., Huang, Y. C., Wei, Z., Dong, C. L., Ma, J., Wang, S. Filling the oxygen vacancies in Co₃O₄ with phosphorus: an ultra-efficient electrocatalyst for overall water splitting. *Energy Environ. Sci.* **2017**, 10(12), 2563-2569, DOI 10.1039/c7ee01917c.
- (4) Xing, M., Kong, L. B., Liu, M. C., Liu, L. Y., Kang, L., Luo, Y. C. Cobalt vanadate as highly active, stable, noble metal-free oxygen evolution electrocatalyst. *J. Mater. Chem. A* 2014, 2(43), 18435-18443, DOI 10.1039/C4TA03776F.
- (5) Yan, K., Shang, X., Liu, Z., Dong, B., Lu, S., Chi, J., Gao, W., Chai, Y., Liu, C. A facile method for reduced CoFe₂O₄ nanosheets with rich oxygen vacancies for efficient oxygen evolution reaction. *Int. J. Hydrogen Energy* 2017, 42(38), 24150-24158, DOI 10.1016/j.ijhydene.2017.07.165.

- (6) Feng, L., Li, A., Li, Y., Liu, J., Wang, L., Huang, L., Ge, X. A highly active CoFe layered double hydroxide for water splitting. *ChemPlusChem* 2017, 82(3), 483-488, DOI 10.1002/cplu.201700005.
- (7) Wang, A. L., Xu, H., Li, G. R. NiCoFe layered triple hydroxides with porous structures as high-performance electrocatalysts for overall water splitting. ACS *Energy Lett.* 2016, 1(2), 445-453, DOI 10.1021/acsenergylett.6b00219.
- (8) Yan, K. L., Shang, X., Li, Z., Dong, B., Li, X., Gao, W. K., Liu, C. G. Ternary mixed metal Fe-doped NiCo₂O₄ nanowires as efficient electrocatalysts for oxygen evolution reaction. *Appl. Surf. Sci.* **2017**, 416, 371-378, DOI 10.1016/j.apsusc.2017.04.204.
- (9) Huang, L., Chen, D., Luo, G., Lu, Y. R., Chen, C., Zou, Y., Wang, S. Zirconium-Regulation-Induced Bifunctionality in 3D Cobalt-Iron Oxide Nanosheets for Overall Water Splitting. *Adv. Mater.* 2019, 28(31), 1901439, DOI 10.1002/adma.201901439.
- (10) Fan, K., Chen, H., Ji, Y., Huang, H., Claesson, P. M., Daniel, Q., Sun, L. Nickel-vanadium monolayer double hydroxide for efficient electrochemical water oxidation. *Nat. Commun.* 2016, 7, 11981, DOI 10.1038/ncomms11981.
- (11) Ma, W., Ma, R., Wang, C., Liang, J., Liu, X., Zhou, K., Sasaki, T. A superlattice of alternately stacked Ni-Fe hydroxide nanosheets and graphene for efficient splitting of water. ACS Nano 2015, 9(2), 1977-1984, DOI 10.1021/nn5069836.
- (12) Dinh, K. N., Zheng, P., Dai, Z., Zhang, Y., Dangol, R., Zheng, Y., Yan, Q. Ultrathin porous NiFeV ternary layer hydroxide nanosheets as a highly efficient

bifunctional electrocatalyst for overall water splitting. *Small* **2018**, 14(8), 1703257, DOI 10.1002/smll.201703257.

- (13) Li, P., Duan, X., Kuang, Y., Li, Y., Zhang, G., Liu, W., Sun, X. Tuning electronic structure of NiFe layered double hydroxides with vanadium doping toward high efficient electrocatalytic water oxidation. *Adv. Energy Mater.* 2018, 8(15), 1703341, DOI 10.1002/aenm.201703341.
- (14) Shi, H., Liang, H., Ming, F., Wang, Z. Efficient Overall Water-Splitting Electrocatalysis Using Lepidocrocite VOOH Hollow Nanospheres. *Angew. Chem. Int. Ed.* 2017, 56(2), 573-577, DOI 10.1002/anie.201610211.